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We explicitly construct a quantum circuit, which exactly generates random three-qubit states. The optimal
circuit consists of three CNOT gates and fifteen single-qubit elementary rotations, parametrized by fourteen
independent angles. The explicit distribution of these angles is derived, showing that the joint distribution is a
product of independent distributions of individual angles apart from four angles.
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I. INTRODUCTION

Quantum information science �see e.g., �1� and references
therein� has received an increased attention in recent years
due to the understanding that it enables to perform proce-
dures not possible by purely classical resources. Experimen-
tal techniques to manipulate increasingly complex quantum
systems are also rapidly progressing. One of the central is-
sues is on the one hand to control and manipulate delicate
complex quantum states in an efficient manner, but on the
other hand at the same time to prevent all uncontrollable
influences from the environment. In order to tackle such
problems, one has to understand the structure and properties
of quantum states. This can be done either through studies of
particular states in a particular setting, or through focusing
on the properties of the most generic states.

Random quantum states, that is states distributed accord-
ing to the unitarily invariant Fubini-Study measure, are good
candidates for describing generic states. Indeed, they are
typical in the sense that statistical properties of states from a
given Hilbert space are well described by those of random
quantum states. Also, they describe eigenstates of sufficiently
complex quantum systems �2� as well as time evolved states
after sufficiently long evolution. Not least, because random
quantum states possess a large amount of entanglement they
are useful in certain quantum information processes such as
quantum dense coding and remote state preparation �3,4�.
Random unitary transformations on the other hand are em-
ployed e.g., in noise estimation �5� and twirling operations
�6�. Sampling random states rather than random unitaries
should also allow to obtain noise estimation protocols using
a modification of the procedure in �5�, while the use of ran-
dom states in order to perform twirling would require devel-
opment of new algorithms. An additional advantage of ran-
dom states is that they are closely connected to the unitarily
invariant Haar measure of unitary matrices, and the unitary
invariance makes theoretical treatment of such states simpler.

Producing random states therefore enables to make avail-
able a useful quantum resource, and in addition to span the
space of quantum states in a well-defined sense. Therefore
several works have recently explored different procedure to
achieve this goal. It is known that generating random states
distributed according to the exact invariant measure requires
a number of gates exponential in the number of qubits. A

more efficient but approximate way to generate random
states uses pseudo-random circuits, in which gates are ran-
domly drawn from a universal set of gates. As the number of
applied gates increases the resulting measure gets increas-
ingly close to the asymptotic invariant measure �7�. Some
bipartite properties of random states can be reproduced in a
number of steps that is smaller than exponential in the num-
ber of qubits. Polynomial convergence bounds have been
derived analytically for bipartite entanglement �8–10� for a
number of pseudorandom protocols. On the numerical side,
different properties of circuits generating random states have
been studied �11�. In order to quantify how well a given
pseudorandom scheme reproduces the unitarily invariant dis-
tribution, one can study averages of low-order polynomials
in matrix elements �12�. In particular, one can define a state
�respectively, unitary� k-design, being a set of states �respec-
tively, unitary matrices�, for which moments up to order k
agree with the average over Haar distribution �13,14�. Al-
though exact state k-designs can be built for all k �see refer-
ences in �14�� they are in general inefficient. In contrast,
efficient approximate state k-designs can be constructed for
arbitrary k �14� �for the specific case of an approximate uni-
tary two-design see �9��.

The pseudorandom circuit approach can yield only pseu-
dorandom states, which do not reproduce exactly the uni-
tarily invariant distribution. The method has been shown to
be useful for large number of qubits, where exact methods
are clearly inefficient. However, for systems with few qubits,
the question of asymptotic complexity is not relevant. It is
thus of interest to study specifically these systems and to find
the most efficient way—in terms of number of gates—to
generate random states distributed according to the unitarily
invariant measure. This question is not just of academic in-
terest since, as mentioned, few-qubit random unitaries are
needed for various quantum protocols. Optimal circuits for
small number of qubits could also be used as a basic building
block of pseudorandom circuits for larger number qubits,
which might lead to faster convergence. In addition, systems
of few qubits are becoming available experimentally, and it
is important to propose algorithms that could be imple-
mented on such small quantum processors, and which use as
little quantum gates as possible. Indeed, quantum gates, and
especially two-qubit gates, are a scarce resource in real sys-
tems, which should be carefully optimized.

