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Entanglement generation between distant atoms by Lyapunov control
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We show how to apply Lyapunov control design to the problem of entanglement creation between two atoms

in distant cavities connected by optical fibers. The Lyapunov control design is optimal in the sense that the
distance from the target state decreases monotonically and exponentially, and the concurrence increases ac-
cordingly. This method is far more robust than simple geometric schemes.
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I. INTRODUCTION

Atoms, or their artificial counterparts, quantum dots, in
cavities or traps have great potential for applications in quan-
tum communication, metrology, and information processing.
Since entanglement is a crucial resource in quantum compu-
tation and communication, the preparation of maximally en-
tangled states is a crucial task. Nonlocal interactions between
two physical qubits are required to generate entanglement
and there have been numerous proposals to effect such inter-
actions, especially for atoms trapped in distant cavities
[1-14], and similar schemes are conceivable for artificial at-
oms such as quantum dots. Some of these proposals make
use of continuous feedback in open quantum systems [14]
but most are based on Hamiltonian systems, and in most
cases only simple geometric control schemes are employed
to create the maximally entangled state. These methods have
the advantage of simplicity but unfortunately often suffer
from robustness issues.

In this paper, we explore an alternative control design
inspired by Lyapunov functions [15-24] for robust entangle-
ment generation. Lyapunov control is a form of local optimal
control with numerous variants (see, e.g., [25] and references
therein), which has the advantage of being sufficiently
simple to be amenable to rigorous analysis. Therefore, its
convergence, robustness, and stability properties have been
well studied, and it has been shown to be highly effective for
systems that satisfy certain sufficient conditions, roughly
equivalent to the controllability of the linearized system
[20,22]. Unfortunately, this appears to be a strong require-
ment that is not satisfied by many physical systems. How-
ever, in certain cases, in particular for systems such as the
two-atom model proposed by Mancini and Bose [13], we can
circumvent these restrictions by considering the dynamics on
a subspace and successfully apply Lyapunov control to cre-
ate maximally entangled states from certain initial product
states in a robust fashion.

The paper is organized as follows. In Sec. II we briefly
review the distant-atom model and the geometric control
scheme proposed in [13] to generate entanglement. In Sec.
IIT we briefly review Lyapunov control and show how to
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apply it to the problem of steering the system from certain
product states to one of the four Bell states in a robust fash-
ion. We will consider two control paradigms: one is to con-
trol the local Hamiltonian which is easier to implement ex-
perimentally; the other is to control the nonlocal interaction
Hamiltonian, which might be possible for certain systems.

II. TWO-DISTANT-ATOM MODEL
AND GEOMETRIC CONTROL

We consider a two-qubit model where the qubits are en-
coded in two atoms or two quantum dots in distant cavities
connected into a closed loop by optical fibers, as illustrated
in Fig. 1. It was shown in [13] that eliminating the interact-
ing light field between the two atoms in the dispersive re-
gime leads to an effective Hamiltonian for the two-atom sys-
tem of form H,=H,y.y+H.s, Where the local Hamiltonian
induced by interaction with resonant light and the effective
interaction Hamiltonian are:

Hyu=BX®I+1®X) (1a)

Heff= 2727 (lb)

where X, Y, and Z are Pauli operators and / is the identity
operator, and the coupling constant B= 7/ where 7 should be
sufficiently smaller than 1 to ensure the derivation of Hy
remains valid.

This Hamiltonian can be used to generate a maximally
entangled state from the initial ground state by turning on
H,, for a critical time 7, before switching the field off [13].

oy
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FIG. 1. Two cavities C; and C,, each of which contains a two-
level atom, are connected into a closed loop through optical fibers.
The off-resonant driving field A generates an effective nonlocal
Hamiltonian H.y while the two local resonant lasers generate the
local Hamiltonian H,.
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FIG. 2. (Color online) Concurrence as a function of the interac-
tion time for the geometric control scheme for different values of
coupling B. Due to fluctuations in the concurrence, achieving unit
concurrence requires precise switching of the Hamiltonian. If the
control Hamiltonian is switched on or off too early or too late, even
by a small amount, the concurrence of the final state may be re-
duced significantly. The three subfigures on top of the main figure
shows the zoom in of the plots.

