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Recently it has been shown that quantum cryptography beyond pure entanglement distillation is possible and
a paradigm for the associated protocols has been established. Here we systematically generalize the whole
paradigm to the multipartite scenario. We provide constructions of new classes of multipartite bound entangled
states, i.e., those with underlying twisted Greenberger-Horne-Zeilinger �GHZ� structure and nonzero distillable
cryptographic key. We quantitatively estimate the key from below with the help of the privacy squeezing
technique.
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I. INTRODUCTION

Quantum cryptography is one of the most successful ap-
plications of quantum physics in information theory. The
original pioneering Bennett-Brassard 1984 protocol �BB84�
scheme �1� was based on sending nonorthogonal states
through an insecure quantum channel. Then the alternative
approach �Ekert 1991 protocol �E91�� �2� based on generat-
ing key from pure entangled quantum state has been pro-
posed and later extended to the case of mixed states in quan-
tum privacy amplification scheme �3�, which exploited the
idea of distillation of pure entangled quantum states from
more copies of noisy entangled �mixed� states �4�. Much
later it was realized that actually the existence of �may be
noisy� initial entanglement in the state is necessary for any
type of protocols distilling secret key from quantum states
�5,6�. In the meantime the problem of unconditional security
�security in the most unfriendly scenario when the eaves-
dropper may apply arbitrarily correlated measurements on
the sent particles or, in the entanglement distillation scheme,
distribute many particles in a single entangled quantum state�
was further solved in Ref. �7� in terms of entanglement dis-
tillation, showing equivalence between the two �BB84 and
E91� ideas �see Ref. �8� for an alternative proof�. However,
still the protocol worked only for entanglement that could be
distilled. Also, other protocols �9,10� that exploited a modern
approach to secrecy �based on classical notions� were also
used in cases when pure entanglement was distillable. It was
known, however, for a relatively long time that there are
states �called bound entangled� that can not be distilled to
pure form �11�. In the above context it was quite natural to
expect that bound entangled states cannot lead to private key.
However, it happens not to be true �12�: one can extend the
entanglement distillation idea from distillation of pure states
to distillation of private states �in general mixed states that
contain a private bit� and further show that there are ex-

amples of bound entangled states from which secure key can
be distilled. A general paradigm has been systematically
worked out in Refs. �13,14� with further examples of bound
entangled states with secure key �15,16� and interesting ap-
plications �17–19�. From the quantum channels perspective
the extended scheme �12� represents secure key distillation
with help of a quantum channel with vanishing quantum ca-
pacity �i.e., it is impossible to transmit qubit states faith-
fully�. Those channels �12,16� were later used in the discov-
ery �20� of the drastically nonintuitive fully nonclassical
effect of mutual activation of zero capacity channels, which
“unlock” each other, allowing to transmit quantum informa-
tion faithfully if encoded into entanglement across two chan-
nels inputs. On the other hand with help of the seminal ma-
chinery exploiting the notion of almost productness in
unconditionally secure quantum key distillation �21�, it has
been shown that unconditional security under channels that
do not convey quantum information is possible �22�. Here
we would like to stress that we focus on the approach to
quantum cryptography based on private states rather than
the, to some extent, complementary information-theoretic
approach which has also been proven very fruitful �see Refs.
�9,21,23–25��.

The results discussed above concern bipartite states. The
aim of the present paper, which, among others, concludes
part of the analysis of �26�, is to develop the general ap-
proach to distillation of secure key from multipartite states.
Basically the content of the paper can be divided into two
parts. In the first part we systematically and in a consistent
way generalize the approach from Ref. �13�. Here the basic
notion of multipartite d-dimensional private states �multipar-
tite p-dits� has been introduced and analyzed already in the
previous paper �27�.

It should be stressed here that, as extensively discussed in
�14�, other modifications of the paradigm are possible as far
as the so-called notion of “direct accessibility of crypto-
graphic key” is considered. The p-dit approach is based on
local von Neumann measurements, while it is possible also
to consider local positive operator valued measure �POVMs�
�17�. Both approaches were proved to be equivalent in terms
of the amount of distillable key contained in a given bipartite
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state in Ref. �14�. While we leave this issue for further analy-
sis, we strongly believe that the abstract proofs of the latter
work naturally extend to our multipartite case.

The first part of the present paper contains qualitatively
new elements like conditions for closeness to a p-dit state
which were not known so far, and a derivation of a lower
bound for multipartite key where an additional analysis of
properties of the so-called classical-...-classical-quantum �cq�
states was needed. The second part of the paper contains
constructions of novel multiparite states that contain secure
key though are bound entangled. The states are based on the
underlying �twisted� N-partite Greenberger-Horne-Zeilinger
�GHZ� structure and have positive partial transposition �PPT�
with respect to any N−1 versus one subsystem cut. The se-
cret key content is bounded from below quantitatively with
help of the technique adopted form �16�.

More specifically after basic definitions and a generaliza-
tion of the modern definition �that has already become stan-
dard� of secure key distillation from quantum state in Sec. II,
we pass to Sec. III where the notion of multipartite p-dit and
its properties are discussed including especially the condition
for � closeness to multipartite private states. Distillable cryp-
tographic key in terms of p-dits is analyzed in Sec. IV. Here
an upper bound in terms of relative entropy is proved in
analogy to the bipartite case. A lower bound on the key based
on a modification of the one-way Devetak-Winter protocol
�9,10� to the multipartite case is provided with help of a
natural lemma with a somewhat involved proof. Also the
application �16� of privacy squeezing �12� is naturally ex-
tended and applied here.

The next section is the longest one since it contains all the
constructions of multipartite bound entangled states with
cryptographic key. Note that the first construction, being an
extension and modification of bipartite examples from Ref.
�15�, requires nontrivial coincidence of several conditions
that are contained in Lemma V.3. They ensure that, on the
one hand, the state is PPT, but on the other it allows to be
modified by the local operations and classical communica-
tion �LOCC� recurrence protocol to a state that is close to a
multipartite p-dit. This is equivalent to distillability. Indepen-
dently, a quantitative analysis is performed, illustrating how
the lower bound for distillable key becomes positive. The
second class of bound entangled states �to some extent in-
spired by bipartite four-qubit states from �16�� involves Her-
mitian unitary block elements of the density matrix. Here the
construction is different and, in comparison to the first one,
the observed secure key is much stronger. Finally we shortly
recall the limitations of quantum cryptography �33,35�. Sec-
tion VI contains conclusions.

II. BASIC NOTIONS AND THE STANDARD DEFINITION
OF SECURE KEY

In what follows we shall be concerned with the scenario
in which N parties A1 , . . . ,AN wish to obtain perfectly corre-
lated strings of bits �or in general dits� that are completely
uncorrelated to the eavesdropper Eve by means of local op-
erations and public communication �LOPC�. Let us recall
that the difference between the standard LOCC and LOPC

lies in the fact that in the latter we need to remember that any
classical message announced by the involved parties may be
registered by Eve. Therefore in comparison to the LOCC
paradigm in the LOPC paradigm, one also includes the map
�see, e.g., Refs. �13,19��

�AA�BE = �
i

�ABE
�i�

� �i��i�A� → �AA�BB�EE�

= �
i

�ABE
�i�

� �i��i�A� � �i��i�B� � �i��i�E�, �1�

From the quantum cryptographic point of view the common
aim of all the parties A1 , . . . ,AN is to distill the following
state:

�AE
�N,id� =

1

d
�
i=0

d−1

�ei
�1�

¯ ei
�N���ei

�1�
¯ ei

�N�� � �E, �2�

called hereafter ideal c . . .cq�cq� state, by means of LOPC.
Here A	A1¯AN and 
�ei

�j���i=0
d−1 is some orthonormal basis in

the Hilbert space corresponding to the jth party �denoted
hereafter by H j�. Their tensor product constitutes the product
basis in H1 � ¯ � HN, which we shall denote as

BN
prod = 
�ei1

�1�� � ¯ � �eiN
�N���i1,. . .,iN=0

d−1 . �3�

�In what follows we will be often assuming 
�ei
�j���i=0

d−1 to be
the standard basis in H j.� One sees that the ideal cq states
represent perfect classical correlations with respect to the
product basis BN

prod that are uncorrelated to the eavesdrop-
per’s degrees of freedom.

We may also define a general cq state to be

�AE
�N,cq� = �

i1,. . .,iN=0

d−1

pi1¯iN
�ei1

�1�
¯ eiN

�N���ei1
�1�

¯ eiN
�N�� � �i1¯iN

E .

�4�

In the above considerations we could take different dimen-
sions on each side, however, for simplicity we restrict to the
case of equal dimensions. All the parties should have strings
of the same length at the end of the protocol to make a key.

It should be also emphasized that in what follows the jth
party is assumed to have an additional “garbage” quantum
system defined on some Hilbert space H j�. Thus we will be
assuming that usually the states shared by the parties are
defined on the Hilbert space H � H�, where H=H1 � ¯

� HN and H�=H1� � ¯ � HN� , and BN
prod constitutes the prod-

uct basis in H. Also, following Ref. �13�, the part of a given
state corresponding to H�H�� will be sometimes called the
key part �the shield part�. This terminology comes from the
fact that the key part is the one from which the parties obtain
the cryptographic key, while the shield part protects secret
correlation from the eavesdropper.

Following, e.g., Refs. �13,19�, using the notion of cq
states, we may define the distillable cryptographic key in the
multipartite scenario as follows.

Definition II.1. Let �AE be a state acting on Cd1 � ¯

� CdN � CdE and �Pn�n=1
� be a sequence of LOPC operations

such that Pn��AE
�n�=�AE

�cq,n�, where �AE
�cq,n� is a cq state with A

part defined on �Cdn��N. The set of operations P= ��n�n=1
� is
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said to be a cryptographic key distillation protocol if

lim
n→�

��AE
�cq,n� − �AE

�id,n��1 = 0, �5�

where �AE
�id,n� is the ideal cq state defined on the same Hilbert

space as �AE
�cq,n�. We define the rate of the protocol P

= �Pn�n=1
� as

RP��AE� = lim sup
n→�

log dn

n
�6�

and the distillable classical key as

CD��AE� = sup
P

RP��AE� . �7�

If instead of �AE one has the purification ��AE� we write
CD��A�.

Let us also mention that a good indicator of the secrecy of
our correlations as well as the uniformity of the probability
distribution pi1¯iN

is the trace norm distance ��AE
�id�−�AE

�cq��1.

III. PRIVATE STATES

A. Definition and properties

Here we discuss the multipartite generalizations of two
important concepts of the scheme from Refs. �12,13�. Firstly
we introduce the notion of twisting and then the notion of
multipartite private states.

Definition III.1. Let �Ui1¯iN
�i1¯iN

be some family of uni-
tary operations acting on H�. Given the N-partite product
basis BN

prod we define multipartite twisting to be the unitary
operation given by the following formula:

Ut = �
i1,. . .,iN=0

d−1

�ei1
�1�

¯ eiN
�N���ei1

�1�
¯ eiN

�N�� � Ui1¯iN
. �8�

This is an important notion since, as shown in the bipartite
case in Ref. �13� �Theorem 1� and as it holds also for multi-
partite states, application of twisting �taken with respect to
the product basis BN

prod� to a given state �AA� does not have
any effect on the cq state obtained upon a measurement of
the A part of the purification of �AA� in the product basis
BN

prod. More precisely states �AA� and Ut�AA�Ut
† have the

same cq state with respect to BN
prod for any twisting that is

constructed using BN
prod.

We can now pass to the notion of multipartite private
states. These are straightforward generalization of private
states from Refs. �12,13� and were defined already in Ref.
�27�.

Definition III.2. Let Ui be some unitary operations for
every i and let �A� be a density matrix acting on H�. By
multipartite private state or multipartite p-dit we mean the
following:

�AA�
�d� =

1

d
�
i,j=0

d−1

�ei
�1�

¯ ei
�N���ej

�1�
¯ ej

�N�� � Ui�A�Uj
†. �9�

Naturally, for N=2 the above reproduces the bipartite private
states �A1A2A1�A2�

�d� introduced in Ref. �13�. It follows from the

definition that any multipartite private state may be written
as �AA�

�d� =Ut�Pd,N
�+�

� �A��Ut
† with �A� and Ut denoting some

density matrix acting on H� and some twisting, respectively.
Moreover, Pd,N

�+� stands for the projector onto the GHZ state
�28� given by

��d,N
�+� � = �

i=0

d−1

�i��N. �10�

In other words we say that multipartite private states are
twisted GHZ states tensored with an arbitrary density matrix
�A�.

