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Monte Carlo analysis of critical phenomenon of the Ising model on memory stabilizer structures
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We calculate the critical temperature of the Ising model on a set of graphs representing a concatenated
three-bit error-correction code. The graphs are derived from the stabilizer formalism used in quantum error
correction. The stabilizer for a subspace is defined as the group of Pauli operators whose eigenvalues are +1 on
the subspace. The group can be generated by a subset of operators in the stabilizer, and the choice of generators
determines the structure of the graph. The Wolff algorithm, together with the histogram method and finite-size
scaling, is used to calculate both the critical temperature and the critical exponents of each structure. The
simulations show that the choice of stabilizer generators, both the number and the geometry, has a large effect

on the critical temperature.
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I. INTRODUCTION

A bit of information can be stored in any physical system
with two distinct states. For the physical system to be a re-
liable memory, the states of the system must be robust
against external fluctuations. The classic example is a ferro-
magnet. Below a critical temperature, the size of the average
magnetization is robust against changes in external magnetic
field and temperature-driven spin fluctuations.

A quantum bit (qubit) of information can be stored in any
physical system with two orthogonal quantum states. A goal
of quantum information is to engineer a system that can re-
liably store the state of the qubit in the presence of
environment-induced fluctuations. A number of approaches
have been proposed from quantum error-correction [1] to
passive protection of the information through symmetries [2]
or energetics [3-7].

The possibility of engineering the quantum equivalent of
the magnetic hard drive is quite attractive. The premise is
that a macroscopic number of qubits with multiqubit interac-
tions could create a single stable qubit memory. It is widely
suspected that Kitaev’s toric code on a four dimensional lat-
tice would achieve this task [4,8]. In lower dimensions, the
answer is unclear. Bravyi and Terhal have recently shown
that for interactions based on stabilizer codes, there is no
two-dimensional self-correcting quantum memory [9]. They
make the reasonable physical assumption that the number of
qubits involved in the interactions does not grow with the
size of the lattice. In the case of self-correcting memories
based on concatenated codes the number of qubits involved
in each interaction does grow with the lattice size [7].

Here we consider the classical concatenated triple-
modular redundancy code in the formalism of quantum sta-
bilizers. The standard choice of generators for this code leads
to interactions that grow with the system size. Choosing a
different set of generators yields interactions that are only
between two-bits and equivalent to an Ising model. In this

PACS number(s): 03.67.Lx, 03.67.Pp, 64.60.an, 64.60.De

paper, Monte Carlo simulations are used to study the critical
behavior of the error-correction inspired structures shown in
Fig. 1 within the framework of a ferromagnetic Ising model.
The calculations use the Wolff algorithm [10] together with
the histogram method [11,12] and finite-size scaling [13].
These high resolution Monte Carlo techniques have been uti-
lized successfully to study the critical phenomena of many
different model Hamiltonian systems such as the three-
dimensional (3D) Ising ferromagnet [14], Heisenberg lattice
[15], XY models [16,17], dilute Ising magnet [18], Potts
models [19], and Sierpinski fractals of dimensions, d, be-
tween one and two [20-23] and between two and three [24].
We study how the choice of generators changes the Hamil-
tonian and affects the magnitude of the critical temperature.
Critical behavior is characterized by the set of critical expo-
nents («,f3,7y) and Wolff dynamical critical exponents are
calculated for each structure.

The results presented here show that structures with low
dimensionality and two-body interactions preserve one bit of
information. It suggests two new directions for examining
self-correcting quantum memories: (1) choosing nonstandard
stabilizer generators to minimize the multiqubit interactions
and (2) to examine stabilizer codes on fractional dimensional
geometries.

Structure 1 Structure 2 Structure 3
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FIG. 1. Memory stabilizer structures generated by two-body in-
teractions. Circles are spin sites (qubits) and the lines show pairs of
interacting spins (generators). The interaction strength J is constant
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II. MODEL AND METHODS

A. Stabilizer to structure

We consider the familiar classical code of triple-modular
redundancy. Each bit, x, is encoded into a logical bit, XL
consisting of three bits of equal value, i.e., 0©=000 and 1-
=111. If an error occurs on a single bit, majority vote can be
used to determine the value of the logical bit; two errors
would not be corrected. One way to protect against higher
errors is to concatenate the code recursively. At each level of
concatenation k, the logical bit consists of three bits of level
k-1, e.g., a 0 at level k=2 is defined as 0¥=2=0/=10*=10k=!
=000 000 000. Correction works by majority vote at the low-
est level first and then working up. Each level of concatena-
tion k can always correct a maximum of 2€—1 errors on the
physical bits.