Broadly speaking, by applying a constant Hamiltonian we
effectively perform a rotation about a fixed axis in the two-
qubit space, and with the correct timing we can choose the
rotation angle such as to ensure that the system state is trans-
ferred to a maximally entangled state p(z/) at the final time #,
where the degree of entanglement for the two-qubit system is
measured by the concurrence [26]

Clp) = max{0,\N; = Ay — Vs = N} )

where \;,...,\4 are the eigenvalues of the matrix

p(Y®Y)p (Y ®Y) (3)

in decreasing order and p* is the complex (not Hermitian)
conjugate of p. However, plotting the entanglement of the
final state versus the interaction time (Fig. 2) shows that
achieving very high fidelity with respect to the maximally
entangled state requires very precise switching as the concur-
rence is subject to small fluctuations. In the model we have
assumed a fixed coupling strength J and controllable local
field B. We see that increasing B significantly reduces the
time required to prepare a maximally entangled state but also
increases the magnitude of the fluctuations. E.g., for B=0.1
the fluctuations around the peak are only about 1% but it
takes 157 time units to reach a maximally entangled state.
For B=0.4 on the other hand, we can prepare a maximally
entangled state in about 1/8 of the time but the concurrence
fluctuations increase by a factor of approximately 15. This
shows that this simple scheme for entanglement generation is
quite sensitive to small variations in the switching times.
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III. LYAPUNOV CONTROL DESIGN

In the previous section we have seen that the method of
entanglement generation by switching a constant field on for
a fixed amount of time is highly sensitive to small switching
time errors. Ideally, we would like a control scheme where
the concurrence of the two qubits converges to 1 asymptoti-
cally, without any fluctuations. In that way, the control is
robust against switching time errors. A simple method that
seems well suited to this task is Lyapunov-based design.
Roughly speaking, the idea of Lyapunov control is to choose
a suitable so-called Lyapunov function V and then try to find
a control that ensures that V is monotonically decreasing
along any dynamical evolution.

On timescales where the Hamiltonian evolution is still a
good approximation, many physical systems satisfy the
quantum Liouville equation (with A=1)

p=—ilHo+ f(t)H,,p].

Here we have assumed that the Hamiltonian consists of two
parts, a fixed system Hamiltonian H, and an interaction part
f()H, with a coupling strength f(z) that can be varied in
time. For example, for a two-level atom with energy level
splitting (), interacting with a variable laser field of f(r) via a
dipole interaction, we might set H0=%a'Z and H,=0,. The
fact that f(r) can be varied is very crucial from control point
of view, since this degree of freedom allows us to design the
dynamics to derive the desired evolution.

We can define a general control task thus: for a given
target state p,, for example, a maximally entangled state, we
wish to find a control function f(¢), such that the system state
p(r) will converge to p,, as t— oo, In many applications, we
allow p,(1) to evolve under Hy, and the control requirement
becomes p(r) — p,(f) as t— o, which is generally known as
tracking control [27]. In the following we assume:

pa=—ilHo, pq]-

Motivated from the theory of Lyapunov function and the
Hilbert Schmidt distance ||p(¢) — p,(t)|l,, we define

1 1
Vip.pa) =7 llp - pdl* = S Tilp - pa)*1. (4)

Assuming x>0, if we choose

1) =f(p(t),p4(1)) = k Tr(p,()[ - iH 1, p()]),  (5)
we find that for V(1)=V(p(1), p,(1)),

V(t) = = fO)Tr{py()[- iH.p()]} == kf(1)> < 0. (6)

Hence V is a Lypunov function and the value of V monotoni-
cally decreases along any solution (p(t),p,(z)). Moreover,
every solution (p(),p,(t)) converges to an invariant set E,

called the LaSalle invariant set, on which V vanishes.
Recent theoretical work on Lyapunov-based control de-
sign [21-23] shows that most target states are almost glo-
bally asymptotically stable if the Hamiltonian satisfies cer-
tain conditions: (i) H, be strongly regular and (ii) H, be fully
connected [23]. The former condition translates into the re-
quirement that H, have distinct transition frequencies be-
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tween any pair of energy levels. This rules out systems with
degenerate or equally spaced energy levels. The latter condi-
tion is even more demanding. In the basis where H,, is diag-
onal, all the off-diagonal elements of H; must be nonzero,
i.e., transitions between any two energy level of H, must be
possible. When the strict conditions on the Hamiltonian do
not hold, the target state is generally no longer asymptoti-
cally stable, and we no longer have p(t)— p,(t), implying
that the control design becomes ineffective. This restricts the
applicability of the method especially for higher-dimensional
systems, including two-qubit models and spin chains.

However, for high-dimensional systems with Hamilto-
nians not satisfying the above conditions, it is still possible to
make the target state asymptotically stable on a subspace,
where the Lyapunov control can be applied effectively. In the
following, for the two-distant-atom model (Fig. 1), we illus-
trate how the Lyapunov control design can be utilized to
drive the system state from a product state to a maximally
entangled state, despite the fact that the full Hamiltonian of
the system clearly does not satisfy the strict conditions set
out above.