As a simple but illustrative example of a multipartite
p-dit, one may consider the following �2D�N� �2D�N state
�with H= �C2��N and H�= �CD��N�:

�ex
�2� =

1

2DN
1DN 0 . . . V�

�D�

0 0 . . . 0

] ] � ]

V�
�D�† 0 . . . 1DN

�
=

1

2DN ���0��0��N + �1��1��N� � 1DN

+ ��0��1��N + �1��0��N� � V�
�D�� . �11�

where V�
�D� is a permutation operator defined as

V�
�D� = �

i1,. . .,iN=0

D−1

�i1��i��1�� � �i2��i��2�� � ¯ � �iN��i��N�� , �12�

with � being an arbitrary permutation of N-element set.
Clearly V�

�D� is unitary matrix for any permutation � and thus
�V�

�D��=1DN ��A� is defined as �A†A�. This, in view of the
Lemma A.1 �Appendix�, means that M2�1DN ,V�

�D��	0 �for
the definition of M2 see the Appendix� for any � and hence
�ex

�2� represents quantum state. Moreover, �ex
�2� may be derived

from general form �9� by substituting �A�=1DN /DN, i.e.,
maximally mixed state acting on �CD��N. Finally, both uni-
tary operations in Eq. �9� may be taken to be U0=V�

�D� and
U1=1DN.

As multipartite private state constitute a central notion of
our cryptographic scheme, below we shortly characterize
multipartite private states. Firstly, we notice that any state of
which cq state is the ideal one with respect to some basis BN
must be of form �9� and vice versa.

Theorem III.1. Let �AA� be a state defined on H � H� with
H= �Cd��N and arbitrary but finite-dimensional H�. Let also
�AE

�cq� denote the cq state obtained from the purification of
�AA� upon the measurement of the A part in BN

prod and tracing
out the A� part. Then �AE

�cq� is of form �2� if and only if �AA�
is of form �9�, both with respect to BN

prod.
This fact may be proved in exactly the same way as its

bipartite version from Ref. �13�.
Secondly, it was shown in Ref. �27� that any multipartite

private state is distillable providing also a lower bound on
distillable entanglement. For completeness it is desirable to

MULTIPARTITE SECRET KEY DISTILLATION AND… PHYSICAL REVIEW A 80, 042307 �2009�

042307-3



briefly recall this result, which can be stated as follows. For
any multipartite private state �AA�

�d� its distillable entangle-
ment is bounded as

ED��AA�
�d� � 	 max

i,j=0,. . .,d−1

i
j

�aij
max�1 − H�1

2
+

�ij

2�aij
�1�aij

�2���� ,

�13�

where �ij, aij
�1�, aij

�1�, and finally aij
max are parameters charac-

terizing the given private state �AA�
�d� . They are defined as

follows:

�ij = max��f1� ¯ �fN�Ui�A�Uj
†�g1� ¯ �gN�� , �14�

where maximum is taken over a pair of pure product vectors
�f1�¯ �fN� and �g1�¯ �gN� belonging to H�. The parameters
aij

�1� and aij
�2� are given by

aij
�1� = � f̃1

�ij�� ¯ � f̃N
�ij��Ui�A�Ui

†� f̃1
�ij�� ¯ � f̃N

�ij�� �15�

and

aij
�2� = �g̃1

�ij�� ¯ �g̃N
�ij��Uj�A�Uj

†�g̃1
�ij�� ¯ �g̃N

�ij�� , �16�

where � f̃1
�ij��¯ � f̃N

�ij�� and �g̃1
�ij��¯ �g̃N

�ij�� are the vectors realiz-
ing the maximum in Eq. �14�. Finally aij

max denotes the larger
of two numbers aij

�1� and aij
�2�.

It follows from Eqs. �14�–�16� that �ij is always positive
and on the other hand �ij ��aij

�1�aij
�2�. This means that aij

max

0 and consequently for any pair �i
 j�, the expression un-
der the maximum in Eq. �13� is positive, proving that ED of
any multipartite private state is nonzero.

Finally, we notice following Ref. �27� that for bipartite
private states also other entanglement measures were
bounded from below. Namely, it was shown that

EC��A1A2A1�A2�
�d� � 	 log d �17�

and, due to the fact that entanglement of formation is not
smaller than the entanglement cost, EF��A1A2A1�A2�

�d� �	 log d.

B. Conditions for closeness to multipartite private
states

Here we provide necessary and sufficient conditions al-
lowing for judging how close to some multipartite private
state is some given state �AA� defined on H � H�.

Let us firstly notice that any state acting on H � H� may
be written in the following block form:

�AA� = �
i1,. . .,iN=0

d−1

�
j1,. . .,jN=0

d−1

�i1 ¯ iN��j1 ¯ jN� � �i1¯iN

j1¯jN, �18�

where �i1¯iN
j1¯jN are assumed to be square matrices defined on

H�. Also by �̃A we denote the state �̃A=TrA��Ut�AA�Ut
†�

with some twisting Ut, and by ��̃A�i1¯iN
j1¯jN its entries in the

standard basis. Then we can prove the following useful
lemma.

Lemma III.1. Let �AA� be some density matrix acting on

H � H� with H= �Cd��N and arbitrary finite-dimensional H�.
Then there exists such twisting Ut that for a fixed index i all
the elements ��̃A�i¯i

j¯j and ��̃A� j¯j
i¯i �j=0, ¯ ,d−1� of the ith

row and column of �̃A=TrA��Ut�AA�Ut
†� equal ��i¯i

j¯j�1 and
�� j¯j

i¯i �1, respectively.
Proof. The proof is a simple extension of the one pre-

sented in Ref. �13�. Acting on the state �AA� with an unitary
twisting Ut and tracing out the A� subsystem, one gets

�̃A = �
i1,. . .,iN=0

d−1

�
j1,. . .,jN=0

d−1

Tr�Ui1¯iN
�i1¯iN

j1¯jNUj1¯jN
† �

��i1 ¯ iN��j1 ¯ jN� . �19�

First of all let us mention that from Eq. �19� it follows that
we do not need to care about blocks lying on the diagonal of
�AA� as the blocks �i1¯iN

i1¯iN must be positive and the following
holds:

Tr�Ui1¯iN
�i1¯iN

i1¯iNUi1¯iN
† � = ��i1¯iN

i1¯iN�1. �20�

Now, let us focus now on the matrices �i¯i
j¯j for some fixed i

and any j� i �as the case of i= j has just been discussed�. For
simplicity and without any loss of generality we can choose
i=0 and thus we need to prove the theorem for j=1, ¯ ,d
−1. At the beginning let us concentrate on the matrix �0¯0

1¯1.
We can express it with the singular-value decomposition as
�0¯0

1¯1=V1D1W1
†, where V1 and W1 are unitary matrices and

D1 stands for a diagonal matrix containing singular values of
�0¯0

1¯1, i.e., eigenvalues of ��0¯0
1¯1�. Then from Eq. �19� one

infers that it suffices to take U0¯0=V1
† and U1¯1=W in the

twisting Ut to get

Tr�U0¯0�0¯0
1¯1U1¯1

† � = Tr�V†VDW†W�

= TrD = ��0¯0
1¯1�1. �21�

Now we may proceed with the remaining matrices �0¯0
j¯j

�j=2, . . . ,d−1�. We need to find such matrices in the twist-
ing Ut that Eq. �21� holds also for the remaining �0¯0

j¯j . No-
tice that unitary matrices U0¯0 and U1¯1 have just been
fixed, however, we have still some freedom provided by
Uj¯j �j=2, . . . ,d−1�. Using the singular value decomposi-
tion of all �0¯0

j¯j �j=2, ¯ ,d−1� we may write �0¯0
j¯j

=VjDjWj
†. This leads to

Tr�U0¯0�0¯0
j¯j Uj¯j

† � = Tr�V†�0¯0
j¯j Uj¯j

† �

= Tr�V†VjDjWj
†Uj¯j

† �

= Tr�DjWj
†Uj¯j

† V†Vj� , �22�

where we used the property of trace saying that TrAB
=TrBA. It is clear from the above that to get the trace norm
of �0¯0

j¯j for any j=2, . . . ,d−1, it suffices to choose Uj¯j in
such way that Wj

†Uj¯j
† V1

†Vj =1. This means that Uj¯j
=V1

†VjWj
† �j=2, . . . ,d−1�. The remaining Ui1¯iN

appearing
in the definition of Ut may be chosen at will. Concluding we
showed that there exists such Ut that for a fixed i it holds that
��̃A�i¯i

j¯j = ��i¯i
j¯j�1 �j=0, . . . ,d−1�. The fact that also

��̃A� j¯j
i¯i = ��i¯i

j¯j�1 follows obviously from hermiticity of
�̃A. �

This is a very useful lemma due to the fact that twistings
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do not change the cq state. It allows us to concentrate on a
particular form of a given state �AA�. In other words, we can
think about the state �AA� as if it has such a reduction to A
subsystem that some of its elements in fixed row or column
are trace norms of respective blocks of �AA� �obviously with
respect to the same product basis BN

prod�. As an illustrative
example we can consider �AA� with d=2. Then from Eq. �18�
it can be written as

�AA� = 
�0¯0

0¯0 �0¯0
0¯1 . . . �0¯0

1¯1

�0¯1
0¯0 �0¯1

0¯1 . . . �0¯1
1¯1

] ] � ]

�1¯1
0¯0 �1¯1

0¯1 . . . �1¯1
1¯1

� , �23�

where �i1¯iN
j1¯iN = �� j1¯jN

i1¯iN �† and �i1¯iN
i1¯iN 	0 for any ik , jk=0,1.

In view of Lemma 3.2 the above may be brought to the
following state:

�̃A 	 TrA��Ut�AA�Ut
†�

= 
��0¯0

0¯0�1 ��̃A�0¯0
0¯1 . . . ��0¯0

1¯1�1

��̃A�0¯1
0¯0 ��0¯1

0¯1�1 . . . ��̃A�0¯1
1¯1

] ] � ]

��1¯1
0¯0�1 ��̃A�1¯1

0¯1 . . . ��1¯1
1¯1�1

� . �24�

Now we are prepared to provide the aforementioned con-
ditions for closeness to multipartite private states �the bipar-
tite case was discussed in Ref. �13��. Firstly we show that if
a given �AA� is close to some multipartite p-dit then �due to
the above lemma�, there exist such Ut that the A subsystem
has all the elements �TrA�Ut�AA�Ut

†�i¯i
j¯j = ��i¯i

j¯j�1 for j
=0, . . . ,d−1 close to 1 /d.

Theorem III.2. Let �i1¯iN
j1¯jN be some matrices and �AA� be

an N-partite state of the form �18� such that ��AA�−�AA�
�d� �1

�� for some multipartite private state �AA�
�d� for some �0.

Then for a fixed index i one has ���i¯i
j¯j�1− �1 /d���� and

��� j¯j
i¯i �1− �1 /d���� for any j=0, . . . ,d−1.
Proof. The proof is a modification of the one given in Ref.

�13� �Proposition 3�. Let �AA�
�d� be such a private state that

��AA�−�AA�
�d� �1�� and Ut be such twisting that �AA�

�d�

=Ut�Pd,N
�+�

� �A��Ut
† with �A� denoting some state on H�.

