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It is commonly stated that decoherence in open quantum systems is due to growing entanglement with an
environment. In practice, however, surprisingly often decoherence may equally well be described by random
unitary dynamics without invoking a quantum environment at all. For a single qubit, for instance, pure
decoherence �or phase damping� is always of random unitary type. Here, we construct a simple example of true
quantum decoherence of two qubits: we present a feasible phase damping channel of which we show that it
cannot be understood in terms of random unitary dynamics. We give a very intuitive geometrical measure for
the positive distance of our channel to the convex set of random unitary channels and find remarkable agree-
ment with the so-called Birkhoff defect based on the norm of complete boundedness.
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I. INTRODUCTION

The loss of coherence in quantum systems is the hurdle
that needs to be overcome in attempts to make use of quan-
tum mechanics on larger and larger scales, most notably for
quantum information tasks �1,2�. Decoherence disentangles
quantum states �3–5�, which is why for experimental realiza-
tions of quantum information processors it is of fundamental
importance to get a thorough understanding of the irrevers-
ible processes involved �1,3,6�. Decoherence is also put for-
ward to explain the appearance of classical properties in
quantum systems �7,8�.

In open quantum system dynamics, damping �population
transfer� is to be distinguished from decoherence �loss of
phase relations in a certain basis�. While damping necessar-
ily implies decoherence, the converse need not be true for
suitable interactions. Moreover, decoherence often occurs
faster than damping, so that a description of the irreversible
dynamics neglecting damping may be a valid approach for a
short enough time. A prominent example is the quantum
Brownian motion model �9�, where the damping term is ir-
relevant during rapid decoherence �7,8,10�. Pure decoher-
ence is usually referred to as dephasing or phase damping.

It is often stated that decoherence of an open quantum
system is due to growing entanglement between system and
environment �11,12�. Nevertheless, more often than one
might think, the resulting irreversible dynamics of the open
system may be modeled entirely without invoking a quantum
environment. Rather, the dynamics turns out to be indistin-
guishable from a random unitary �RU� evolution, which can
be thought of as originating from classical fluctuations—
sometimes called “random external fields” �1,13� �see also
the corresponding discussion in �7��. Note that in one of the
most detailed experimental studies of decoherence in ion
traps, classical fluctuations �i.e., RU dynamics� are used to
cause controlled decoherence �14,15�. In NMR decoherence
studies, too, fluctuating classical fields are employed �3�.

There are many more relevant instances of decoherence
that are of RU type. In fact, for a single qubit or qutrit, any
possible phase damping is RU �16,17�. Also, the very often
employed model of Markovian dephasing �Lindblad master
equation� �5,18,19� belongs to this class since any self-

adjoint Lindblad operator may be identified with a white
noise term in a suitable Hamiltonian. In this vein, the quan-
tum Brownian motion master equation mentioned above �ne-
glecting damping� follows from a white noise force term in
the Hamiltonian, therefore being RU. Based on Feynman and
Vernon’s influence functional approach, one sees that the lat-
ter is not even restricted to the usual high temperature limit
but can easily be extended to any temperature using colored
noise—as long as times are short enough so that the non-
Markovian damping kernel may be neglected �20,21�.

We conclude that many widely used decoherence sce-
narios are of the RU class. Still, from the work of Landau
and Streater �16�—which plays a central role for our results
here—it is known that phase damping is not necessarily RU.
However, there is no known simple criterion able to decide
whether a given phase damping dynamics belongs to the RU
class. From a more practical point of view, a test for a chan-
nel to be of non-RU type is also of relevance for quantum
error correction �7� for it is known that such errors may not
be fully corrected �22�.

We deem it desirable to have a simple, explicit example of
quantum decoherence at hand of which it is known that it
cannot be expressed using stochastic Hamiltonians. Using a
two qubit system we present a model of which we show that
phase damping truly rests on growing entanglement with a
quantum environment. Somewhat similar to studies by Havel
and co-workers, our proposal may be implemented in NMR
systems �3�, and also in ion trap quantum computers �6�.

In a first step, we choose as environment a single, third
qubit. The proof that the corresponding decoherence cannot
be understood in terms of RU dynamics follows immediately
from the work of Landau and Streater �Sec. II�. Remarkably,
using the Bloch sphere picture, we find a nice geometrical
measure �a volume� that indicates how “non-RU” the dy-
namics is. This quantity correlates surprisingly well with the
distance of the quantum decoherence channel from the con-
vex set of RU dynamics �using the so-called cb-norm, Sec.
III�. In Sec. IV we extend our model to include genuine
irreversibility.