Experimental realizations often rely on direct implemen-
tations of the quantum gates appearing in the circuit decom-
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position of the algorithm, applied on physical objects which
are qubits or logical qubits. This usually requires to carefully
optimize the number of one-qubit and two-qubit gates. One
of the most widely used two-qubit gate is the controlled not
�CNOT� gate, which together with one-qubit gates forms an
universal set �15�. The CNOT gate is defined by its action on
the computational basis �00�→ �00�, �01�→ �01�, �10�→ �11�,
and �11�→ �10�. The CNOT gate �or the equivalent controlled
phase flip� has been recently experimentally implemented
using e.g., atom-photon interaction in cavities �16�, linear
optics �17�, superconducting qubits �18,19� or ion traps
�20,21�. It is clear from these experimental results that in
general two-qubit gates such as the CNOT create much more
decoherence than one-qubit gates. Thus, it appears that to
adapt a quantum algorithm to existing experimental setups,
one should limit as much as possible the number of such
two-qubit gates. We note that three-qubit entangled states
have already been realized and manipulated with ion traps
�22,23�, photons �24�, and superconducting qubits �25�.

In this paper, we therefore follow a different strategy from
the more generally adopted approach of using pseudorandom
circuits to generate pseudorandom states, and try and con-
struct exact algorithms generating random states for systems
of three qubits. In the language of k-designs such algorithms
are exact �-designs. Here, we present a circuit composed of
one-qubit and two-qubit gates which produces exact random
states in an optimal way, in the sense of using the smallest
possible number of CNOT gates. The circuit uses in total three
CNOT gates and 15 one-qubit elementary rotations. Our pro-
cedure uses results recently obtained �26� which described
optimal procedures to transform a three-qubit state into an-
other. Our circuit needs 14 random numbers, which should
be classically drawn and used as parameters for performing
the one-qubit gates. The probability distribution of these pa-
rameters is derived, showing that it factorizes into a product
of 10 independent distributions of one parameter and a joint
distribution of the 4 remaining ones, each of these distribu-
tions being explicitly given. Since we had to devise specific
methods to compute these distributions, we explain the deri-
vation in some details, as these methods can be useful in
other contexts.

After presenting the main idea of the calculation in Sec.
II, we start by treating the simple case of two-qubit states in
Sec. III. We then turn to the three-qubit case and first show
factorization of the probability distribution for a certain sub-
set of the parameters �Sec. IV�, the remaining parameters
being treated in Sec. V. The full probability distribution for
three qubits is summarized in Sec. VI.

II. QUANTUM CIRCUIT

Formally, a quantum state ��� can be considered as an
element of the complex projective space CPN−1, with N=2n

the Hilbert space dimension for n qubits �27�. The natural
Riemannian metric on CPN−1 is the Fubini-Study metric, in-
duced by the unitarily invariant Haar measure on U�N�. It is
the only metric invariant under unitary transformations.
While Haar measure is invariant under left and right unitary
translation, the metric induced on the space of quantum
states is invariant under left unitary translation only. To pa-
rametrize CPN−1 one needs 2N−1 independent real param-
eters. Such parametrizations are well known, for instance
using Hurwitz parametrization of U�N� �28�. However, they
do not easily translate into one and two qubit operations, as
desired in quantum information. In Ref. �26�, optimal quan-
tum circuits transforming the three-qubit state �000� into an
arbitrary quantum state were discussed. In the case of three
qubits, a generic state can be parametrized up to a global
phase by 14 parameters. The quantum circuit requiring the
smallest amount of CNOT gates has three CNOT gates and 15
one-qubit gates depending on 14 independent rotation
angles. Indeed, it was shown in �26� that the set of pure
quantum states of three qubits can be divided into four sets
according to the minimal number of CNOT gates �0, 1, 2 or 3
gates� required to construct them from �000�, disregarding
the number of one-qubit gates. It turns out that almost all
states belong to the last class requiring optimally three
CNOTs. From �26� it is possible �see Appendix� to extract the
circuit depicted in Fig. 1, expressed as a series of CNOT gates
and single qubit rotations, where Z-rotation is Z�=exp
�−i�z�� and Y-rotation is Y�=exp�−i�y�� with �y,z the Pauli
matrices. The circuit allows to go from �000� to any quantum
state �up to an irrelevant global phase�. It therefore provides
a parametrization of a quantum state ��� by angles
�1 , . . . ,�14.