Then, due to the invariance of the trace norm under unitary
operations, we have

�Ut
†�AA�Ut − Pd,N

�+�
� �A��1 � � . �25�

Now, utilizing the fact that the trace norm can only decrease
under the partial trace, we get

��̃A − Pd,N
�+� �1 � � , �26�

where �̃A is of form �19�. Notice that in general Ut does not
have to be the one bringing �̃A to the form discussed in
Lemma III.1. After application of the explicit form of Pd,N

�+�

and �̃A given by Eq. �19�, one can rewrite the above as

� �
i1,. . .,iN=0

j1,. . .,jN=0

d−1

�i1 ¯ iN��j1 ¯ jN�Tr�Ui1¯iN
�i1¯iN

j1¯jNUj1¯jN
† �

−
1

d
�
i,j=0

d−1

�i��j��N�
1

� � . �27�

Now we may utilize the fact that for any A=�ijaij�i��j�
square of its Hilbert-Schmidt norm is given by �A�2

2

=�ij�aij�2 and that �A�2� �A�1. Therefore, if �A�2�� for some
�0 then one infers that any of its elements obeys �aij���
�i , j=0, . . . ,d−1�. This reasoning, after application to the
matrix �̃A− Pd,N

�+� , leads us to the conclusion that for any i , j
=0, . . . ,d−1 it holds

�Tr�Ui¯i�i¯i
j¯jUj¯j

† � −
1

d
� � � , �28�

which eventually gives �Tr�Ui¯i�i¯i
j¯jUj¯j

† ��	1 /d−�. This,
after application of the polar decomposition of �i¯i

j¯j and
properties of trace, can be rewritten as �Tr�Wij��i¯i

j¯j���
	1 /d−� with Wij being some unitary matrix. Now, applying
the Cauchy-Schwarz inequality to the Hilbert-Schmidt scalar
product we can infer that for any positive A and unitary W
the following chain of inequalities holds:

�Tr�WA�� = �Tr�W�A�A��

� �Tr�W�A�AW†��Tr�A�A

= TrA = �A�1. �29�

Thus we have that ��i¯i
j¯j�1	1 /d−� for any �i , j=0, . . . ,d

−1�.
On the other hand we can apply such twisting Ũt that after

application to �AA� and tracing out the A� subsystem, we get
�̃A such that in its ith row �or column� ��̃A�i¯i

j¯j = ��i¯i
j¯j� for

j=1, . . . ,d−1. Then, one easily concludes that

��̃AA� − Ũt
†�AA�

�d� Ũt�1 � � �30�

with �̃AA�= Ũt�AA�Ũt
†. After the analogous reasoning as in

the previous case we get

���i¯i
j¯j�1 −

1

d
Tr�W̃ij�A��� � � �31�

for some chosen i and j=0, . . . ,d−1. Here by Wij we de-
noted all product of the respective unitary matrices following

from product of Ũt and Ut. Using the fact that �z1−z2�	 �z1�
− �z2�, we infer from the above inequality that

��i¯i
j¯j�1 � � +

1

d
�Tr�W̃ij�A��� . �32�

It follows from the Cauchy-Schwarz inequality that the ab-
solute value on the right-hand side is not greater that one.
Thus we get the inequalities
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��i¯i
j¯j�1 � � +

1

d
�33�

for the chosen i and j=0, . . . ,d−1. Joining this facts together
we get the desired result. �

Notice that in the particular case of d=2, discussed al-
ready in Ref. �13� �Proposition 3�, the only condition for
��0¯0

1¯1�1 �and equivalently for ��1¯1
0¯0�1� is that ��0¯0

1¯1�1

	1 /2−�. This is because, due to the fact that Tr�̃A=1 and
the positivity of �̃A	0 �and thus also of the 2�2 matrix
containing the elements ��i¯i

j¯j�1 with i , j=0,1� ��0¯0
1¯1�1

�1 /2.
Interestingly, one may prove also a converse statement,

namely, if for some fixed row, say the ith one, all ��i¯i
j¯j�1 are

close to 1 /d, then there exists some multipartite private state
close to a given state �AA�.

Theorem III.3. Let �AA� given by Eq. �18� be such that for
a fixed i the blocks �i¯i

j¯j obey ���i¯i
j¯j�1−1 /d��� for any j

=0, . . . ,d−1 and 0
�
1 /d. Then there exists such a mul-
tipartite private state �AA�

�d� that

��AA� − �AA�
�d� �1 � �log 2�2N�d����log d + H„2�d����…�

+ 2�d���� , �34�

where ����→0 if �→0 and consequently the function on the
right-hand side tends to zero whenever �→0. Here H de-
notes the binary entropy.

Proof. The proof is based on the one given in Ref. �13�.
Let Ut be such twisting that for fixed i it holds of ��̃A�i¯i

j¯j

= ��i¯i
j¯j�1 �j=0, . . . ,d−1�. Then since ��̃A�i¯i

j¯j = ���̃A� j¯j
i¯i �*

with asterisk denoting complex conjugation, the Hilbert-
Schmidt scalar product of �̃A and PD,N

�+� may be expressed as

Tr��̃APd,N
�+� � =

1

d
�
i,j=0

d−1

��̃A�i¯i
j¯j

=
1

d
�
i=0

d−1

��̃A�i¯i
i¯i +

2

d
�

i,j=0

i
j

d−1

Re��̃A�i¯i
j¯j . �35�

On the other hand from the positivity of �̃A one may prove
the following inequality:

�
i=0

d−1

��̃A�i¯i
i¯i 	

2

d − 1 �
i,j=0

i
j

d−1

Re��̃A�i¯i
j¯j , �36�

which after substitution to Eq. �35� gives

Tr��̃APd,N
�+� � 	

2

d − 1 �
i,j=0

i
j

d−1

Re��̃A�i¯i
j¯j . �37�

Now we can utilize Lemma A.2 �see the Appendix� to the
d�d matrix with entries ��̃A�i¯i

j¯j �i , j=0, . . . ,d−1�. Namely,
due to the assumption that for some fixed i the elements
��̃A�i¯i

j¯j satisfy ���̃A�i¯i
j¯j −1 /d���, we have from Lemma A.2

that ���̃A�i¯i
j¯j −1 /d������ for any i , j=0, . . . ,d−1 with

����→0 for �→0. This means that the real parts of any

��̃A�i¯i
j¯j also satisfies the above condition. In this light we get

from Eq. �37� that

Tr��̃APd,N
�+� � 	

2

d − 1 �
i,j=0

i
j

d−1

Re��̃A�i¯i
j¯j

	
2

d − 1 �
i,j=0

i
j

d−1 �1

d
− �����

=
2

d − 1

d�d − 1�
2

�1

d
− �����

= 1 − d���� , �38�

where the first equality follows from the fact that the respec-
tive sum contains d�d−1� /2 elements. The remainder of the
proof goes along the same line as its bipartite version from
Ref. �13� leading to the claimed inequality. �

Notice that to prove the theorem for the particular case of
d=2 it suffices to assume that ��0¯0

1¯1�1	1 /2−�.
Concluding we obtained necessary and sufficient condi-

tions for a given state �AA� to be close to some multipartite
private state expressed in terms of the trace norm of some
blocks of �AA� �see Eq. �18��.

IV. DISTILLABLE CRYPTOGRAPHIC KEY

A. Definition

Having introduced the concept of multipartite private
states we may pass to the definition of multipartite crypto-
graphic key. The seminal fact behind the notion of multipar-
tite private states is that as shown in Refs. �12,13�, one can
think about quantum cryptography as a distillation of private
states by means of LOCC. In other words, we have a stan-
dard distillation scheme �as entanglement distillation� in
which we do not need to take the eavesdropper into account
explicitly.

Definition IV.1. Let �A denote a given multipartite state
acting on Cd1 � ¯ � CdN and ��n�n=1

� a sequence of LOCC
operations giving �n��A

�n�=�AA�
�n� with �AA�

�n� being a state act-
ing on �Cdn��N � Hn�. Here Hn� stands for a finite-dimensional
Hilbert space corresponding to the A� part of �AA�

�n� . Then we
say that �= ��n�n=1

� is a multipartite private state distillation
protocol if there exists such a family of multipartite private
states ��AA�

�dn� �n=1
� that the condition

lim
n→�

��AA�
�n� − �AA�

�dn� �1 = 0 �39�

holds. A rate of the protocol � is defined as R���A�
=lim supn→���1 /n�log dn� and the distillable key as

KD��A� = sup
�

R���A� . �40�

As shown in the bipartite case in Ref. �13�, both the Defi-
nition II.1 and Definition IV.1 are equivalent in the sense that
if there exists LOCC protocol distilling some multipartite
private state there also exists LOPC protocol distilling the
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ideal ccq state �when purification is considered� with the
same rate. As the proof from Ref. �13� may also be applied to
the multipartite case, we provide the generalized version of
the above fact below.

Theorem IV.1. The following two implications hold. As-
sume that from a given state �A such that Eve has its purifi-
cation ��AE� one may create by LOPC some cq state �AE

�cq�

�see Eq. �4�� obeying ��AE
�cq�−�AE

�id��1�� for some �0 �recall
that �AE

�id� denotes the ideal cq state given by Eq. �2��. Then
there exists such LOCC protocol that can distill a state �AA�
from �A that satisfies ��AA�−�AA�

�d� �1�2�� for some multi-
partite private state �AA�

�d� . On the other hand if from �A one
can distill a state �AA� close to some p-dit �AA�

�d� , i.e., such
that ��AA�−�AA�

�d� �1�� then there exists a LOPC protocol dis-
tilling from �A a cq state such that ��AE

�cq�−�AE
�id��1�2��. Each

subsystem of the A part of �AE
�cq� and of the key part of �AA�

�d�

is defined on Cd.
Proof. The proof goes directly along the same lines as the

one from Ref. �13�.
Interestingly, the distillable key KD may be used to quan-

tify entanglement among multipartite states. More precisely,
from the definition it follows that KD is monotonic under the
action of LOCC operations �see, e.g., �29��. Moreover, it
vanishes on multipartite states that have at least one sepa-
rable cut, which is a consequence of the straightforward mul-
tipartite generalization of the results from Refs. �5,6� pro-
vided in Ref. �30�. Finally, as we shall show the distillable
key is normalized on GHZ states Pd,N

�+� in the sense that
KD�Pd,N

�+� �=log d. However, firstly we need to provide two
bounds on KD.

B. Bounds on the distillable key

The first bound is a simple multipartite generalization of
the upper bound provided in Ref. �13�, while the second
bound is a consequence of a multipartite adaptation of the
Devetak-Winter protocol �9,10�. Let us start from the upper
bound.

Theorem IV.2. Let �A be some N-partite state. Then

KD��A� � Er
���A� , �41�

where Er
���A� is a regularized version of the relative entropy,

i.e.,

Er
���A� = lim

n→�

1

n
inf

�A
sep�D

S��A
�n��A

sep� �42�

and D denotes the set of all N-partite fully separable states,
i.e., states of the form

�A
sep = �

i

pi�A1

�i�
� ¯ � �AN

�i� . �43�

Proof. The proof is a generalization of the one from Ref.
�13�.

Interestingly, we may also bound KD from below. For this
purpose we need to prove the following theorem.

Theorem IV.3. Let �AE
�cq� be some multipartite cq state act-

ing on �Cd��N � CdE and given by

�AE
�cq� = �

i1,. . .,iN=0

d−1

pi1¯iN
�i1 ¯ iN��i1 ¯ iN� . �44�

Then it is arbitrarily close to the ideal cq state if and only if
for a chosen party Ai all the reductions to three-partite sys-
tems AiAjE with j� i are arbitrarily close to the bipartite
ideal ccq state. More precisely, if ��AE

�cq�−�AE
�N,id���� holds for

�0, then for the fixed party Ai the following inequalities:

� �
i1,. . .,iN=0

d−1

pi1¯iN
�ikil��ikil� � �i1¯iN

E − �AE
�2,id��

1

� � , �45�

are satisfied for j=1, . . . , i−1, i+1, . . . ,N. Conversely, as-
suming that for fixed Ai inequalities �45� hold for �0 and
j� i, one has

��AE
�cq� − �AE

�N,id��1 � �4N − 3�� . �46�

Proof. We proceed in two steps. In the first step we show
that if the trace norm distance between some multipartite cq
state �AE

�cq� and the ideal one is bounded by some �0 then
any bipartite state arising by tracing out N−2 parties from
the cq state is close to the bipartite ideal ccq state. This part
of the proof is relatively easy since it suffices to utilize the
fact that the trace norm distance does not increase under the
partial trace �31�. The proof of the converse statement is
much more sophisticated.

Let us assume that the following:

��AE
�cq� − �AE

�N,id��1 � � , �47�

holds for some small �0. Then since the trace norm does
not increase under the partial trace, we have immediately the
following set of inequalities:

� �
i1,. . .,iN=0

d−1

pi1¯iN
�ikil��ikil� � �i1¯iN

E − �AE
�2,id��

1

� � �48�

for any pair of indices k , l=1, . . . ,N. To end the first part of
the proof it suffices to substitute �I∖
k,l�pi1¯iN

�i1¯iN
E

=qikil
�̃ikil

E , where summation over I∖ 
k , l� means that we sum
over all ij but ik and il.