The basic idea of the stabilizer formalism is that a quan-
tum state or subspace can be described by the operators that
have +1 eigenvalue on that space [25]. The stabilizer formal-
ism is particularly useful for describing quantum error cor-
recting codes. Classical error correcting codes represent a
subset of quantum error correcting codes that only protect
against classical bit-flip errors and not the phase errors. The
triple-modular redundancy code is a textbook example for
introducing the idea of stabilizer error correcting codes [25].
Below we review the case of this concatenated code and
show how it translates directly onto the Ising model.

Following standard quantum computation notation, the
states of the jth spin are represented as |0) ; and 1) » Zj is the
Pauli-z operator on the jth spin (Z;|0);=[0); and Zj1);=
—[1);), and X; is the Pauli-x operator on the jth spin (flips the
jth bit). For level-1 encoded bits |0)*=!=]0),|0),|0);=]000)
and |1)*="=|1),|1),|1);=|111). The encoded Z operator is de-
fined as Z":Z]]‘_IZI;IZ];_1 and for level 1 is Z¥'=27,7,Z5.

For stabilizer codes, the stabilizer is defined as all the
products of Pauli operators that act trivially on the code
space. For the three-bit code, the stabilizer consists of four
operators S='={1,7,2,,7,Z;,Z,7Z;} where I is the identity.
The stabilizer can also be defined by the generators of the
group, S1=(7,2,,2,Z5).

In the case of level-1 triple-modular redundancy, the free-
dom in the minimal generators is trivial $*'=(Z,Z,,7,7;)
=(Z,Z,,7,Z). Equating the sum of the generators with a
Hamiltonian, H=-J(Z,Z,+Z,7Z;), where J is the coupling
strength, yields the Ising interaction between three spins in a
line. If the full stabilizer is used, then H=—-J(Z,Z,+Z,Z;
+Z,Z5+1), which corresponds to Ising interactions between
spins on a triangle with an energy offset due to the identity.
In all cases, the codespace is the degenerate ground state of
the Hamiltonian.

For standard error correction (classical or quantum) an
important consideration is the number of logical bits per en-
coded bit. In this paper, we examine the encoding of a single
logical bit into an increasingly larger number of bits. Al-
though this seems wasteful, it is the key physics behind
memory based on magnetic domains for classical informa-
tion. Finding the equivalent of a magnetic memory for quan-
tum information would change the way we think about build-
ing quantum computers. Furthermore, the stability of the
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TABLE I. Average coordination and number of generator ele-
ments per spin site of the three memory stabilizer graphs described
in Fig. 1 at the k— o limit.

Structure Coordination number Generators per spin site
2 1
2 1
23 13
1
3 15

system in the limit of a large number of bits gives an abso-
lute reference by which to compare the geometries. Conse-
quently, we are interested in the thermodynamic limit and
whether the energy gap between the ground state and the
transition state will preserve the information.

Our goal is to study how the choice of generators affects
the critical temperature of the ferromagnetic phase transition.
At higher levels the choice of generators is nontrivial. As
an example, consider k=2. The standard choice of generators
is  S¥2=(2,7,,72,75,7475,757¢, 7775, ZsZo , Z\ ZrZsZ4Z 57y,
Z.75Z7+7s7). Notice the six bit operators can be written as
products of Z*=! operators, Z'f=IZ§=1=ZIZzZ3Z4Z5Z6. If the
generators are used to define a Hamiltonian, then increasing
k leads to many-body operators that act on 2 X 3*"! spins at
once. This exponential increase in the many-body nature of
the Hamiltonian makes the physical construction of such a
system unlikely.