In order to generate random vectors distributed according
to the Fubini-Study measure, it would of course be possible
to use e. g., Hurwitz parametrization to generate classically a
random state, and then use the procedure described in �26� to
find out the consecutive steps that allow to construct this
particular vector from �000�. However, this procedure re-
quires application of a specific algorithm for each realization
of the random vector. Instead, our aim here is to directly find
the distribution of the �i such that the resulting ��� is distrib-
uted according to the Fubini-Study measure. This is equiva-
lent to calculating the invariant measure associated with the
parametrization provided by Fig. 1 in terms of the angles
�1 , . . . ,�14. Geometrically, the Fubini-Study distance DFS is
the angle between two states ��� and ���,

cos�DFS� =�����������
����������

. �1�

The metric induced by this distance is obtained by taking
���= ���+ �d��, getting

|0� Yθ1 • • Zθ7 Yθ8 Zθ9

|0� Yθ2 Y−θ2 • Zθ10 Yθ11 Zθ12

|0� Yθ3 Zθ4 Yθ5 Zθ6 Zθ13 Yθ14

FIG. 1. Circuit C for three-
qubit random state generation.
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ds2 =
������d��d�� − ���d���d����

�����2 , �2�

where � � � is the usual Hermitian scalar product on Cn �29�.
If a state ��� is parametrized by some parameters �1 ,�2 , . . .
then the Riemannian metric tensor gij is such that ds2

=	gijd�id� j and the volume form at each point of the coor-
dinate patch, directly giving the invariant measure, is then
given by dv=�det�g�
d�i �30�. Thus, the joint distribution
P��� of the �i is simply obtained by calculating the determi-
nant of the metric tensor given by Eq. �2� with the param-
etrization ���= ������, �= ��1 , . . . ,�14�. Unfortunately, the
calculation of such a 14�14 determinant for n=3 qubits is
intractable and one has to resort to other means. Let us first
consider the easier cases of n=1 and 2 qubits, where by
contrast the calculation can be performed directly.

III. SIMPLE EXAMPLES: ONE- AND TWO-QUBIT CASES

A normalized one-qubit state ���=cos ��0�+ei� sin ��1�
depends on two real angles � ,�. It can be produced �up to
a global phase� from the state �0� by application of the
one-qubit gate Y��� followed by Z�� /2�. The metric ds2

can be easily calculated from Eq. �2� to be ds2=d�2

+sin2 � cos2 �d�2. The matrix g is thus given by g12=g21
=0, g11=1, and g22=sin2 � cos2 �, which implies that the
angle distribution is given by P�� ,��= �sin � cos ��. This dis-
tribution was derived e.g., in �31�.

A normalized random two-qubit state ��� depends, up to a
global phase, on 6 independent real parameters. A circuit
producing ��� from an initial state �00� is depicted in Fig. 2.
One can easily calculate the parametrization of the final state
����1 , . . . ,�6�� in terms of all six angles, thus directly obtain-
ing the metric tensor gij from Eq. �2�. Square root of the
determinant of g then gives an unnormalized probability
distribution of the angles as

P��� = �cos2 2�1 · sin 2�1 · sin 2�3 · sin 2�5� �3�

�see also �32��. Several observations can be made about this
distribution. First, the three rotations applied on the first
qubit �top wire in Fig. 2� after the CNOT gate represent a
random SU�2� rotation, for which the Y-rotation angle is dis-
tributed as P��3���sin 2�3� and the Z-rotation angles are
uniformly distributed �28�. A similar argument holds for ro-
tations on the second qubit. Second, angle �1 gives the ei-
genvalue of the reduced density matrix, �=sin2 �1, for which
the distribution is well known, see, e.g., �31�. The third ob-
servation is that, remarkably, the joint distribution Eq. �3� of
all 6 angles factorizes into six independent one-angle distri-
butions.