To proceed with the second part of the proof we assume
that one chosen party, say A1, shares with the remaining N
−1 parties a state that is close to the bipartite ideal cq state.
In other words we assume that for any j=2, . . . ,N the fol-
lowing inequalities:

� �
i1,. . .,iN=0

d−1

pi1¯iN
�i1ij��i1ij� � �i1¯iN

E − �AE
�2,id��

1

� � , �49�

are satisfied. Basing on this set of inequalities we will show
that the left-hand side of Eq. �47� is bounded from above by
some linear function of � vanishing for �→0. For this pur-
pose let us denote the left-hand side of Eq. �47� by LHS and
notice that it can be split into two sums �see Eqs. �2� and
�4��, namely, the one containing the elements for i1= ¯ = iN
and the rest ones. In this light, denoting by I the set of se-
quences �i1 , . . . , iN� obtained by removing all those with i1
= ¯ = iN from the set of all possible sequences, we can write
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LHS = �
�i1,. . .,iN��I

pi1¯iN
+ �

i=0

d−1 �pi¯i�i¯i
E −

1

d
�E�

1

� �
�i1,. . .,iN��I

pi1¯iN
+ �

i=0

d−1

pi¯i��i¯i
E − �E�1

+ �
i=0

d−1 �pi¯i −
1

d
� , �50�

where the inequality comes from the fact that the term
pi¯i�i¯i

E was added and subtracted in the second term in the
first line and from the inequality �A+B�1� �A�1+ �B�1. The
last equality is a simple consequence of the fact that the trace
norm of any density matrix is just one. In what follows,
using inequalities �49�, we show that all the three terms ap-
pearing in the above are bounded by linear functions of �
vanishing for �→0. With this aim, utilizing once more the
fact that the trace norm does not increase under the partial
trace �31�, we can infer from Eq. �49� that

� �
i1,. . .,iN=0

d−1

pi1¯iN
�i1ij��i1ij� −

1

d
�
i=0

d−1

�ii��ii��
1

� � �51�

for j=2, . . . ,N. Now we can divide all the terms appearing in
the first sum into two groups, namely, the one for i1= ij and
the remaining terms. This, after calculating the respective
norms, leads to the following inequality:

�
i=0

d−1 � �
i2,. . .,ij−1,ij+1,. . .,iN=0

d−1

pii2¯ij−1iij+1¯iN
−

1

d
� + �

i1,. . .,iN=0

i1�ij

d−1

pi1¯iN

� � . �52�

Obviously, since both terms in the above are non-negative,
any of them must be less or equal to �. This allows us to
write the inequalities

�
i=0

d−1 � �
i2,. . .,ij−1,ij+1,. . .,iN=0

d−1

pii2¯ij−1iij+1¯iN
−

1

d
� � � �53�

and

�
i1,. . .,iN=0

i1�ij

d−1

pi1¯iN
� � . �54�

From the sum appearing under the sign of an absolute value
in Eq. �53� we can extract the probability pi¯i, obtaining

�
i=0

d−1

�pi. . .i −
1

d
+ �

i2,. . .ij−1,ij+1,. . .,iN=0

�i2,. . .ij−1,ij+1,. . .,iN��Ii

d−1

pii2¯ij−1iij+1¯iN� � � ,

�55�

where Ii denotes the strings of N−2 indices
�i2 , . . . , ij−1 , ij+1 , . . . , iN� such that at least one of them is dif-
ferent from i. Utilizing a simple inequality �z1−z2�	 �z1�
− �z2� satisfied by all z1 ,z2�C, we get

�
i=0

d−1 �pi. . .i −
1

d
� � � + �

i=0

d−1

�
�i2,. . .,ij−1,ij+1,. . .,iN��Ii

pii2¯ij−1iij+1¯iN

= � + �
�i1,. . .,iN��Ĩj

pi1¯iN
, �56�

where Ĩ j denotes the string of N indices such that the first
and jth ones are equal �i1= ij� and at least one of the remain-
ing ones is different from i1. One sees that the second term
on the right-hand side of Eq. �56� may be bounded from
above in the following way:

�
�i1,. . .,iN��Ĩj

pi1¯iN
� �

k=2

j−1

�
i1,. . .,iN=0

ik�i1

d−1

pi1¯iN
+ �

k=j+1

N

�
i1,. . .,iN=0

ik�i1

d−1

pi1¯iN

� �
k=2

j−1

� + �
k=j+1

N

� = �N − 2�� , �57�

where the second inequality is a consequence of the inequal-
ity given in Eq. �54�. Finally, application of Eq. �57� to Eq.
�56�, gives

�
i=0

d−1 �pi¯i −
1

d
� � �N − 1�� . �58�

This is a quite natural conclusion saying that if the measure-
ment outcomes between fixed party �here A1� and each of the
remaining ones are almost perfectly correlated, then the mea-
surement outcomes are almost perfectly correlated among all
the parties.

We have still two terms in Eq. �50� unbounded. Using
once again the inequality �z1−z2�	 �z1�− �z2��z1 ,z2�C� and
the fact that pi1¯iN

represents some probability distribution,
we may write

�
�i1,. . .,iN��I

pi1. . .iN
= 1 − �

i=0

d−1

pi¯i � 1 − �1 − �N − 1���

= �N − 1�� . �59�

Thus, the only thing we need is to bound from above the last
term in Eq. �50�. Remarkably, to achieve this aim it suffices
to utilize a single inequality from whole set �49�, say the one
for j=2. The we can write

� �
i1,. . .,iN=0

d−1

pi1¯iN
�i1i2��i1i2� � �i1¯iN

E −
1

d
�
i=0

d−1

�ii��ii� � �E�
1

= ��i=0

d−1

pi¯i�ii��ii� � �i¯i
E −

1

d
�
i=0

d−1

�ii��ii� � �E

+ �
�i1,. . .,iN��Ĩ2

pi1¯iN
�i1i1��i1i1� � �i1¯iN

E

+ �
i1,. . .,iN=0

i1�i2

d−1

pi1¯iN
�i1i2��i1i2� � �i1¯iN

E �
1

. �60�
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Then, due to the fact that �A−B�1	 �A�1− �B�1, we may re-
write the above equation as

��
i=0

d−1

pi¯i�ii��ii� � �i¯i
E −

1

d
�
i=0

d−1

�ii��ii� � �E�
1

� � + �
�i1,. . .,iN��Ĩ2

pi1¯iN
+ �

i1,. . .,iN=0

i1�i2

d−1

pi1¯iN

� � + �N − 2�� + � = N� , �61�

where the second inequality follows from Eqs. �52� and �57�
�with j=2�. On the other hand, we can easily show that

��
i=0

d−1

pi¯i�ii��ii� � �i¯i
E −

1

d
�
i=0

d−1

�ii��ii� � �E�
1

	 �
i=0

d−1

pi¯i��i¯i
E − �E�1 − �

i=0

d−1 �pi¯i −
1

d
� . �62�

Comparison of Eqs. �58�, �61�, and �62� allows us to write

�
i=0

d−1

pi¯i��i¯i
E − �E�1 � N� + �

i=0

d−1 �pi¯i −
1

d
�

� N� + �N − 1��

= �2N − 1�� . �63�

Putting now all the pieces together, that is, substituting Eqs.
�58�, �59�, and �63� to Eq. �50�, we finally have

� �
i1,. . .,iN=0

d−1

pi1¯iN
�i1 ¯ iN��i1 ¯ iN� � �i1¯iN

E

−
1

d
�
i=0

d−1

�i��i��N
� �E�

1

� �4N − 3�� . �64�

Noting that for fixed N it holds that �4N−3��→0 whenever
�→0 we finish the proof. �

It should be mentioned that as it follows from the second
part of the proof, we do not need to assume the whole set of
inequalities given in Eq. �49�. Actually it suffices to assume
that a single inequality from set �49� holds and the remaining
ones from the set given in Eq. �51�. In other words it suffices
to assume that the measurement outcomes between a fixed
party and any from the other parties are almost perfectly
correlated and that Eve is almost completely uncorrelated
from the measurement outcomes of a single pair. This is in
full agreement with our intuition. Namely, if the measure-
ment outcomes of any pair AiAj �with fixed i and arbitrary
j� i� are perfectly correlated and Eve has a full knowledge
about the measurement outcomes of just a single party, she
actually has the knowledge about measurement outcomes of
all parties. Therefore if all the parties have perfect correla-
tions and Eve is completely uncorrelated from a single party,
she must be completely uncorrelated from all the parties.
Consequently, it is sufficient to assume that a single pair
shares state that is close to a ccq state and other chosen pairs
have almost perfect correlations.

Now we are prepared to provide a lower bound on the
multipartite distillable key in the LOPC paradigm. We
achieve this by extending of the Devetak-Winter protocol to
the multipartite case. We do this by applying the bipartite
Devetak-Winter protocol to N−1 pairs of parties in some
state �AE such that each of them consist of one chosen party,
say A1, and one of the remaining ones. Everything works as
in the standard Devetak-Winter protocol, i.e., the party A1
performs the measurement in some basis, e.g., the standard
one obtaining the so-called cq state �classical-quantum-¯-
quantum�

�AE
�cq� = �

i

pi�i��i�A1
� �A2¯ANE

�i� . �65�

Then, roughly speaking, the party A1 performs the Devetak-
Winter protocol with the remaining parties simultaneously.
One knows that the correlation between A1 and the remain-
ing parties Aj �j=2, . . . ,N� are described by the mutual in-
formation I�A1 :Aj���A1AjE

�cqq� �. However, the establish common
multipartite key we need to consider the worst case, i.e.,
minj=2,. . .,NI�A1 :Aj���A1AjE

�cqq� �. On the other hand, the correla-
tion between A1 and E are given by I�A1 :E� and this amount
of bits has to be substracted at the privacy amplification
stage of the process.

Consequently, the rate of the protocol is

min
j=2,. . .,N

I�A1:Aj���A1AjE
�cqq� � − I�A1:E���A1AjE

�cqq� � �66�

and, therefore, the multipartite distillable key satisfies

CD��AE� 	 min
j=2,. . .,N

I�A1:Aj���A1AjE
�cqq� � − I�A1:E���A1AjE

�cqq� � .

�67�

Here, �A1AjE
�cqq� denotes the cqq state, which arises from Eq.

�65� by tracing out all the parties but the first and jth one and
Eve. Moreover, by I�X :Y���XY� we denoted the mutual in-
formation defined as I�X :Y���XY�=S��X�+S��Y�−S��XY�
with S denoting the von Neumann entropy.

We have still some freedom in choosing the distributing
party and therefore we can always choose the one for which
the rate of the extended Devetak-Winter protocol is highest.
In this way we get the lower bound on CD of the form

CD��AE� 	 max
i=1,. . .,N� min

j=1,. . .,N

j�i

I�Ai:Aj���AiAjE
�cqq� �

− I�Ai:E���AiAjE
�cqq� �� , �68�

Let us finally mention that due to Theorem IV.1 we can
also bound KD from below using Eq. �68�. Namely, since
KD��A�=CD���AE��, we have the following:

KD��A� 	 max
i=1,. . .,N� min

j=1,. . .,N

j�i

I�Ai:Aj� − I�Ai:E�� , �69�

where the respective quantities are calculated from, e.g., the
cq state following the purification of �A.
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Now we can go back to the definition of KD. As previ-
ously mentioned, it holds that KD�Pd,N

�+� �=log d. To show it
explicitly, on the one hand we can utilize the above bound.
We know from Theorem IV.1 that KD�Pd,N

�+� �=CD���AE
�+���,

where ��AE
�+�� is a purification of Pd,N

�+� and obviously has the
form ��d,N

�+� �A�E� with �E� being some state kept by Eve. Mea-
surement of the A subsystem of ��AE

�+�� with respect to the
standard basis leads us to the ideal cq state �AE

�cq�=�A
�d,N�

� �E��E�, where

�A
�d,N� =

1

d
�
i=0

d−1

�i��i��N, �70�

which has the quantities I�Ai :Aj�=log d�i , j=1, . . . ,N� and
I�Ai :E�=0�i=1, . . . ,N�. Substituting both these facts into Eq.
�68� gives us KD�Pd,N

�+� �	 log d.
On the other hand we can utilize the bound given in Eq.

�41�. Firstly, notice that S���n ���n�=nS�� ��� for an arbi-
trary natural number n and arbitrary density matrices � and
�. Secondly, one easily finds that �see, e.g., Refs. �32��

S�Pd,N
�+� ��A

�d,N�� = log d �71�

and consequently the following estimate holds:

KD�Pd,N
�+� � = lim

n→�

1

n
inf

�A
sep�D

S�Pd,N
�+��n��A

sep�

� lim
n→�

1

n
S�Pd,N

�+��n��A
�d,N��n�

= lim
n→�

1

n
nS�Pd,N

�+� ��A
�d,N��

= log d . �72�

Thus KD�Pd,N
�+� �� log d and taking into account the previously

obtained inequality KD�Pd,N
�+� �� log d, we infer KD�Pd,N

�+� �
=log d. Thus, as stated previously, the multipartite distillable
key may be considered as an entanglement measure.