In contrast, we can choose a set of pairwise Ising interac-
tions that generate the same group. A natural choice would
be the line S¥2=(Z,Z,,2,Z5,2:24,Z4Z5,ZZ¢.ZcZ7,7:Z3,
ZsZo) but it is well known that the one-dimensional (1D)
Ising model does not have a phase transition at finite tem-
perature. We instead consider a model where the encoded
bits are Ising coupled middle to middle not end to end:
S¥2=(7,7,,2,75,7,75,7475,7Z5Z¢,Z5Z5,Z:Z5 . ZsZo).  This
describes the tree labeled Structure 1 in Fig. 1. Structure 2
and 3 are modifications that include loops in the structure.
The loops are equivalent to choosing a nonminimal set of
generators (see Table I).

For each structure, the total number of bits, N, increases
with concatenation level, k, as N=3*. The set of generators
that corresponds to the structure defines the Hamiltonian,

H=-J> 77, (1)
Gp

where the sum is over nearest neighbors. J sets the energy
scale for the problem and temperature is measured in units of
J/kg. The stability of the structure as measured by the phase
transition temperature, 7., depends on the energy barrier that
separates the two ground states and the number of pathways
that traverse the barrier. For these complicated structures 7,
must be calculated numerically.

B. Calculating thermodynamic properties
In the canonical ensemble, the thermodynamic average of
an operator A, (A)y, is given by Tr{A exp(—H/kgT)]/Z(T),
where Z(T)=Tr{exp(=H/kgT)] is the partition function. In
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practice this average cannot be exactly calculated in the limit
of large N and numerical approximations are required. Our
focus is on calculating the following thermodynamic proper-
ties: the average energy, (E);, and the average absolute mag-
netization, (M);. At T, the fluctuations of these quantities
diverge for an infinite system, and 7, can be determined by
examining the specific heat capacity ¢(N,T) and the zero-
field magnetic susceptibility x(N,T) as given by

1(EYr—(E)7

N,T) =
WD =T

: (2)

1 (M) = (MY}

N,T) =
x( )N KT

3)
A direct measurement of the degree of preservation of the
information can be read from the average magnetization per
spin site, defined as m(N,T)=(1/N){M);. Below T, the sys-
tem develops spontaneous magnetization and the single order
parameter m approaches the value of 1.

Without analytical expressions for (E); and (M), there
are three computational challenges: estimating thermody-
namic averages for specific values of 7, determining 7, from
the evaluation of thermodynamic averages at a finite set of 7,
and extending our results to the limit of large N. We solve
each problem using well established numerical techniques
for statistical mechanics.

Reliable studies of thermodynamic averages near critical
temperatures require simulations of very large systems. Two
possible simulation methods are Metropolis Monte Carlo and
the Wolff algorithm [10,26]. A Metropolis Monte Carlo step
updates the configuration of spins by flipping randomly (one
at a time) N chosen spins. Groups of adjacent spins tend to
point in the same direction near and below the critical region,
giving rise to correlations in the system. The linear size of
these clusters (correlation length, &) diverges at the critical
temperature and successive configurations of spins are gen-
erally strongly correlated. The efficiency of the Metropolis
algorithm is hindered by the increasing number of steps
needed to obtain uncorrelated spin configurations [22]. The
Wolff algorithm overcomes the critical slowing down by
identifying and flipping a cluster at every Monte Carlo step.
The size of the cluster is chosen to preserve detailed balance.
The Wolff algorithm generates a Boltzman weighted set of
spin configurations from where it is possible to calculate
canonical thermodynamic averages. This cluster algorithm
has previously been used to study systems with inhomoge-
neous local couplings such as the dilute Ising magnet [18]
and Sierpinski carpets [20-22,24] and the efficiency of the
Wolff algorithm seems to increase as the dimension is low-
ered [24]. As a result the Wolff algorithm is preferred over
Metropolis for the structures in Fig. 1. This is quantified in
Sec. III C.