IV. FACTORIZATION OF THE THREE-QUBIT
DISTRIBUTION FOR ANGLES �7 TO �14

Let us now turn to our main issue, which is the distribu-
tion of angles in the three-qubit case. In order to have an
indication whether the distribution of an angle �i also factor-
izes in this case, we numerically computed the determinant
det�g� of the metric tensor as a function of �i with the other
angles fixed. We also numerically computed the marginal
distribution of �i by using the procedure given in the appen-
dix to find the angles corresponding to a sample of uniformly
distributed random vectors. If the distribution for a given
angle �i factorizes, these two numerically computed func-
tions should match �up to a constant factor�. This is what we
observed for all angles but four of them �angles �3 to �6�.

In order to turn this numerical observation into a rigorous
proof, we are going to show in this section that the distribu-
tions for angles �7 to �14 indeed factorize. In the next section
we will complete the proof by dealing with the cases �1 to
�6. The explicit analytical expression of the probability dis-
tribution for individual angles will be given in Sec. VI.

Let us denote by C the circuit of Fig. 1 and by C���
the unitary operator corresponding to it, so that ������
=C����000�. Because circuits C span the whole space of
three-qubit states, any unitary three-qubit transformation V

maps parameters � to new parameters �̃ such that V������
= ����̃��. We denote by C̃ the circuit parametrized by angles

�̃ corresponding to performing C followed by V. It is as-

sociated with the unitary operator C��̃� such that C��̃��000�
=VC����000�. Unitary invariance of the measure implies for
P��� that

P��� = P��̃��J� , �4�

with J the Jacobian of the transformation �� �̃ and � · � de-
notes the determinant. Note that Eq. �4� is not a simple
change of variables, as the same function P appears on both
sides of the equation. The Jacobian matrix J for transforma-

tion V from angles � to �̃, V������= ����̃��, tells how much

do the angles �̃ of ����̃�� change if we vary angles � in
������ keeping transformation matrix V fixed. Choosing V

that sets some angles � j in circuit C̃ to a fixed value, say zero,
and at the same time showing that �J� depends only on these
angles � j, would prove factorization of P��� with respect to
angles � j through Eq. �4�.

A. Gates 7–12 and 14

The simplest case is that of gates at the end of the circuit
C of Fig. 1, e.g., gate �14. For V we take Y-rotation by angle

−u on the third qubit, V=Y−u. It defines a mapping �� �̃

such that �̃i=�i for i	13 and �̃14=�14−u. Matrix elements of

the Jacobian, i.e., partial derivatives J jk=��̃ j /��k, are equal
to 
 jk. The Jacobian is equal to an identity matrix and its
determinant is one. Equation �4� taken at u=�14 then gives
P��1 , . . . ,�13,0�= P��1 , . . . ,�13,�14�, from which one con-
cludes that the distribution for �14 factorizes and is in fact
uniform �unless noted otherwise P’s are not normalized�.

|0� Yθ1 • Zθ2 Yθ3 Zθ4

|0� Yθ5 Zθ6

FIG. 2. Circuit for two-qubit random state generation.
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The same argument holds for the two other rotations by
angles �12 and �9 applied at the end of each qubit wire.

Proceeding to angle �8 one could use V=Y−u8
Z−u9

applied
on the first qubit and show that the Jacobian depends only on

�8 and �9, while at u8=�8 and u9=�9 one gets �̃8= �̃9=0,
from which factorization of �8 would follow from Eq. �4�.
There is however a simpler way. Observe that the three
single-qubit gates with angles �7, �8 and �9 on the first qubit
span the whole SU�2� group. Therefore, for any one-qubit
unitary V, gates VZ�9

Y�8
Z�7

can be rewritten as Z�̃9
Y �̃8

Z�̃7
,

without affecting other �’s. The distribution of these three
angles must therefore be the same as the distribution of cor-
responding SU�2� parameters. Note that the same argument
can be applied for two-qubits in Fig. 2. As a consequence,
the distribution of angles for gates Z−Y −Z at the end of the
circuit should be the same in both cases, that is the distribu-
tion of �7 is uniform while that of �8 is proportional to
�sin 2�8�. Similarly, one can show that the distribution for the
angles �10 to �12 is the same as for angles �7 to �9.