Let us discuss the last issue of this section. To apply the
extended Devetak-Winter protocol successfully, that is, to get
a nonzero rate, one obviously has to have the right-hand side
of Eq. �68� positive. One knows from Theorem IV.1 that
distillation of some multipartite private state by means of
LOCC is equivalent to the distillation of an ideal cq state by
means of LOPC. This in turn means that the closer some
particular state �AA� is to some multipartite private state, the
closer is a cq state obtained from it to the ideal cq state.
Then, from Theorem IV.3 it follows that the closer some cq
state is to the ideal cq state, the closer are its bipartite reduc-
tions to the bipartite ideal ccq state. Both these facts mean
that by distilling some multipartite private state from copies
of a given state we can make the right-hand side of Eq. �68�
�equivalently Eq. �69�� positive. Consequently, concatenating
some LOCC protocol distilling multipartite private states �an
example of such a protocol is given in the following subsec-
tion� and the extended Devetak-Winter protocol introduces a
subtle effect here. Namely, on the one hand, using more cop-
ies in the LOCC protocol producing a state that is closer to
some multipartite private state makes the right-hand side of

Eq. �68� larger. On the other hand spending more copies
decreases the success probability which needs to be included
in the overall rate of the protocol. This issue will become
more clear when some particular classes of states will be
investigated in the next section.

C. Recursive LOCC protocol distilling multipartite private
states

Here we provide an illustrative example of a recursive
LOCC protocol, allowing for distillation of multipartite pri-
vate states from some classes of states. This protocol is a
generalization of the LOCC protocol discussed in Ref. �13�
to the case of an arbitrary number of parties. Assume then
that N parties A1 , . . . ,AN have k copies of some state �AA� in
their possession. In ith step each party performs the follow-
ing operations:

�i� Take the state �AA�
�i−1� �where �AA�

�0� =�AA�� and one of the
remaining k− i copies of �AA�.

�ii� Treating A part of �AA�
�i−1���AA�� as source �target� qu-

bits, perform controlled NOT �CNOT� operations.
�iii� Finally, the parties perform the measurement in com-

putational basis on the target qubits and compare the results:
in the case of equal results �all zeros or all ones� the parties
keep the state, otherwise they get rid of it.

In this way, spending k copies of some state �AA�, all the
parties can distill a state �AA�

�k� which is closer to some mul-
tipartite private state than the initial one, i.e., �AA�. Quanti-
tative analysis concerning this protocol after application to
two different constructions of states may be found in Secs.
V A and V B.

D. Multipartite privacy squeezing

Concluding the discussion concerning the distillable key
we need to mention the multipartite version of the so-called
privacy squeezing �12,13� together with its application in the
recent important method �16� of bounding the secret key
from below. Following Lemma III.1 we know that having
some state �AA� expressed in form �18�, there always exists a
twisting Ut that the state �̃A=TrA��Ut�AA�Ut

†� has some spe-
cial form. Namely, in some chosen row �column� some of its
entries are trace norms of respective blocks of �AA�. We will
call the state �̃A obtained in this way privacy squeezed state.
Furthermore, we already know that twistings do not change
the cq state with respect to some basis BN

prod.
Let us now proceed by stating some of the conclusion

following both the above facts. As previously mentioned we
have that KD��A�=CD���AE��, where ��AE� denotes the puri-
fication of �A. Assuming that all the parties share some state
�AA� defined on H � H� and denoting by ��AA�E� the purifi-
cation of �AA�, we have

KD��AA�� = CD���AA�E�� 	 CD��AE� 	 CD��AE
�cq�� . �73�

Here �AE=TrA���AA�E���AA�E� and �AE
�cq� stands for a cq state

obtained upon the measurement of the A subsystem in BN
prod.

The first inequality follows from the fact that throwing out
the A� subsystem one can only lower the key as it could be
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treated “virtually” as giving it to Eve. The second inequality
is a consequence of the fact that measurement in some prod-
uct basis leads to classical state on the A part of the state
�notice that such measurement is LOPC operation which due
to the definition of CD can only lower its value�.

Now we can formulate and prove the following theorem
as a multipartite generalization of the bipartite considerations
from Ref. �16� �cf., Ref. �14��, which exploit privacy squeez-
ing to bound the secure key from below.

Theorem IV.4. Let �AA� be some N-partite state defined on
H � H�. Then

KD��AA�� 	 CD��̃AE
�cq�� , �74�

where �̃AE
�cq� is a cq state derived from purification ��̃AE� of

privacy squeezed state �̃A=TrA��Ut�AA�Ut
†�.

Proof. Denoting by ��AA�E� the purification of �AA�, we
have immediately from Eq. �73� that KD��AA��	CD��AE

�cq��
with �AE

�cq� standing for a cq state being a result of the mea-
surement of A part in BN

prod and tracing A� part of ��AA�E�.
Then, as already stated, for any twisting Ut �in BN

prod� the
states �AA� and �̃AA�	Ut�AA�Ut

† have the same cq states
with respect to the basis BN

prod. Consequently, CD��AE
�cq��

=CD��AE
�cq�� with �AE

�cq� being a cq state derived from the
twisted state Ut�AA�Ut

† �obviously via its purification�. Now,
we can consider the situation in which the A� subsystem is
given to Eve. This means that instead of taking “huge” puri-

fication ��̃AA�E� of the privacy squeezed state �̃A=TrA��̃AA�
=TrA��Ut�AA�Ut

†� we can take a “smaller” version denoted
by ��̃AE� �more precisely to purify some density matrix act-
ing on H it suffices to use a Hilbert space of lower dimen-
sionality than to purify a state acting on H � H��. The new
purification obviously must obey �̃A=TrE��̃AE���̃AE�. Now
comparing these two situations we infer that CD��AE

�cq��
	CD��̃AE

�cq�� holds, where �̃AE
�cq� is cq state appearing upon

measurement of A subsystem of ��̃AE� in BN
prod. The inequal-

ity is a consequence of the fact that in the case of the first cq
state the A� part unused, however, kept by the parties. In
turn, in the second situation the A� subsystem is treated as it
would be given to Eve when deriving �̃AE

�cq�. Giving some part
of state can only lower the secrecy as in this case, roughly
speaking, she gains some information about what is shared
by the parties. This concludes the proof. �

V. CONSTRUCTIONS

In this section we present two constructions of multipar-
tite bound entangled states with nonzero distillable crypto-
graphic key. Both are based on the structure exhibited by the
GHZ states and therefore the scheme of secure key distilla-
tion presented above easily applies here.

The first construction is a straightforward generalization
of the bipartite construction presented in Ref. �15�. There-
fore, for comparative purposes, we present also a plot con-
taining a lower bound on distillable key in the bipartite case.
The second construction is completely new and in compari-
son to the first one allows to get a higher lower bounds on
distillable key than the first one.

Before we start it is desirable to establish the notation that
we will use extensively below. By P0

�N� we shall denote a

projector onto the N-partite pure state ��0
�N��= �0��N and Pi

�N�

�i=1, . . . ,N� is a projector onto the N-partite state ��i
�N��, in

which the ith party possesses |1�, while other particles are in
the |0� state. For instance P2

�4� denotes the projector onto the

four-partite pure state ��2
�4��= �0100�. Moreover, let P̄0

�N� and

P̄i
�N� denote projectors obtained from P0

�N� and Pi
�N�, respec-

tively, by exchanging all zeros and ones. Thus, for example

P̄2
�4� is the projector onto ��̄2

�4��= �1011�. We will denote in an

analogous way by ��ij
�N�� ���̄ij

�N��� an N-qubit pure state, in
which ith and jth qubits are in the |1� �|0�� state and the
remaining ones are in the |0� �|1�� state. Then by Pij

�N� and

P̄ij
�N� we denote projectors onto ��ij

�N�� and ��̄ij
�N��, respectively.

Let also Ti denote the partial transposition with respect to
ith party �with the exception that T0 denotes the identity
map�. Here we usually assume that each party has two sub-
systems of a given state �AA� and sometimes Ti will be de-
noting the partial transposition with respect to one or both
subsystems. It will be, however, clear from the context which
of the subsystems are partially transposed. Concatenation of
partial transpositions with respect to some subset of parties,
say A1 , . . . ,Ak will be denoted by T1,. . .,k.

A. First construction

Here we assume that the key part on each site is of qubit
structure, while the shield part has arbitrary dimension, how-
ever, with the same dimension on each site. More precisely,
we have Hi=C2 and Hi�=CD �i=1, . . . ,N�.

Now, let us introduce the following matrix:

XD
�N� =

1

DN + 2D − 4
��D − 2�PD,N

�+� − 2PD
�N� + QD

�N�� , �75�

where, as previously, PD,N
�+� denotes a projector onto the

N-partite D-dimensional GHZ state �see Eq. �10��, and PD
�N�

and QD
�N� are projectors defined as

PD
�N� = RD

�N� − PD,N
�+� , QD

�N� = 1DN − RD
�N�, �76�

where

RD
�N� = �

i=0

D−1

�i��i��N. �77�

The projectors PD
�N� and QD

�N� are chosen in such a way that
each operator from the triple PD,N

�+� , PD
�N�, and QD

�N� is defined
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on orthogonal support. Furthermore, the denominator in Eq.
�75� is chosen such that the matrix XD

�N� is normalized in the
trace norm.

The states under consideration are of the form

�AA�
�D,N� =

1

ND
�N���

i=0

N

�Pi
�N� + P̄i

�N��A � ��XD
�N�Ti�Ti�A�

+ ��0��1��N + �1��0��N�A � �XD
�N��A�� , �78�

where the subscripts A and A� are indicated to distinguish
their key and shield parts, respectively. However, for the
sake of clarity, in further considerations these subscripts will
be omitted.

The normalization factor ND
�N� appearing in Eq. �78� is

given by

ND
�N� = 2

�N + 1�DN + 2D − 4

DN + 2D − 4
. �79�

At the beginning we need to show that the matrices �AA�
�D,N�

really represent quantum states, i.e., they are positive �the
normalization condition is already satisfied�. Firstly, let us

notice that the blocks corresponding to P0 and P̄0 and the
two off-diagonal blocks in Eq. �78� constitute a matrix of the
form M2��XD

�N�� ,XD
�N�� �see Lemma A.1 for the definition of

MN�, positivity of which is guaranteed by Lemma A.1. Thus
the only thing we need to deal with is to show that the
remaining blocks lying on the diagonal of �AA�

�D,N� are positive.
To achieve this goal, below we prove a more general lemma.

Lemma V.1. Let XD
�N� be defined by Eq. �75�. Then the

matrices �XD
�N�Tk�Tl are positive semidefinite for all k , l

=1, . . . ,N.
Proof. Noticing that RD

�N� is diagonal for arbitrary D and
N, the partial transposition of XD

�N� with respect to the kth
subsystem may be written as XD

�N�Tk = �1 / �DN+2D
−4���SD

�N�Tk −RD
�N��, where SD

�N� is defined as

SD
�N� = 1DN + DPD,N

�+� − 2RD
�N�. �80�

As we will see below SD
�N�Tk is positive for any k=1, . . . ,N

and SD
�N�TkRD

�N�=0. Consequently, the absolute value of XD
�N�Tk

may be obtained by simple changing the sign before the
projector RD

�N�. To prove positivity of SD
�N�Tk let ���

=�i1,. . .,iN
D−1 �i1. . .iN

�i1 . . . iN� denote an arbitrary vector from
�CD��N written in the standard basis of �CD��N. Then we
have

���SD
�N�Tk��� = �

i�j

�
i¯j¯i
* � j¯i¯j + �

�i1,. . .,iN��I

��i1¯iN
�2

= �
�i1,. . .,iN��Ik

��i1¯iN
�2

+
1

2�
i�j

��i¯j¯i + � j¯i¯j�2 	 0. �81�

Here the notation �i. . .j. . .i means that all indices of �s exclud-
ing the kth one �k stands for the number of subsystem being
partially transposed� are equal. Moreover, as previously I
denotes the set of all sequences �i1 , . . . , iN� except the cases
when i1= ¯ = iN, while Ik is the set I minus all sequences in
which all indices but the one on kth position are equal.

As the value of k is not specified, the above consider-
ations holds for any k=1, . . . ,N. Furthermore, using the
same reasoning one can also prove positiveness of SD

�N� being
transposed with respect to any subset of different subsystems
�besides the full transposition�. This fact will be utilized be-
low.

By virtue of the positiveness of SD
�N�Tk we have that

�XD
�N�Tk�= �1 / �DN+2D−4���SD

�N�Tk +RD
�N�� for any k=1, . . . ,N.