In the limit of large N, T, will correspond to the tempera-
ture where the magnetic susceptibility is maximized 77,,. To
calculate 7%, (N) for finite N, the histogram method is used.
For a specific temperature, 7|, the states randomly generated
by the Wolff algorithm follow the Boltzmann distribution
and can be used to calculate very good estimates of the ther-
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mal averages. The histogram method approximates the ther-
mal averages at nearby temperatures by reweighting the
probability of choosing a spin configuration with exponential
factors that account for the difference between the tempera-
ture of interest and T,,. The distance AT which can reliably
be extrapolated away from T is given by [26]

AT 21
B @
Ty Nc(Ty)
We find that it is safe to extrapolate =2AT from the calcu-
lated central temperature, 7,,. Going two standard deviations
away from the mean sample energy still leaves 5% of the
samples in the region around the peak of the reweighted
histogram. For a collection of a million independent spin
configurations, 5% is 50 000 samples which yield a reason-
able estimate of the internal energy.

Finally, the standard finite-size scaling analysis developed
by Fisher [13,26] is used to determine the critical exponents
from the behavior of thermodynamic averages as a function
of the system size measured in linear dimension, L, where

L=N" (5)

and d is the dimension. According to the standard scaling
hypothesis, and provided that the size of the system is large
enough, the following scaling properties are expected at the
critical point: ¢ LYY, moc L™ and yoL”", where v is the
correlation length exponent. The correlation length scales as
&T)o|t|™, where t=|T-T,|/T, is a reduced temperature.

For structures of inhomogeneous local connectivity, it is a
surprising fact that Fisher’s analysis still holds. Out of the
many possible ways of defining the dimension of a fractal,
the Hausdorff dimension is the one that governs scaling laws
in a number of Sierpinski fractals [20,23]. Whether or not
this is true for all fractal substrates with noninteger Haus-
dorff dimension remains unclear [27]. The Hausdorff dimen-
sion of each of the three structures of Fig. 1 is unknown. We
assume that Eq. (5) holds and define v'=v-d as a correlation
length exponent scaled to the system size.

Finite size effects replace the divergences at the critical
point by finite peaks shifted away from 7. Effective critical
temperatures can thus be defined for each size and each
physical quantity concerned (magnetic susceptibility for ex-
ample) as the positions of these maxima. The shift away
from T, to first-order approximation can be written as

TX =T.+xo N (6)

max

for the case of susceptibility. A fit of TX , against the system
size N using Eq. (6) gives an estimate of T,, x,, and v'.

Provided that 7. and v' are known with a sufficient accu-
racy, the following power laws are observed at the critical
point: ¢(N,T,)«N*"", m(N,T,)cN-B") and x(N,T,)
«N""'. The computation of the critical exponents «, B, v
can be deduced from the dependence on size of ¢, m, and Yy,
respectively.

III. RESULTS AND DISCUSSION

We have calculated T, for the three structures of Fig. 1
from finite-size scaling analysis of the magnetic susceptibil-
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FIG. 2. Normalized magnetic susceptibilities as a function of
temperature 7 in units of J/kp for different concatenation levels
(Structure 3). The solid points are temperatures at which Wolff clus-
ter simulations are performed to obtain a set of 1 X 10° uncorrelated
samples. The lines are then calculated using the histogram method.
Temperature ranges used in predictions are estimated from Eq. (4)
and shown in Table II

ity using concatenation levels k=4 to k=7. The thermody-
namic averages were calculated from sets of millions of spin
configurations generated by the Wolff algorithm. For each
case, the magnetization autocorrelation function was calcu-
lated to find the number of successive cluster flips that sepa-
rate independent spin configurations. A fit of the autocorre-
lation function to an exponential reveals that for the
structures studied here the autocorrelation time 7, is less
than a single step ranging from 0.3 to 0.8 cluster flips. This is
in contrast to the Metropolis method where initial attempts
returned autocorrelation times between 300N and 5000N
possible single-spin flips. Our thermal averages include
every-other Wolff Monte Carlo step after an initial thermal-
ization period of 5 X 103 steps. Once T is predicted, the size
effects on ¢, m, x, and 7,,, are studied. We find that the
thermodynamics of finite structures can be described by criti-
cal scaling exponents and that the Wolff algorithm is efficient
on these structures at the critical region.