IV. LYAPUNOV CONTROL DESIGN
FOR ENTANGLEMENT CREATION

For the two-distant-atom model with Hamiltonian Eq. (1),
we can either choose the control Hamiltonian H; to be the
local Hamiltonian H,=H,, or the effective coupling Hamil-
tonian H,=Hy, depending on which scenario is easier to
implement for a particular physical system.

A. Local control

First, let us consider controlling the local Hamiltonian. In
this case we choose Hy=H.z=2J(Z®Z) and H,;=H,y.y
=pJ(X®I+I®X). To make the Hamiltonian easier to ana-
lyze, we transform from the Z-eigenbasis {|0),|1)} to the
X-eigenbasis {|+),|-)}. In this basis, the matrices for the
Hamiltonian are rewritten as

0 001 100 O

0010 000 O
H0=2J N H1=27]J

0100 000 O

1 000 000 -1

and it is easy to see that the eigenvectors of H,, are the Bell
states

W% = =4~ ) + | +)) (7a)
V2

® = = (f+4)+ |- =) (7b)
V2
1

)= =(|+ +)—|--)) (7¢)
V2

W) = (4~ = |- +)). (7d)
\2
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To generate maximally entangled state, we can
choose p,=|®*}®*|, for instance, and the control
f(O)=k Tr(p,[-iH,,p(r)]), according to Eq. (5). Notice that
Hy and H, do not satisfy the strict condition in Sec. III.
Thus this design cannot drive every state to the target state,
but we can see that if the initial state of the system is
p(0)=|++)(++| or |-=)(——| then the state will converge to
the target state. In fact, in the Bell-state basis, the Hamil-
tonian can be written as

10 0 0 0000
_ 01 0 _ 0010
Hy=2J , Hy=29 ,
00 -1 0100
00 0 -1 0000
where
0000 00 0 0
0100 ilo 1 =10
Pi=lo 000 P20 =1 1 o
0000 00 0 0

For states initially prepared in the subspace S spanned by
|[++) and |--), we clearly see that the dynamics under the
Hamiltonian H,+f(t)H; will be confined in that subspace,
and thus we can consider the dynamics on this two-
dimensional subspace S where the Hamiltonian and the state
take the form:

. 2J<1 0) y 21(0 1) (1 o)
0==No —1 ) T\ o) PiT\g o)

The results in [23] now guarantee that all solutions in S
except for |®~) will converge to the target state. The control
field varies smoothly and steers the system gently to the
target state as shown in Fig. 3. Moreover convergence is
exponential and

(O] = &[Tr(lp(1), pa(0) 1H) )|
= wllilp(1), pa(0) JH, |
= lilp(®).paOl|- [H (3)

shows that f(¢) is bounded and we can choose k to ensure
that [f(¢)| is sufficiently small and the approximations inher-
ent in the model remain valid.

The method can also be utilized to increase the
entanglement in the initial state, i.e, to prepare a maximally
entangled state starting with a partially entangled one.
More specifically, if the system initially starts in the state
[tho)=N\1|++)+\,|——) then the control design produces a con-
trol field that steers the system from this state to the desired
maximally entangled state |®*). Choosing p,=|P~}®d| in-
stead, we can similarly prepare |[®~), and it can be verified
that steering the state to | =) simply requires inverting the
sign of the control field. Thus, not only can we prepare a
maximally entangled state, but we can select which state we
prepare.

If the coupling constants of the local Hamiltonian
for the two atoms are not exactly identical, e.g., if

042305-3



XIAOTING WANG AND S. G. SCHIRMER

o
IS

o
)
=

field (arb. units)
=
\3
1
]
I

lIp()-p DI

L
S
¢

-
o
1
1
I
i
<
S
7z
7

Il e o e = = =
0 5 10 15 20 25 30 35 40 45 50
time (1/2J)

FIG. 3. (Color online) Local control: control fields obtained
from Lyapunov design for different values of « and distance be-
tween the system state and the Bell state |¥"*). The control design is
robust in that the field amplitude gently decreases to zero, and the
semilog distance plot shows that the convergence to the target state
is not only monotonic but also exponential with the convergence
rate determined by «.

Hioecq= (X ®I+kI®X) then changing to the X basis gives
H,=nJ diag(1+k,1-k,—1+k,—1-k), which transforms to

I-11 =nt . )

Thus for k# 1 we can also steer the system from the product
states |[+—) or |-+) to the Bell state |®*), i.e., for this two-
atom model Lyapunov control can be used to prepare any of
the four Bell states.

One limitation of the scheme is that the initial state must
be in the subspace S, for example, S=span{|++),|-—)}, for
the control to be effective. This is not a shortcoming of the
proposed control scheme, however, because we can see from

the structure of ﬁo and H, that the control system is decom-
posable, hence not controllable on the whole space [28].
More specifically, the dynamics on the orthogonal subspaces
S and St are independent, and subspace populations are
conserved quantities. Thus, for the above Hamiltonian, no
control exists that steers population from subspace S to S*
and vice versa.