B. Gate 13

As opposed to gates 10–12, for gate 13 we cannot use the
analogy with the two-qubit circuit �Fig. 2� because the two
gates 13 and 14 on the third qubit are not in the same order
as they were in the two-qubit circuit. Gate 13 is thus, a more
difficult one.

Using V=Z−u13
Y−u14

on the third qubit, we can set �̃13

and �̃14 to zero with the choice u13=�13 and u14=�14. Our
goal is to show that �J� depends only on �13 and �14. We

can formally consider each angle �̃i as being a function

�̃i�� ;u13,u14� of the initial � as well as of the parameters

u13,14 through C��̃��000�=VC����000�. To calculate matrix
elements of J for our choice of V evaluated at u13=�13 and
u14=�14, we must obtain the first-order expansion in � of the
quantities

�̃ j��1, . . . ,�k−1,�k + �,�k+1, . . . ,�14;�13,�14� . �5�

Some angles �̃ j are easy to calculate. We immediately see
that varying angles � j	12, which is taking k	12 in Eq. �5�,
angles �̃ j	12 do not change. The corresponding
12�12-dimensional sub-block in J is therefore equal to an

identity matrix. Similarly, varying �13 we see that �̃ j	13 do
not change. The corresponding column in J is therefore zero
apart from 1 on the diagonal. The Jacobian thus, has a block
structure of the form

�J� = �1 B

0 A
� = �A� , �6�

where 1 is a 13�13-dimensional identity matrix and A is a

1�1-dimensional block with partial derivative ��̃14 /��14.

The angle �̃14 given by Eq. �5� is obtained by varying angle
�14 by �.

Angles �̃ j in Eq. �5� for k=14 are determined from the

condition C��̃��000�=VC����000�. In the following we are

going to find angles �̃, in particular, we are going to give

explicit expressions for �̃13,14 in terms of �13,14 to the lowest
order in �. To this aim, we will exhibit a particular set of

angles �̃ which verifies C��̃��000�=VC����000� at first order
in � and therefore should coincide at first order with the exact
solution which is known to exist from the Appendix.

Because angles �7–12 appear in the circuit after gates
�13 and �14, the gates involving �7–12 commute with V and

thus, we can choose �̃ j =� j for 7	 j	12. The corresponding

gates simplify on both sides of the equation C��̃��000�
=VC����000�, and thus the state C����000� after this simpli-
fication can be written as

��� = cos �1�00�UAUB��� + sin �1�1��sin 2�2�0�UA

+ cos 2�2�1�UA�x�UB�x��� , �7�

where we use short notation for the third qubit, ���
=cos �3�0�+sin �3�1�, UA=Y�14+�

Z�13
are the two gates acting

on the third qubit after the last CNOT and UB=Z�6
Y�5

Z�4
are

the three gates before the last CNOT. If we choose �̃1–3
=�1–3, then identifying the three orthogonal terms in Eq. �7�
obtained from C��̃��000� and from VC����000�, we must
have three equalities between states on the third qubit:

UA� UB��� = ŨAŨB��� ,

UA� UB�x��� = ŨAŨB�x��� ,

UA� �xUB�x��� = ŨA�xŨB�x��� , �8�

where ŨA and ŨB are the same as UA and UB but with

�̃ instead of � �note that �14+�→ �̃14�, and UA� ªVUA
=Z−�13

Y�Z�13
. These three equations can actually be solved

using two matrix equations, namely, UA� UB= ŨAŨB and

UA� �xUB= ŨA�xŨB. If these two matrix equations are satis-
fied, the above three state equalities Eq. �8� are automatically

fulfilled. To find a solution one first eliminates ŨB
=UA

−1UA� UB to obtain a single matrix equation UA� �xUA�
−1

= ŨA�xŨA
−1. Writing out matrix elements explicitly one gets

two equations for the new angles �̃13 and �̃14,

cos 2�13 sin 2� = cos 2�̃13 sin 2�̃14,

cos2 � − �sin2 �e4i�13� = �cos2 �̃14e
−2i�̃13� − �sin2 �̃14e

2i�̃13� .