A. Finite size effects

The positions of the effective temperatures, 7%, (N) are
first estimated by processing the data from short runs of 3
X 10* Wolff Monte Carlo steps at temperatures from 0.05 to
2 every 0.05 J/kg. A second set of short runs are performed
over a region of 0.5 with 0.01 J/kp resolution centered at

guessed T, (N) values. Magnetic susceptibility maximums
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FIG. 3. TX,, in units of J/kp as a function of N for each of the
memory stabilizers of Fig. 1. The solid lines are fits to the points
using Eq. (6) (fitting parameters T, x,, and v’ are reported in Table
111).

and the corresponding effective temperatures are computed
more precisely using the histogram method. Table II shows
the temperatures at which Wolff cluster simulations are per-
formed to obtain a set of 1X 10° uncorrelated samples. The
magnetic susceptibility is calculated from Eq. (3) and is re-
weighted using the histogram method over the reliable tem-
perature range estimated from Eq. (4). Figure 2 shows as an
example the results of one of these experimental runs on
Structure 3. We repeat this procedure five times for each
level of concatenation and structure to check the reliability of
the histogram method and to give error estimates on effective
temperatures (7% . columns of Table II). The T, monotoni-
cally decreases with the system size for all structures.

The values of TX . as a function of N are plotted in Fig. 3
for each structure. The solid lines are fits to the points using
Eq. (6) from which T,, x,, and v’ are obtained (see Table
III). Better estimates of these parameters would require ad-
ditional data points. Unfortunately, for k<4, Eq. (6) is no
longer valid due to higher-order scaling corrections in the
small N limit. Additional data points would require calculat-
ing the thermodynamic properties at higher levels of concat-
enation. It may be possible to study bigger systems by using
the Wang-Landau algorithm [28] with a two-dimensional en-
ergy and magnetization joint density of states [29].

The results of the simulations show that one way to in-
crease the critical temperature is by adding generators to
each spin site. However, there is not a clear connection be-
tween coordination number and T, (Tables I and III) as the
critical temperature does not follow a 1, 1%, 1% progression
when going from Structures 1 to 3. When adding generators

TABLE II. Simulated temperature, T, (confidence region 2AT as per Eq. (4)) and the related 7%,
obtained from the Histogram method. The reported temperatures are in units of J/kp and uncertainties quoted

are 20 errors.

Tsim Ti(,mx(N)
Structure k=4 k=5 k=6 k=17 k=4 k=5 k=6 k=17
1 0.735(251)  0.685(137) 0.645(76)  0.620(43) 0.736(1) 0.687(1) 0.650(5) 0.611(6)
2 0.785(322) 0.725(182) 0.675(105) 0.640(60) 0.783(1) 0.723(2) 0.678(3) 0.646(3)
3 1.240(394) 1.155(216) 1.105(122) 1.075(70) 1.239(1) 1.162(4) 1.099(6) 1.056(8)
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TABLE III. Finite size scaling law results (7, x,, ¥') using data
from Table 2 in Eq. (6) for the three structures shown in Fig. 1.
Uncertainties quoted are 20 errors.

Structure T. Xo v

1 0.455(111) 0.603(35) 5.747(2.610)
0.552(16) 0.769(41) 3.648(367)

3 0.890(73) 0.953(69) 4.374(1.199)

to go from Structure 1 to Structure 2 (looping only at the k
=1 level), the increase in T, is modest. Structure 3 has loops
at all concatenation levels, and 7, is almost doubled in com-
parison to the one of Structure 1. Another distinction of
Structure 3 is its higher symmetry. The extra bond changes
the energy gap between differing spin configurations and,
due to symmetry, changes the underlying density of states at
a given energy.

We attempted to study the finite-size effects on the heat
capacity to further validate T, predictions. A wide fluctuation
of the position of T}, from experiment to experiment was
observed. It is hard to follow trends from the heights of
specific heat peaks for different system sizes and structures.
Bhanot et al. [30] pointed out that when space dimensional-
ity is lower than 2, « is expected to be negative, and the
specific heat versus temperature peak broadens as the system
size increases. We were unable to extract «/v' in a reliable
way from fits using 7, . and c. Monceau and Perreau en-
countered similar problems on fractal structures of dimen-
sionality between one and two [21].