Therefore the partial transposition of the latter with respect
to the lth subsystem gives

�XD
�N�Tk�Tl =

1

DN + 2D − 4
�SD

�N�Tk,l + RD
�N�� , �82�

where Tk,l denotes the partial transposition with respect to
two single subsystems Ak� and Al�. Now we can distinguish
two cases, namely, if k= l and k� l. In the first one, double
partial transpositions with respect to the same subsystem is
just an identity map. Consequently from Eqs. �76�, �77�, and
�80�, one has

�XD
�N�Tk�Tk =

1

DN + 2D − 4
�QD

�N� + DPD,N
�+� � , �83�

Now the right-hand side of Eq. �83� is a linear combination
of two positive operators and thus is positive. We have still
left the second case, that is, when k� l. To resolve it we may
use the remark made above, saying that the partial transpo-
sition of SD

�N� with respect to arbitrary �not only one-partite�
subsystem is a positive matrix. This ends the proof. �

Thus we have just proven that �AA�
�D,N� indeed represent

quantum states. Now, our aim is to prove that on the one
hand they are bound entangled and on the other hand they
have nonzero distillable key. This purpose will be achieved
in two steps. Firstly we show that partial transposition with
respect to any elementary subsystem �AiAi�� of �AA�

�D,N� is posi-
tive. Obviously, this does not confirm that the states are
bound entangled since we do not even know they are en-
tangled. However, the latter may be proven by showing that
KD of these states is nonzero for D	3.

Firstly, we concentrate on the positivity of all partial
transpositions of �AA�

�D,N�. To gain a better look on the problem
let us consider a particular example of such a partial trans-
position, namely, �AA�

�D,3�T3. From Eq. �78� it follows that
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�AA�
�D,3�T3 =

1

ND
�3�

�XD
�3��T3 0 0 0 0 0 0 0

0 �XD
�3�T3� 0 0 0 0 XD

�3�T3 0

0 0 �XD
�3�T2�T2,3 0 0 0 0 0

0 0 0 �XD
�3�T1�T1,3 0 0 0 0

0 0 0 0 �XD
�3�T1�T1,3 0 0 0

0 0 0 0 0 �XD
�3�T2�T2,3 0 0

0 XD
�3�T3 0 0 0 0 �XD

�3�T3� 0

0 0 0 0 0 0 0 �XD
�3��T3

� . �84�

As, due to Lemma A.1, the square matrix consisting of
two diagonal and two off-diagonal blocks of �AA�

�D,N�Ti �cf., Eq.
�84�� i.e., the matrix M2��XD

�N�Ti� ,XD
�N�Ti�, is already positive,

what we need to prove is positivity of �XD
�N��Ti and �XD

�N�Ti�Tj,k

for any i , j ,k=1, . . . ,N. Let us therefore prove the following
lemma:

Lemma V.2. Let XD
�N� be given by Eq. �75�. Then for any

i , j ,k=1, . . . ,N it holds that

�XD
�N��Ti 	 0, �XD

�N�Ti�Tj,k 	 0. �85�

Proof. Due to the definition of XD
�N� its absolute value may

be calculated simply by changing a sign before PD
�N�, giving

�XD
�N�� =

1

DN + 2D − 4
��D − 2�PD,N

�+� + 2PD
�N� + QD

�N�� . �86�

Application of partial transposition with respect to the ith
subsystem followed by substitution of Eq. �76� leads us to

�XD
�N��Ti =

1

DN + 2D − 4
�1D + RD

�N� + �D − 4�PD,N
�+�Ti� �87�

for any i=1, . . . ,N. One may easily check that eigenvalues of
PD,N

�+�Ti belong to the interval �−1 /D ,1 /D� and therefore the
matrix 1DN + �D−4�PD,N

�+�Ti is always positive. This, together
with the fact that RD

�N�	0, implies positivity of �XD
�N��Ti for

any i=1, . . . ,N.
The second fact of the lemma may be proven just by

noting that by virtue of Eq. �82� it holds

�XD
�N�Ti�Tj,k =

1

DN + 2D − 4
�SD

�N�Ti,j,k + RD
�N�� . �88�

As stated previously in the proof of Lemma V.1, the partial
transposition of SD

�N� with respect to arbitrary subsystems is
positive. This concludes the proof. �

The above lemma proves actually that all the partial trans-
positions �AA�

�D,N�Ti �i=1, . . . ,N� are positive. Therefore, the
states �AA�

�D,N� are bound entangled, of course provided that
they are entangled. This is because, due to the result of Ref.
�11�, positive partial transpositions with respect to any el-
ementary subsystem makes it impossible to distill k-partite
�k=2, . . . ,N� GHZ entanglement among any group of par-
ties.

Let us now pass to the proof that any state �AA�
�D,N� for D

	3 has nonzero KD. For this purpose we show that using the
protocol from Sec. IV C, we can produce a state that is closer
to some multipartite private state out of copies of �AA�

�D,N�. As
we will show below we need to use as many copies as it is
necessary to make the quantity appearing on the right-hand
side of Eq. �69� strictly positive.

Application of the recursive LOCC protocol presented in
Sec. IV C to k copies of �AA�

�D,N� gives with probability pD,N
�k�

=2k−1ND,N
�k� / �ND

�N��k the following state:

�AA�
�N,k� =

1

ND,N
�k� ��

i=0

N

�Pi
�N� + P̄i

�N�� � ��XD
�N�Ti�Ti��k

+ ��0��1��N + �1��0��N� � �XD
�N���k� , �89�

where ND,N
�k� is a normalization factor given by

ND,N
�k� = 2�1 + N� DN

DN + 2D − 4
�k� . �90�

Now, to simplify the considerations we can utilize the pri-
vacy squeezing �see Sec. IV D� to the obtained states �AA�

�N,k�.
Namely, due to Lemma III.1 there exist such twistings Ut

�k�

that after application to �AA�
�N,k� and tracing out the A� sub-

system one arrives at the following class of N-qubit states:

�̃A
�N,k� =

1

ND,N
�k� ��

i=0

N

�Pi
�N� + P̄i

�N����XD
�N�Ti�Ti�1

k

+ ��0��1��N + �1��0��N��XD
�N��1

k� . �91�

In other words, after “rotation” with Ut
�k� and throwing out

the A� subsystem we get a so-called privacy squeezed state,
i.e., the one in which blocks are replaced with their norms.
We also know from Theorem IV.4 that the distillable key of

the cq state obtained from the privacy squeezed state �̃A
�N,k�

�measurement is performed in the same basis as twisting�
cannot be greater than the distillable key of �AA�

�N,k�.
From Eq. �90� it follows that since DN+2D−4DN for

any D	3 one has ND,N
�k� →2, while for D=2, N2,N

�k� →2�N
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+1�. In turn this means that for the off-diagonal elements of

�̃A
�N,k� one has that

1

ND,N
�k� �XD

�N��1
k =

1

ND,N
�k� ——→

k→� 1

2
�92�

with D	3. By virtue of Theorem III.3 one infers that the
more copies of �AA�

�D,N� we put into the recurrence protocol, the
closer we are to some multipartite private state. This also

means that with k→� the sequence of states �̃A
�N,k� goes to

GHZ state P2,N
�+� , however, for D	3.

Now, to bound from below the distillable key of �AA�
�N,k�

according to the prescription given above we need to calcu-

late a cq state of the privacy squeezed state �̃A
�N,k�. �The cq

state is found here with respect to the basis in which the
original state is defined.� Simple algebra gives

�̃AE
�cq� =

1

ND,N
�k� �R2

�N�
� �E0��E0� + � DN

DN + 2D − 4
�k

��
j=1

N

�Pj
�N�

� �Ej��Ej� + P̄j
�N�

� �Ēj��Ēj��� , �93�

where �E0�, �Ej�, and �Ēj� constitute a set of orthonormal

states held by Eve. One notices immediately that �̃AE
�cq� tends

to the multipartite ideal cq state �see Eq. �2�� for any integer
D	3 whenever k→�.

To find a lower bound on distillable key of �̃A
�N,k� we

utilize Eq. �68�. However, according to Eq. �68� one needs to
calculate the quantities I�Ai :Aj� for i� j and I�Ai :E� for the
respective reductions of �AE

�cq�. Fortunately, the initial states
�AA�

�D,N� have such symmetrical structure, preserved by the re-
currence protocol and the privacy squeezing, which makes
all the quantities I�Ai :Aj� �i� j� equal �the same holds for
I�Ai :E��. Consequently, in view of the above, using Eq. �68�
and Theorem IV.4 �see Eq. �74��, we infer the following in-
equality:

KD��AA�
�N,k�� 	 I�A1:A2���A1A2E

�ccq� � − I�A1:E���A1A2E
�ccq� � , �94�

irrespectively of number of parties N. Exemplary behavior of
the right-hand side of Eq. �94� �denoted by KDW� in the func-
tion of k and D for N=3 is shown in Fig. 1�a�.

It is clear from Fig. 1�a� that it is possible to distill one
secure bit of key from bound entangled states �AA�

�N,k� for suf-
ficiently large k. For comparison, Fig. 1�b� contains a lower
bound of the distillable key in the case of N=2 discussed in
Ref. �15�.

We can also investigate the lower bound on KD for the
initial states �AA�

�D,N�. However, in this case we need to take
into account the probability pD,N

�k� . In this way we arrive at

KD��AA�
�D,N�� 	 pD,N

�k� �I�A1:A2���A1A2E
�ccq� � − I�A1:E���A1A2E

�ccq� �� .

�95�

Figure 2�a� presents exemplary behavior of the function ap-

pearing on the right-hand side of Eq. �95� �denoted by K̃DW�
for N=3. For comparison, in Fig. 2�b� it is also plotted the

same function in the case of N=2 �this case was discussed in
Ref. �27��.

Let us conclude the first construction with discussion of
some of its general properties. Above we used a particular
class of matrices XD

�N� �defined in Eq. �75��; however, it
seems interesting to ask wether there are other matrices than
XD

�N� that could be used in the construction. In what follows
we provide some constraints that the general matrix, hereaf-
ter denoted by ZD

�N�, must obey to be useful for purposes of
the construction. The first important condition is that the
trace norm of ZD

�N� has to be strictly larger than the trace norm
of �ZD

�N�Ti�Ti for all i=1, . . . ,N. This guarantees convergence
�in the trace norm� of the output states of the recursive
LOCC protocol �given in Sec. IV C� to some multipartite
private states. Other crucial conditions are �ZD

�N�Ti�Ti 	0 and
�ZD

�N��Ti 	0 for all i=1, . . . ,N. The first one is necessary for
�AA�

�D,N� �when constructed with the matrix ZD
�N�� to be positive,

while the second one allows to prove that �AA�
�D,N� have posi-

tive partial transposition with respect to any elementary sub-
system.

Lemma V.3. Assume that ZD
�N� is arbitrary matrix acting on

�CD��N and that the following conditions:
�i� �ZD

�N��1 ��ZD
�N�Ti�Ti�1 for all i=1, . . . ,N,

�ii� �ZD
�N�Ti�Ti 	0 for all i=1, . . . ,N,
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FIG. 1. �Color online� An exemplary plot of KDW

	 I�A1 :A2���A1A2E
�ccq� �− I�A1 :E���A1A2E

�ccq� � with N=3 �a� and for com-
parison in the case of N=2 �b�, which was discussed in Ref. �27�.
For the sake of clarity, zero is put whenever the plotted function is
less than zero. Notice also that even though k and D are discrete
parameters, the graph is made as if KDW were a function of con-
tinuous parameters. It follows from both figures that the number of
parties N significantly influences the obtained lower bound.
Namely, for N=3 one needs to spend more copies of a given state to
get nonzero values of KDW.
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�iii� �ZD
�N��Ti 	0 for all i=1, . . . ,N,

are satisfied. Then ZD
�N��0 and ZD

�N�Ti �0 for all i=1, . . . ,N.
Proof (ad absurdum). We divide the proof into three parts.
�i� Assume that ZD

�N�	0 and ZD
�N�Ti �0 for any i

=1, . . . ,N. Then one can see that �ZD
�N��Ti =ZD

�N�Ti �0 for any
choice of i. However, this contradicts the third assumption.

�ii� Assume that ZD
�N��0 and there exists such k that

ZD
�N�Tk 	0. Now, one obtains �ZD

�N�Tk�Tk =ZD
�N��0. Of course,

this is in contradiction to the second assumption.
�iii� Finally, assume that ZD

�N�	0 and that there exists such
k that ZD

�N�Tk 	0. Then ��ZD
�N�Tk�Tk�1= �ZD

�N��1. This contradicts
the first assumption. �

This lemma says that a matrix can be used in the above
construction if it is not positive and all its elementary partial
transpositions are not positive. Thus, in particular, a general
density matrix is not suitable for this construction.