B. Interaction control

Instead of controlling the atoms locally, we can alterna-
tively control the nonlocal Hamiltonian Hg, if the under-
lying physical system allows. In this case we choose
Hy=nJ(X®I+I®X) and H;=2J(Z®Z), or in the X eigen-
basis

PHYSICAL REVIEW A 80, 042305 (2009)

100 0 0001
000 0 0010
Hy=27] , H,=2J
000 O 0100
000 -1 1000

The Bell states are no longer the eigenstates of H,. Hence,
for p,(0)=|®*)P*|, the target state is also evolving with
time, but for p(0)=|++) the dynamics is still confined to the
subspace S spanned by |++) and |-—). Therefore, the dynam-
ics can again be reduced to a two-dimensional subspace on
which we have

H 21(1 0) H 21(0 1)
0= o —1 ) TN o)

10 111
p(0)2<0 0)’ pd(0)=5<1 1)’

where the orbit of p,(¢) is the equator of the Bloch sphere.

From the analysis in [23] we can conclude that all solu-
tions in S will converge to the equator of the Bloch sphere,
i.e., states of the form

1 ( 1 e_m)
P=o\eie 1,
which corresponds to the LaSalle invariant set E of the origi-
nal problem satisfying

as well as

1 00 e
ilo oo o
P=21 0 00 o
e 00 1

Thus, we can no longer guarantee p(t) — p,() as t—+, i.e.,
that the state converges to a particular Bell state. This is
illustrated in Fig. 4, which shows that the distance from the
target state still decreases monotonically and exponentially
but the asymptotic value of V(p(r),p,(¢)) for t— o0 now de-
pends on « and is generally larger than zero. However, since
all the states in the set to which p(7) converge are maximally
entangled, we can still steer the system to a maximally en-
tangled state, and the concurrence still increases monotoni-
cally to one (see Fig. 5) but the relative phase « of the state
we converge to now depends on the exact initial state and the
feedback strength «.

Strictly speaking, as the control f(z) reduces to zero,
the norm of H,,., will cease to be significantly smaller than
that of H.y, rendering the approximations made in the deri-
vation of H g invalid, unless we reduce the strength of H) .y
accordingly. However, in practice, the system should already
have reached a state with significant entanglement before
this happens.

V. CONCLUSION

We have shown how to apply Lyapunov control to the
problem of generating entanglement between two-distant
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FIG. 4. (Color online) Interaction control: control fields ob-
tained from Lyapunov design for different values of x and distance
between the system state and the target state with p,y(0)=|¥*)¥|.
The control design is robust in that the field amplitude gently de-
creases to zero, and the semilog distance plot shows that the con-
vergence to the target state is not only monotonic but actually ex-
ponential, although unlike in the local control case, ||p(f)—p (1|
does not converge to 0. The final p(¢) is still maximally entangled
with unit concurrence.

two-levels atoms in cavities connected by optical fibers. De-
spite the fact that the sufficient condition for asymptotic sta-
bility of a target state is not satisfied for the entire state
space, we can still ensure almost globall asymptotic stability
of a subspace. Within that subspace we can drive the system
from a product state to a maximally entangled state. The
Lyapunov control design has the advantage of much greater
robustness compared to simple geometric schemes, and op-
timality in the sense that the distance from the maximally
entangled target state is monotonically decreasing, and the
convergence speed is exponential. We have discussed two
control paradigms: control of the local Hamiltonian, as well
as control of the effective interaction Hamiltonian between
the two atoms. In both cases we can generate a maximally
entangled state from an initial product state: for the former
case the system state will converge to a stationary Bell state,
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FIG. 5. (Color online) The evolution of concurrence C under
Lyapunov control for different values of « for local control (top)
and interaction control (bottom) shows monotonic convergence
to 1. The inset shows that the error, i.e., 1—C decreases effectively
exponentially.

while for the latter case the relative phase of the final state
will keep varying under the Hamiltonian, since the target
state is nonstationary. Moreover, in the latter case, the model
becomes invalid when the control amplitude becomes suffi-
ciently small. Therefore, the former control paradigm is pref-
erable. The Lyapunov control design can be also used to
steer partially entangled states to a maximally entangled
state, although the control is only effective for initial states in
the subspace where the target state is asymptotically stable.
This is not a limitation of the control design, however, but a
consequence of the fact that the controlled system is decom-
posable into two orthogonal subspaces on each of which the
dynamics is invariant. In this sense, the Lyapunov control
design is as effective as is possible within the constraints of
the model.
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