B. Magnetization and magnetic susceptibility at 7',

The mean values of the magnetization and the zero-field
susceptibility are obtained from simulations at the previously
calculated critical temperatures T, (Table III). We use a
single set of 1 X 10° uncorrelated samples for the analysis in
this section. The power laws m(N,T,)<N-#*) and
x(N,T,)«N""" are satisfied. Figures 4 and 5 show plots of
the average absolute magnetization per spin and magnetic
susceptibility versus system size N, respectively. The results

-0.02
0.0 O Structure 1
O Structure 2
Y Structure 3
0.04 - 1
= -0.06 -
g
o
© -0.08f
-0.1
1.5 2 4

25 3
log,,(N)

FIG. 4. Magnetizations at critical temperature against system
size N for each memory stabilizer. Solid lines show least square fits
to power laws from where the 8/v’ exponents are calculated.
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FIG. 5. Magnetic susceptibilities at critical temperature against
N for each stabilizer structure. Solid lines show least square fits
from where the y/ v’ exponents are calculated.

of the least square analysis are displayed in Table IV.

The exponent « is deduced from the Rushbrooke scaling
law a=2-28-1v and it takes, as expected, negative values
for the three memory stabilizers. Table V shows the set of
critical exponents («,B,7y) for each structure. We write the
Rushbrooke and Josephson scaling law d=vy/v+28/v as a
function of v’ to get rid of the unknown dimension d. The
last column of Table V shows that the scaling law is satisfied
within an error of less than 1%. This means that the standard
finite-size analysis is applicable to the study of the critical
properties of these memory structures. Although the number
of generators per spin site converges at the limit of high N
(Table I) for each structure as a whole, there are some nodes
with an increasing number of interactions with concatenation
level k. The most important consequence of the results is that
indeed Eq. (5) holds, and that the three structures have a
well-defined dimension relating the number of spins to a
linear size. There are various possible definitions of structure
dimension and, unfortunately, we do not posses enough in-
formation to determine the nature of the dimension hidden in
the correlation length exponent v'. It has been shown nu-
merically that for the case of Sierpinski fractals the effective
dimension calculated from hyperscaling relations matches
well the Hausdorff dimension [20,23], but it has been sug-
gested that scaling corrections are necessary to account for
local connectivity [21]. The question of whether or not the
effective dimension involved in the hyperscaling relationship
is always the Hausdorff dimension is of fundamental impor-
tance in the field of critical phenomena [27].

The dimension analysis above corroborates the predicted
critical temperatures (Table III), and at the critical region, the

TABLE IV. Exponents obtained from power-law behavior of
magnetization and susceptibility at critical temperature for each
memory stabilizer structure. Uncertainties quoted are 2o errors.

Structure Bl ylv'
0.015 0.967(7)

2 0.032 0.944(2)

3 0.027 0.952(2)
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TABLE V. Set of critical exponents (a, 3, 7) of three structures
shown in Fig. 1. Last column checks consistency of the results by
using the Rushbrooke and Josephson’s scaling laws as discussed in
the text. Uncertainties quoted are 20 errors.

Structure a B % 1= ;Z — 2.5
1 -3.730(2.526) 0.086(39) 5.558(2.525)  0.997(7)
2 —-1.679(347) 0.117(12)  3.444(347) 1.009(2)
3 —2.395(1.143) 0.116(32) 4.163(1.141)  1.005(2)

magnetization and magnetic susceptibility satisfy power-law
fits (Figs. 4 and 5). These results provide the evidence that
the magnetization (the order parameter of interest for
memory preservation) is continuous at 7... The uncertainty in
the critical exponents is quite big for the three graphs. It is
not possible to conclude whether or not the memory struc-
tures share the same set of critical exponents. All three struc-
tures may be in some weak universality class in which criti-
cal exponents may not only depend upon the symmetry of
order parameters and fractal dimensions, but also upon their
geometry [26,31]. This seems to be the case for Ising mag-
nets from Sierpinski fractals of noninteger dimensions be-
tween one and three [20-24].