B. Second construction

The crucial ideas behind the second construction are ac-
tually the same as in the case of the first one; however, con-
siderations will be a little bit more sophisticated.

Let us first define the analog of XD
�N� from the first con-

struction to be

X̃D
�N� = �

i,j=0

D−1

uij�i��j��N, �96�

where we assume that uij are elements of some D�D gen-
eral unitary or unitary Hermitian matrix, hereafter denoted

by UD. Thus X̃D
�N� is an embedding of UD�MD�C� �MD�C�

denotes the set of D�D matrices with complex entries� in
MDN�C� and therefore

�X̃D
�N�� = RD

�N�. �97�

For further simplicity we also impose the condition that
�uij�=1 /�D for i , j=0, . . . ,D−1, however, whenever possible
all proofs will be given assuming that UD is a general unitary
matrix.

It should be also pointed out that the distinction on unitary
or unitary and Hermitian matrices UD made above plays an
important role here. This comes from the LOCC protocol
presented in Sec. IV C as in the case of unitary but not Her-
mitian matrices it needs to be slightly modified. Namely, in
its last step all the parties keep the state only if all zeros
occurred.

A particular example of a unitary but in general not Her-
mitian matrix satisfying the above condition is the matrix

ṼD= �1 /�D�VD, where VD denotes the Vandermonde matrix
of solutions to the equation zD−1=0 with z�C. As one
knows the solutions are of the form �k=e2�ik/D �k
=0, . . . ,D−1�. It is then clear that ṼD is a unitary matrix for
any D	2, however not always a Hermitian one. For in-
stance, in the particular case of D=2 one easily recognizes

that Ṽ2 is the known Hadamard matrix. A good example of

some unitary and Hermitian matrix is kth tensor power of Ṽ2.

Since Ṽ2 is unitary and Hermitian any matrix of the form Ṽ2
�k

is also unitary and Hermitian.
Now, let us consider following family of matrices:

�̃AA�
�D,N� =

1

ÑD
�N���

j=0

N

�P j
�N� + P̄ j

�N�� � �
i=1

N

�X̃D,i
�N�Tj�

+ �0��1��N
� �

i=1

N

X̃D,i
�N� + �1��0��N

� �
i=1

N

X̃D,i
�N�†� ,

�98�

where ÑD
�N� stands for the normalization factor, which for

arbitrary unitary UD is given by

ÑD
�N� = 2N�D + N �

i,j=0

D−1

�uij�� . �99�

Obviously for X̃D
�N� that comes from unitary Hermitian UD,

the conjugation in the last term in Eq. �98� may be omitted.
Moreover, taking into account the assumption that �uij�
=1 /�D, the normalization factor becomes ÑD

�N�=2ND�1
+N�D�.

As in the case of the first construction, we need to prove
that �̃AA�

�D,N� represent quantum states. Moreover, we show also
that they have positive partial transpositions with respect to
any elementary subsystem. From Eq. �98� it follows that to
prove positivity of �̃AA�

�D,N� one has to show that the inequali-
ties
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FIG. 2. �Color online� An exemplary plot of K̃DW	 pD,3
�k�

�I�A1 :A2���A1A2E
�ccq� �− I�A1 :E���A1A2E

�ccq� �� with N=3. For comparison it
is also presented for the case with N=2 �b�. For the sake of clarity,
zero is put whenever the plotted function is less or equal to zero.
Also, though both the parameters k and D are integer, for conve-

nience, the function K̃DW is plotted as if it were a function of con-
tinuous k and D. It is clear that for N=3 the lower bound on dis-
tillable key is considerably smaller.
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��
i=1

N

X̃D,i
�N�� � �

i=1

N

�X̃D,i
�N�� �100�

are satisfied. Then simply utilizing Lemma A.1 and noting
that the remaining blocks lying on the diagonal of �̃AA�

�D,N�

are positive by definition, the positivity of �̃AA�
�D,N� is

proved.
To deal with the problem of positivity of partial transpo-

sitions let us look on the particular example of form of
�̃AA�

�D,3�T3. From Eq. �98� one infers that

�̃AA�
�D,3�T3 =

1

ÑD
�3�

⎣
⎢
⎢
⎢
⎡�

i=1

3

�X̃D,i
�3� � 0 0 0 0 0 0 0

0 �
i=1

3

�X̃D,i
�3�T3� 0 0 0 0 �

i=1

3

X̃D,i
�3�T3 0

0 0 �
i=1

3

�X̃D,i
�3�T2� 0 0 0 0 0

0 0 0 �
i=1

3

�X̃D,i
�3�T1� 0 0 0 0

0 0 0 0 �
i=1

3

�X̃D,i
�3�T1� 0 0 0

0 0 0 0 0 �
i=1

3

�X̃D,i
�3�T2� 0 0

0 �
i=1

3

X̃D,i
�3�T3† 0 0 0 0 �

i=1

3

�X̃D,i
�3�T3� 0

0 0 0 0 0 0 0 �
i=1

3

�X̃D,i
�3� � ⎦

⎥
⎥
⎥
⎤

, �101�

where we used the fact that �X̃D,i
�n�Tj� are diagonal in the stan-

dard basis and therefore are not affected by partial transpo-
sition with respect to any subsystems.

To show positivity of �̃AA�
�D,N� as well as its partial transpo-

sitions we prove the following lemma.

Lemma V.4. Let X̃D
�N� be defined as in Eq. �96�. Then the

following equalities hold:

��
i=1

N

X̃D,i
�N�Tj� � �

i=1

N

�X̃D,i
�N�Tj� �j = 0, . . . ,N� . �102�

Proof. Firstly we start by the above statement for j=0. For
this purpose let us notice that its left-hand side may be writ-
ten as

��
i=1

N

X̃D,i
�N�� = �N�

k=0

D−1

ukk�k��k��N + �
i=1

N

�
k,l=0

k�l

D−1

ukl��k��l��N�Ti� .

�103�

Straightforward algebra shows that both terms under the sign
of absolute value are defined on orthogonal supports. More-

over, all the partial transpositions in the second term are
defined on orthogonal supports. Both these facts allow us to
write

��
i=1

N

X̃D,i
�N�� = N �

k,l=0

D−1

�ukl��l��l���i−1�
� �k��k� � �l��l���N−i−1�.

�104�

One finds immediately that this equals the right-hand side of
Eq. �102�, finishing the first part of the proof.

To show Eq. �102� for j=1, . . . ,N we need to perform a
little bit more sophisticated analysis. With the same reason-
ing as in the case of the first inequality we can reduce the
claimed inequalities to the following:

�X̃D
�N� + �N − 1��

k=0

D−1

ukk�k��k��N�
� RD

�N� + �N − 1��
k=0

D−1

�ukk��k��k��N, �105�

where we utilized Eq. �97�. One notices that the above in-
equality may be further reduced to
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�UD + �N − 1�D� � 1D + �N − 1��D� , �106�

where D denotes a diagonal matrix containing the diagonal
elements of UD. Utilizing the fact that �uij�=1 /�D for any
i , j=0, . . . ,D−1, we infer that �D�= �1 /�D�1D and therefore

�U + �N − 1�D� � �1 + �N − 1�/�D�1D. �107�

To prove this inequality we can utilize the polar decomposi-
tion to its left-hand side. More precisely we can write
�U+ �N−1�D�=V†U+ �N−1�V†D with V denoting some uni-
tary matrix. This allows us to write

����U + �N − 1�D���� = �����U + �N − 1�D�����

� ����V†U���� + �N − 1�����V†D����

� 1 + �N − 1�����V†�D�W����

� 1 +
N − 1
�D

, �108�

where ��� is an arbitrary normalized vector from CD. The
second and third inequalities are consequences of the fact
that the product of unitary matrices is a unitary matrix and
that for any normalized ��� and unitary U it holds that
����U�����1. Moreover, we put here the polar decomposi-
tion of D, i.e., D= �D�W with some unitary W. The last in-
equality is also a result of application of aforementioned fact
that �D�= �1 /�D�1D.

Now, to finish the proof, it suffices to mention that the
resulting inequality is equivalent to �107�. �

From the above lemma it clearly follows that �̃AA�
�D,N� rep-

resent quantum states for any D	2 and N	2, and they have
positive partial transpositions with respect to all elementary
subsystems. The last thing we need to prove is that the dis-
tillable key of �̃AA�

�D,N� is nonzero. This would also imply that
�̃AA�

�D,N� represent entangled states.
Let us then apply the recursive protocol described previ-

ously in Sec. IV C to k copies of �̃AA�
�D,N�, obtaining

�̃AA�
�N,k� =

1

ÑD,N
�k� ��

j=0

N

�P j
�N� + P̄ j

�N�� � ��
i=1

N

�X̃D,i
�N�Tj���k

+ �0��1��N

� ��
i=1

N

X̃D,i
�N���k

+ �1��0��N
� ��

i=1

N

X̃D,i
�N�†��k� , �109�

with the normalization factor given by

ÑD,N
�k� = 2�ND�D�k + 2NDk�1 + �N − 1��D�k. �110�

Notice that as previously mentioned, the LOCC protocol

should be modified in case when X̃D
�N� follows from in general

unitary UD. Due to the modification of the LOCC protocol,

the probability of obtaining �̃AA�
�N,k� in the case of unitary and

unitary Hermitian UD is different. Namely, in the case of
unitary Hermitian matrices amounts to

p̃D,N
�k,1� = 2k−1ÑD,N

�k� /�ÑD,N
�1� �k, �111�

while in the case of unitary non Hermitian the probability of
success is considerably smaller and is given by

p̃D,N
�k,2� = ÑD

�N�/�ÑD
�N��k. �112�

Now the multipartite privacy squeezing �see Sec. IV D�
allows us to change blocks in Eq. �109� with their norms,
obtaining

�̃A
�N,k� =

1

ÑD,N
�k� ��

j=0

N

�P j
�N� + P̄ j

�N����
i=1

N

�X̃D,i
�N�Tj��

1

k

+ ��0��1��N + �1��0��N���
i=1

N

X̃D,i
�N��

1

k� . �113�

Calculating the respective norms in the above, one may
rewrite Eq. �113� as

�̃A
�N,k� =

Dk

ÑD,N
�k� �2�N�D�kP2,N

�+�

+ �1 + �N − 1��D�k�
j=1

N

�P j
�N� + P̄ j

�N��� . �114�

From Eqs. �110� and �114� one easily infers that �̃A
�N,k�

→P2,N
�+� for k→� for any D	2, which by virtue of Theorem

III.3 means that the recursive protocol when applied to cop-
ies of �̃AA�

�D,N� produces a state that is arbitrarily close to some
multipartite pdit in the limit of k→�. In fact, as the prob-
abilities of success p̃D,N

�k,1� and p̃D,N
�k,2� �see Eqs. �111� and �112��

are positive, according to the definition of KD �see Definition
IV.1� the above method leads to distillation of secure key
from �̃AA�

�D,N�. Below we provide also plots of lower bounds on
KD of �̃AA�

�D,N�.
For this purpose we can find the purification of �̃AA�

�D,N� and
then the cq state in the standard basis. The latter has the form

�̃AE
�cq� = aD,N

�k� R2
�N�

� �E0��E0� + bD,N
�k�

��
j=1

N

�P j
�N�

� �Ej��Ej� + P̄ j
�N�

� �Ēj��Ēj�� , �115�

where �E0�, �Ej�, and �Ēj� �j=1, . . . ,N� are orthonormal states
kept by Eve, and coefficients aD,N

�k� and bD,N
�k� are given by

aD,N
�k� =

�ND�D�k

ÑD,N
�k�

�116�

and

bD,N
�k� =

Dk

ÑD,N
�k�

�1 + �N − 1��D�k. �117�

One can see from above that the limit of k→� leads us to
the ideal cq state. Now we can apply the bound given in Eq.
�69�. It is easy to verify that all the quantities I�Ai :Aj� are
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equal here �the same holds for I�Ai :E�� and therefore we can
rewrite Eq. �69� as

KD��̃AA
�N,k�� 	 I�A1:A2���̃A1A2E

�ccq� � − I�A1:E���̃A1A2E
�ccq� � .

�118�

Exemplary plot of the function appearing on the right-hand
side of Eq. �118� �denoted as KDW� is presented in Fig. 3.

The behavior of KDW �see Fig. 3� confirms the previous
analysis, namely, the more copies we spend the closer the
state is to some multipartite private state we obtain using the
recursive protocol. Thus the higher key rate we can get from

the obtained state �̃AA�
�N,k�.