�9�

Solving these two equations to the lowest order in � one gets

�̃14=� cos 2�13+o��2� and �̃13=0+o��2�. Once we have �̃13

and �̃14 one can get angles �̃4–6 from ŨB= ŨA
−1UA� UB. Be-

cause the three angles in ŨB span �up to a global phase� the
whole set of one-qubit transformations, one can always find

suitable �̃4–6. Since we have produced a solution �̃, which is
the correct one up to first order in �, we can conclude that the

derivative ��̃14 /��14 is equal to cos 2�13 and thus is indepen-
dent of angles �1 , . . . ,�6. This completes the proof that the
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distribution for �13 factorizes. Incidently, we also see that the
distribution of �13 is proportional to �cos 2�13�.

V. JOINT THREE-QUBIT PROBABILITY
DISTRIBUTION FOR ANGLES �1 TO �6

In the preceding section, we have shown that the distribu-
tion for angles �7 to �14 factorizes. As was mentioned, nu-
merical observations indicated us that the distribution for
angles �1 and �2 should also factorize, but that it is not the
case for the joint distribution of �3 , . . . ,�6.

As we were not able to directly prove by the same meth-
ods as above that the distributions for �1 and �2 factorize, we
use a different strategy. Namely, we first assume that this
factorization is true, then we compute the distributions under
this assumption, and the knowledge of the answer allows us
to prove a posteriori that it is indeed the correct probability
distribution.

If the factorization holds, the distribution for �1 and �2 is
easily calculated from the matrix g using symbolic manipu-
lation software, by replacing angles � j, j3, in g by suitably
chosen simple values, so that the 14�14 determinant giving
the volume form can now be handled. This yields, up to a
normalization constant,

P1��1� = cos5 �1 sin9 �1 �10�

P2��2� = cos5 2�2 sin3 2�2. �11�

The joint distribution of �3 , . . . ,�6 cannot be further fac-
torized, and requires heavy calculations. Indeed, even replac-
ing all angles but �3 , . . . ,�6 by numerical values the determi-
nant det�g� of the metric tensor given by Eq. �2� still depends
on 4 variables, which is too much for it to be evaluated by
standard software. We thus proceeded as follows. First one
can show that det�g� can be put under the form

det�g� = 	
p=−10

10

	
q=−6

6

	
r=−8

8

	
s=−6

6

apqrs cos�2p�3

+ 2q�4 + 2r�5 + 2s�6� , �12�

with the sums running over all q ,r but only even values of p
and s. Indeed, each coefficient of the matrix g is a trigono-
metric polynomial whose degree in each variable can be cal-
culated. Replacing coefficients by monomials and expanding
the determinant gives an upper bound on the degree of the
trigonometric polynomial det�g�. Because of the parity of
cos, there are M =8509 independent coefficients apqrs. Evalu-
ating numerically the determinant at M random values of the
angles one gets an M �M linear system that can be solved
numerically. If the values of the coefficients of the matrix gij
are multiplied by a factor 4, then one is ensured �from in-
spection of det�g�� that the apqrs are rationals of the form
k /29, k�Z. This allows to deduce their exact value from the
numerical result. We are left with 6998 nonzero terms in
det�g�, and terms with odd q or r do not exist. We then
suppose that �det�g� can be expanded as

�det�g� = 	
p=−5

5

	
q=−3

3

	
r=−4

4

	
s=−3

3

bpqrse
i�2p�3+2q�4+2r�5+2s�6�.

�13�

This assumption is validated a posteriori, since a solution of
the form Eq. �13� can indeed be found. There are 4851 co-
efficients bpqrs, which can be obtained by identifying term by
term coefficients in the expansion of ��det�g��2 and det�g�.
We have to solve a system of quadratic equations

a10,6,8,6 = b5343
2

a10,6,8,5 = b5342b5343 + b5343b5342

a10,6,8,4 = b5341b5343 + b5342b5342 + b5343b5341

. . . = . . . �14�

The first equation is quadratic and fixes an overall sign.
Equation k+1 is linear once the values obtained from the
first k equations are plugged into it. Starting with the highest-
degree term �p ,q ,r ,s�= �5,3 ,4 ,3� one can thus recursively
solve all equations. There are only 1320 nonzero coefficients
bpqrs. Gathering together terms ��p , �q , �r , �s� one can
simplify the sum Eq. �13� to a sum of 96 terms of the form
cpqrs cos�p�3�cos�q�4�cos�r�5�sin�s�6�. Expanding this ex-
pression in powers of cos�2�5� and sin�2�5� and simplifying
separately each coefficient we finally get