C. Wolff algorithm efficiency at 7',

The dynamical aspects of the Wolff algorithm when ap-
plied to memory stabilizers are analyzed. We take five runs
of 5X10° cluster flips at each concatenation level k=4-7
and for each structure to calculate the magnetization autocor-
relation function. The autocorrelations are fit to a single ex-
ponential decay to obtain Wolff autocorrelation times 7,
(see Table VI). As shown in Fig. 6, magnetization autocorre-
lation times follow the power law rvleprCNZO/d at the critical
temperature. The Wolff dynamical critical exponent, z/d, as-
sociated with memory stabilizer structures is defined as

I

o Y
—+—=1. 7
R (7)

ISR

TABLE VI. Wolff autocorrelation times, 7,,,, measured from
the decay of the magnetization autocorrelation function for each
memory stabilizer structure and system size. Last two rows show
the measured critical exponent z,/d, obtained from power-law fits,
and the Wolff dynamical critical exponent z/d [from Eq. (7)]. Un-
certainties quoted are 2o errors.

Structure

k 1 2 3

4 0.284(16) 0.296(26) 0.413(18)
5 0.326(12) 0.366(20) 0.465(19)
6 0.359(11) 0.434(18) 0.508(16)
7 0.390(10) 0.492(18) 0.557(18)
z0/d 0.090(15) 0.145(26) 0.088(8)
z/d 0.057(16) 0.089(26) 0.040(8)
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FIG. 6. Magnetization Wolff autocorrelation times (in number of
cluster flips) against system size N for each memory stabilizer struc-
ture. The solid lines are fits to TstepsOCNzﬂ/d from where measured
critical exponents z,/d are calculated.

The Wolff algorithm is very efficient in reducing the critical
slowing down (increase in correlation time as T, is ap-
proached) for the stabilizer structures of Fig. 1. The dynami-
cal critical exponents are very low compared to the Metropo-
lis or Wolff algorithm on the 2D Ising Model, where z/d
=1.0835 and z/d=0.125, respectively [26].

IV. CONCLUSIONS

We have used the Wolff algorithm together with the his-
togram method and finite-size scaling analysis to calculate
critical temperatures of Hamiltonians based on concatenated
error-correction codes. At the critical region, scaling proper-
ties of the magnetization and magnetic susceptibility satisfy
power-law fits as function of total number of spins N, a
strong indication that each structure exhibits second order or
continuous magnetic phase transition. The Rushbrooke and
Josephson scaling law is satisfied supporting the applicability
of Fisher’s finite-size analysis in this work. We report the set
of critical exponents («, 3, ), and by fitting the decay of the
magnetization autocorrelation functions at the critical points
we calculate Wolff dynamical critical exponents. It is pos-
sible that all three structures are in some weak universality
class but the current study does not show this.

The three simple two-body-interaction structures investi-
gated have different levels of connectivity. We find that the
relationship between coordination number and critical tem-
perature is not obvious. The intriguing result is that the num-
ber of generators is less important than the structure. For a
minimum number of generators, one can have either a linear
Ising model with no phase transition or Structure 1 with a
finite phase transition. If one adds additional connections or
generators, the results can range from a modest increase in 7'
(Structure 1 and Structure 2) to a doubling of 7, (Structure 1
and Structure 3).

Whether these insights can be applied to self-correcting
quantum systems is an open question. The exploration of
stabilizer Hamiltonians defined by geometries of noninteger
Hausdorff dimensions could yield self-correcting quantum
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memories with few multiqubit interactions. Small size sys-
tems show higher transition temperatures and may be more
relevant for a practical implementation of passive error cor-
rection. However, it is possible that, as in the case of
memory based on magnetic domains for classical informa-
tion, high levels of redundancy are required justifying the
need to analyze systems with a large number of bits.

An alternative approach is to use a thermodynamically
unstable memory that has a large kinetic barrier to preserve
information. It is probable that many of the stabilizer codes
that are not self-correcting memories could satisfy this
relaxed condition. Although the kinetics depends strongly on
the details of the specific system-bath coupling [32], the
work here suggests that the choice of geometry and genera-

PHYSICAL REVIEW A 80, 042313 (2009)

tors could lead to large differences in the effective informa-
tion preservation.
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