We can also get a lower bound on distillable key of the
initial states �̃AA�

�D,N�. Here we need to take into account the
probability of success �p̃D,N

�k,1� and p̃D,N
�k,2�� in the recursive pro-

tocol.
The corresponding bounds on the distillable keys of �̃AA�

�D,N�

are

KD
�1�2����̃AA

�D,N�� 	 p̃D,N
�k,1�2���I�A1:A2���̃A1A2E

�ccq� �

− I�A1:E���̃A1A2E
�ccq� �� . �119�

Exemplary plots of the right-hand side of the above �denoted

by K̃DW
�1�2��� both in the case of a unitary Hermitian matrix

�e.g., Ṽ2
�k� and only a unitary matrix �e.g., ṼD� are given in

Figs. 4�a� and 4�b�.

VI. REMARKS ON LIMITATIONS IN MULTIPARTITE
QUANTUM CRYPTOGRAPHY

So far, we discussed the general scheme allowing for dis-
tilling secure key from multipartite states. It is desirable
however to discuss also what are the limitations of multipar-
tite secure key distillation.

An interesting effect, which we shall recall here, was re-
ported in Ref. �33�. Namely, it was shown that though maxi-
mal violation of some Bell inequality it is impossible to dis-
till secure key from the so-called Smolin state �34�,

�S =
1

4�
i=0

3

��i
B���i

B� � ��i
B���i

B� , �120�

where ��i
B� �i=0, . . . ,3� are the so-called Bell states given by

��0�1�
B �= �1 /�2���01�� �10�� and ��2�3�

B �= �1 /�2���00�� �11��.
This conclusion may be also inferred for the generalizations
of the Smolin state provided in Ref. �35� and independently
in Ref. �36� �see also Ref. �37� for further generalizations�.
These are states of the form

�2 = ��0
B���0

B� ,

�4
S =

1

4 �
m=0

3

U2
�m��2U2

�m�†
� U2

�m��2U2
�m�† 	 �S,
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FIG. 3. �Color online� The function appearing on the right-hand
side of Eq. �118� �denoted here by KDW� in the function of number
of copies k and the dimension D. Zero is put whenever the function
is less than zero. Notice that both the parameters k and D are dis-
crete; however, continuous plot is made to indicate better the be-
havior of KDW. It is clear from the plot that for larger k the distill-

able key of �̃A
�N,k� approaches one bit �this is actually a maximal

value obtainable from two-qubit states� and the convergence de-
pends on D. Namely, for higher dimensions D the convergence to
the maximal value is faster.
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FIG. 4. �Color online� Lower bounds on KD of �̃AA�
�D,N� in the

function of k and D. The upper plot �a� presents lower bound �de-

noted here by K̃DW
�1� � on KD in the case of unitary Hermitian matrices

UD, while in the second plot �b� lower bound �K̃DW
�2� � in the case of

unitary but not Hermitian matrices is given. Both are just a product
of probability p̃D,N

�k1� �left� or p̃D,N
�k,2� �right� and KDW plotted in Fig. 3.

One infers that in the case of unitary but not Hermitian matrix UD,
the region of nonzero values of the plotted function is wider than in
the case of unitary Hermitian matrices.
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�6
S =

1

4 �
m=0

3

U4
�m��4U4

�m�†
� U2

�m��2U2
�m�†,

]

�2�n+1�
S =

1

4 �
m=0

3

U2n
�m��2nU2n

�m�†
� U2

�m��2U2
�m�†, �121�

with Uk
�m�=12

��k−1�
� �m �m=0, . . . ,3 and k=2, . . .�, where

�m �m=1,2 ,3� denote the usual Pauli matrices and �0=12.
The state �2 is just one of the Bell states, while �4

S is the
Smolin state. All states �2n for n	2 are bound entangled and
for suitable choice of local observables all states for n	1
violate the Bell inequality

�E1¯11 + E1¯12 + E2¯21 − E2¯22� � 2 �122�

maximally �E denotes the so-called correlation function, i.e.,
an average of products of local measurement outcomes taken
over many runs of experiment�. In fact very recently the state
�S �120� have been realized in laboratory as a first experi-
mental realization of bound entanglement �38�. The predic-
tion �33� that they violate the above Bell inequality has been
fully confirmed in this experiment. On the other hand, due to
the results of Refs. �5,6,30�, one may show that it is impos-
sible to distill multipartite secure key from states �2n

S for n
	2. This shows that bipartite Ekert protocol �2� cannot be
straightforwardly generalized to multipartite scenario since
as discussed above the maximal violation of most natural
multipartite analog of the CHSH-Bell inequality �39� does
not imply nonzero secret key rate, whereas maximal viola-
tion of CHSH-Bell inequality by two qubits guarantees se-
crecy. Still, it would be an interesting problem for further
research to identify all Bell inequalities that do the job in
multipartite case as CHSH-Bell inequality does in the case of
two qubits. It should be stressed that some achievements in a
similar direction were already obtained in Refs. �40,41�,
where it was shown that violation of some Bell inequalities
is sufficient condition for security of multipartite secret shar-
ing protocols �42� under an individual attack of some exter-
nal party.

VII. CONCLUSIONS

Quantum cryptography beyond entanglement distillation
is a very young subject. Until recent times it was natural to
expect that the latter is impossible. While there were signifi-
cant developments concerning the bipartite scenario the gen-
eral formulation for multipartite case was missing. The
present paper fills this gap by not only generalizing the
scheme, but also by providing new constructions of multi-
partite bound entangled states which is a nontrivial task.
However, there are many unsolved questions. First it seems
to be true that the unconditional security proof �22� can be
extended here at a cost of the number of estimated local
observables, but an exact analysis of this issue is needed.
Moreover, given a fixed number of parties, the minimal di-
mension of elementary system of PPT like bound entangled

state that allows one-way secure key distillation is not
known. Does it increase with number of particles and if so,
how does the dependence look like? Are there bound en-
tangled states with multipartite cryptographic key with un-
derlying structure corresponding to other classes of pure
states such as graph states �see Ref. �43��? One may ask why
we have considered only bound entanglement in multipartite
scenario. This is when it is necessary to apply the general-
ized scheme. Otherwise qualitatively �though may be not
quantitatively—see subsequent discussion� just pure en-
tanglement distillation is a sufficient tool. Quite natural is a
question of interplay between the two approaches in distill-
ing key—to what extent can we abandon distillation of
p-dits? Finally, can the two processes always be separated in
optimal key distillation scheme: in a sense that one gets
some number of singlet states and some large approximated
p-dit which is bound entangled�? If it were so, the two parts
might serve as natural measures of free and bound entangle-
ment in the system. Most likely this is impossible, but one
needs a proof. The closely related question is the one con-
cerning lockability of the secure key KD �note that nonaddi-
tivity of KD has been proved very recently in Ref. �44��.
While this seems to be a very hard question in case of bipar-
tite states �though lockability with respect to Eve has already
been ruled out in Ref. �19�� it may happen to be easier within
the multipartite paradigm presented here �in analogy to clas-
sical bound information which is known only in asymptotic
bipartite form �45� but naturally emerges form bound en-
tanglement in multipartite case �46��. In this context novel
upper and lower bounds on KD are needed �for recent devel-
opment see Ref. �47��. This point is also interesting from the
point of view of entanglement as KD is also an entanglement
measure. Further analysis of KD and finding its multicoordi-
nate extensions to help in characterization of multipartite en-
tanglement seems to be rich program for future research.

Here we have been aiming at general question of two-way
distillability, combining then one-way and two-way schemes
together. One could, however, perform deep analysis focus-
ing solely on one-way schemes trying for instance to prove
bounds as such proved in Ref. �25�. On the other hand, it
would be desirable to discuss the present approach in the
context of secure key distillation from continuous variables
systems �see, e.g., Refs. �48–50��. For instance, it was shown
in Ref. �51� that the generalized version of the protocol from
Ref. �48� does not allow for secure key distillation from
bound entangled states. It seems that within the multipartite
scenario the problem could be a little simpler as one can
have bound entangled multipartite states with some of its
partitions being still having nonpositive partial transposition.

Needless to say due to Choi-Jamiołkowski isomorphism
�52� the present analysis provides new classes of multiparty
quantum channels for which natural questions on superacti-
vation of the type found in bipartite case �20� and other pos-
sible effects of similar type arise.
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APPENDIX: SOME USEFUL LEMMAS

Lemma A.1. Assume that a given d�d matrix B is nor-
mal. If A	 �B� then the matrices

MN�A,B� = 
�N − 1�A B . . . B

B† �N − 1�A . . . B

] ] � ]

B† B† . . . �N − 1�A
�

�A1�

and

M̃N�A,B� = 
�N − 1�A B B . . . B

B† A 0 . . . 0

B† 0 A . . . 0

] ] ] � ]

B† 0 0 . . . A
� �A2�

are positive.
Proof. We prove the lemma only for MN�A ,B� as the

proof for M̃N�A ,B� goes along the same lines.
The matrix MN�A ,B� consists of N2 blocks d�d each

and consequently the whole matrix has the dimensions Nd
�Nd. Thus to prove positiveness we need to show that for
any ����CNd the inequality ���MN�A ,B����	0 holds. It is
clear that an arbitrary vector ����CNd may be written as

��� = �x1�
]

�xN�
� , �A3�

where each �xi� belongs to Cd. Then a rather straightforward
algebra leads to

���MN�A,B���� = �N − 1��
i=1

N

�xi�A�xi� + 2 �
i,j=1

i
j

N

Re�xi�B�xj� .

�A4�

By virtue of the assumption that A	 �B� and the inequality
Rez	−�z� satisfied for any z�C, one has

���MN�A,B���� 	 �N − 1��
i=1

N

�xi�B�xi� − 2 �
i,j=1

i
j

N

��xi�B�xj�� ,

�A5�

Since B is assumed to be a normal matrix it may be given as
B=�k�k��k���k� with 
�k� being, in general, the complex ei-
genvalues of B, while 
��k�� its orthonormal eigenvectors.

Putting the spectral decomposition of B into Eq. �A5�, intro-
ducing aik= ��xi ��k��	0, and taking into account the fact that
��i�i���i��i�, we obtain

���MN�A,B���� 	 �
k

��k���i=1

N

aik
2 − 2 �

i,j=1

i
j

N

aikajk� .

�A6�

It is clear from Eq. �A6� that to show non-negativity of
���MN�A ,B���� for any ����CNd, one has to prove that for
all k the term in brackets in Eq. �A6� is non-negative. This,
however, follows from the fact that

�
i,j=1

i
j

N

�aik − ajk�2 	 0, �A7�

finishing the proof. �

Lemma A.2. Let A=�i,j=0
d−1 ai

j�i��j� be a positive matrix
obeying TrA�1. Assume that each element of A lying in ith
row �and ith column due to hermiticity of A� is close to 1 /d
in the sense that it obeys �ai

j −1 /d��� for some 1 /d�0.
Then �ai

j −1 /d������ for any i , j=0, . . . ,d−1, where ����
→0 for �→0.

Proof. The proof is rather technical and we present only
its sketch here �detailed proof may be found in Ref. �26��.
First, let us fix the chosen row to be the first one, i.e., i=0.
Then, from the positivity of A it follows that any matrix of
the form

� a0
0 a0

j

a0
j* aj

j � �A8�

is positive. Now, from its positivity we have that a0
0aj

j

	 �a0
j �2, which together with the assumption that a0

0 and a0
j

are close to 1 /d and �
1 /d, implies that aj
j must obey aj

j

	1 /d−3� for any j=1, . . . ,d−1. Taking into account the
assumption that TrA�1, one also has that each aj

j must be
bounded from above as aj

j �1 /d+3�d−1�� for j=1, . . . ,d
−1. Therefore, we have that all diagonal elements of A sat-
isfy

�aj
j −

1

d
� � ���� �A9�

with ����→0 for �→0. Now, we need to prove that the
remaining off-diagonal elements of A are also close to 1 /d.
For this purpose let us notice that from the fact that A	0
one has that the following matrices:

 a0
0 a0

i a0
j

a0
i* ai

i ai
j

a0
j* a

i

j* aj
j � �0 
 i 
 j� , �A10�
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are also positive. Since we can now say that all
elements in the first row �and column� and all the
diagonal elements obey Eq. �A9�, it follows, after some
technical calculations, that ai

j has to satisfy such inequality,
however, with some other function which vanishes for
�→0. Finally, we have that any of the elements of A
satisfies

�ai
j −

1

d
� � ���� �i, j = 0, . . . ,d − 1� �A11�

with ����→0 whenever �→0.
Of course, we can always assume that the elements in

some fixed row of A is bounded by different �s. Then, how-
ever, we can take the largest one. �
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