P��3,�4,�5,�6� = sin 2�5 sin 4�3 sin2 �1 cos �2, �15�

where �� � �̄�=cos �1 and �� � �̄�=cos �2 with ���=UB���,
���=UB�x��� �see Sec. IV B�. Recall that ��̄� is the bit-flip

transform of ���, ��̄�=�x���. Note that sin 2�3= �� ���.
Angles �1,2 can be obtained from

cos2 �1 = �c4c5c6 − s4s6�2 + �c3c4s6 + c3s4c5c6�2

cos �2 = − s3s4s6 + c6�s3c4c5 − c3s5� , �16�

where ci=cos 2�i and si=sin 2�i. We do not have a general
argument to explain this remarkable expression of the distri-

bution in terms of the scalar products of ���, ��� and ��̄�.
To complete the proof for the joint distribution

P��1 , . . . ,�6� it remains to be checked that the determinant of
the metric tensor g with angles �7 to �14 replaced by con-
stants is indeed equal to P1��1�P2��2�P��3 ,�4 ,�5 ,�6�. This a
posteriori verification is easier to handle symbolically than
the full a priori calculation of the 14�14 determinant. In-
deed, the determinant can first be reduced to an 8�8 deter-
minant by Gauss-Jordan elimination. The remaining determi-
nant can be expanded as a trigonometric polynomial.
Although symbolic manipulation softwares do not allow to
simplify the coefficients of this polynomial, they are able to
check that these coefficients match those of the expected
distribution. We proved in that way that the difference be-
tween the determinant det�g� and our expression is identi-
cally zero. This gives a computer assisted but rigorous proof
for the distribution of angles �1 to �6.

QUANTUM CIRCUIT FOR THREE-QUBIT RANDOM STATES PHYSICAL REVIEW A 80, 042309 �2009�

042309-5



VI. TOTAL THREE-QUBIT PROBABILITY
DISTRIBUTION FUNCTION

Gathering together the results of the previous sections we
obtain that the joint distribution P��� can be factorized as

P��� = �P1��1�P2��2�P��3,�4,�5,�6�

i=7

14

Pi��i�� . �17�

The joint distribution P��3 ,�4 ,�5 ,�6� has been derived in
the previous section and is given by Eq. �15�. The distribu-
tion for �1 and �2 is given by Eqs. �10� and �11�. Given
the factorization Eq. �17�, it is easy to calculate the remain-
ing Pi��i� for each i=7, . . . ,14 as was done for �1 and �2 in
the previous section: replacing angles � j, j� i, in g by suit-
ably chosen simple values, the 14�14 determinant giving
the volume form can be easily evaluated by standard sym-
bolic manipulation. This yields, up to a normalization con-
stant,



i=7

14

Pi��i� = sin 2�8 sin 2�11 cos 2�13. �18�

The knowledge of the angle distribution Eq. �17� allows
to easily generate random three-qubit vectors using the cir-
cuit of Fig. 1. Angles �1, �2, and �7 to �14 can be drawn
classically according to their individual probability distribu-
tion. Angles �3 . . . ,�6 can be obtained classically from the
joint distribution Eq. �15� by, for instance, Monte-Carlo
rejection method �that is, drawing angles �3 to �6 and a pa-
rameter x� �0, p� at random, and keeping them if
P��3 ,�4 ,�5 ,�6��x�. Bounding P��3 ,�4 ,�5 ,�6� from above
by p=0.85 yields a success rate of about 12%.

VII. CONCLUSION

In this work, we constructed a quantum circuit for gener-
ating three-qubit states distributed according to the unitarily
invariant measure. The construction is exact and optimal in
the sense of having the smallest possible number of CNOT

gates. The procedure requires a set of 14 random numbers
classically drawn, which will be the angles of the one-qubit
rotations, and whose distribution has been explicitly given.
Remarkably, we have shown that the distribution of angles
factorizes, apart from that of four angles. The circuit can be
used as a three-qubit random state generator, thus producing
at will typical states on three qubits. It could be also used as
a building block for pseudo-random circuits in order to pro-
duce pseudorandom quantum states on an arbitrary number
of qubits, e.g., using repeated applications of our circuit on
subsets of three qubits. At last, it gives an example of a
quantum algorithm producing interesting results which could
be implemented on a few-qubit platform, using only 18
quantum gates, of which 15 are one-qubit elementary rota-
tions much less demanding experimentally.
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APPENDIX: THE PARAMETRIZATION OF FIG. 1

In this Appendix, we explain how to obtain the angles �i
of the circuit �Fig. 1� for a given ���, based on the discussion
in �26�. This justifies the use of these angles as a parametri-
zation of the quantum states. We start from a state ���, and
transform it by the inverse of the different gates of Fig. 1 to
end up with �000�, specifying how the angles �i are obtained
in turn. More details can be found in �26�. Any three-qubit
state ��� can be written in a canonical form as a sum of two
�not normalized� product terms �33�,

��� = ��1�2�3� + ��1
�����23, �A1�

where ��i� are one-qubit states, ��1
�� is a one-qubit state

orthogonal to ��1� and ���23 is a two-qubit state of the second
and third qubits. The angle �9 is chosen such that the
Z-rotation of angle −�9 eliminates a relative phase between
the coefficients of the expansion of ��1� into �0� and �1�.
�Note that because we are using the circuit in the reverse
direction the angles of rotations have opposite signs�. A sub-
sequent Y rotation with angle −�8 results in the transforma-
tion ��1�→ �0� �up to a global phase�. Similarly, rotations of
angles −�12 and −�11 rotate ��2� into �0�. After applying ro-
tations of angles −�8, −�9, −�11, and −�12 the state has be-
come of the form ����= �00��+ �1���0�1�+ �1�2�� �up to nor-
malization�. Two rotations on the third qubit of angles −�13
and −�14 are now chosen so as to rotate ��1� into some new
state ���� while ��2� is rotated, up to normalization, into
�x����. It was shown in �26� that this can always be done
by writing the normalized ��1,2� as ��1,2�=cos �1,2�0�
+ei�1,2 sin �1,2�1�, and then �14 is a solution of

− tan�2�14� =
cos 2�1 + cos 2�2

sin 2�1 cos �1 + sin 2�2 cos �2
, �A2�

while �13=−�
1+
2� /4, where 
’s are relative phases in
Y−�14

��1,2�=ei
1,2 cos ��0�+sin ��1�. Acting with a CNOT23

gate on the resulting state one obtains a quantum state for the
three qubits of the form ����= �00�1�+ �1�4�2�, with �2=��.
The Z-rotation angle −�10 on the second qubit is now deter-
mined so as to eliminate a relative phase between the expan-
sion coefficients of ��4�, making them real up to a global
phase. On the third qubit we now apply three rotations of
angles −�4, −�5, and −�6 to bring ��1� to ���� and ��2� into
�x����, eliminating also a relative phase. Then a CNOT13 gate
is applied. At this point �after the second CNOT gate in Fig. 1,
counting from right, but without the �7 rotation�, the state has
become of the form ����=cos �1�00�6�+ei� sin �1�1�5�6�,
where the one-qubit states ��5� and ��6� are normalized and
real. With �7 we now eliminate the relative phase �, and with
an Y-rotation of angle −�3 the third qubit is brought to the
state �0�. Then the combination of two Y-rotation of angles

GIRAUD, ŽNIDARIČ, AND GEORGEOT PHYSICAL REVIEW A 80, 042309 �2009�

042309-6



�2 and −�2 with a CNOT12 gate brings the second qubit to �0�,
and the last rotation of angle −�1 on the first qubit yields the
final state �000�. Note that in the circuit of Fig. 1 the two
Z-rotations of angles �7 and �10 commute with CNOT gates if

they act on the control qubit. This is the reason why the
rotation of angle �7 can be applied at any point between �1
and �8 and, similarly, �10 can be applied at any point between
�2 and �11.
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