II. PHASE DAMPING CHANNELS AND EXTREMALITY

The dynamics of a quantum state �→��=E���
=�iKi�Ki

† is a completely positive map �or quantum chan-
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nel� with Kraus operators Ki �1� �neglecting initial correla-
tions�. A decoherence or phase damping channel belongs to
the class of doubly stochastic channels. These are trace pre-
serving and unital �mapping the identity onto itself�, corre-
sponding to �iKi

†Ki=1 and �iKiKi
†=1, respectively. The

question about the nature of the irreversibility �entanglement
vs RU� is then in close analogy to the classical Birkhoff
theorem, stating that every real doubly stochastic matrix can
be written as a convex sum of permutations �16�. In the
quantum case, this corresponds to the question of whether
the set of doubly stochastic quantum channels is identical to
the set of RU channels E���=�ipiUi�Ui

† with unitary Ui,
pi�0, and �ipi=1 �see �17,23� for recent work on RU chan-
nels�.

Decoherence or phase damping channels are among the
simplest conceivable maps. They are defined by the require-
ment that, in the given basis ��n�	 with 1�n�d, no popula-
tion transfer takes place: 
n���n�=const. The only effect of
the “environment” is thus to change coherences 
m���n� with
m�n. Thus, the Kraus operators have to be diagonal in this
basis, Ki=diag�ai1 ,ai2 , . . . ,aid� and, correspondingly, the
whole map ��=E��� is diagonal,

�mn� = 
an�am��mn, �1�

with ��an�= �a1n ,a2n , . . . ,arn�	 any set of d normalized com-
plex vectors �24,25�. Phase damping channels are just the
diagonal, doubly stochastic quantum channels.

If the phase damping channel E results from the coupling
between the system and a quantum mechanical environment,
the vectors �an� may be understood as relative quantum states
of the environment, relative to the states of the distinguished
basis �26�. Yet, this need not be: for a single qubit the most
general phase damping channel

�� = e−i�0�z�p� + �1 − p��z��z�ei�0�z �2�

may obviously be obtained from U�=e−i��z with a random
variable � with �0= 

��� and p= 

cos2��−�0���. Landau
and Streater show in �16� that for the case of d�4, e.g., for
at least a two-qubit system, there exist nonunitary extremal
maps in the set of diagonal doubly stochastic quantum chan-
nels: there are phase damping channels of two qubits that are
not of RU type.

We set out to construct such a channel, which requires
having a test for a channel’s extremality. A given diagonal
doubly stochastic channel E is extremal iff it admits a Kraus
representation E���=�i=1

r Ki�Ki
†, where �Ki

†Kj	i,j=1
r is a linear

independent set of matrices �16�. This linear independence is
equivalent to a quality of the associated vectors
��a1� , . . . , �ad�	�Cr called “full set of vectors” �FSOV� �16�,
which is attained if, for a complex matrix M �Cr�r,

an�M�an�=0∀n implies M =0. Note that in case of a two-
qubit channel extremality implies r�2: for r=1 this is just
unitary dynamics, so that r=2 gives the only possibility of an
extremal, nonunitary phase damping channel, implying the
�an� to be single-qubit states.

Based on this relation, we give a simple test for extrem-
ality. With �� ª �1 ,�� �= �1 ,�x ,�y ,�z� we denote the vector
containing the usual basis of linear operators in two-
dimensional Hilbert space. Then, for the states �an� of the

environmental qubit, the Bloch representation reads �an�
an�
= 1

2 �1+b�n ·�� �¬B� n ·�� , where B� n= 1
2 �1,b�n�. When also rewrit-

ing M in this basis, M =K� ·�� , with K� �C4, the FSOV condi-
tion demands that 
an�M�an�=B� n ·K� =0 for all n implies M
=0 and, accordingly, K� =0. Hence, the vectors �B� 1 , . . . ,B� 4	
have to be linear independent, so that we get the following
equivalence:

��a1�, . . . , �a4�	
is a FSOV

⇔ Vt ª
1

6
det� 1 ¯ 1

b�1 ¯ b�4
� � 0. �3�

In addition, we arrive at a geometrical interpretation of the
FSOV condition: the channel is extremal iff the Bloch vec-
tors b�n do not point to the same hyperplane in R3, or, equiva-
lently, iff the volume Vt of the three-dimensional tetrahedron
spanned by the Bloch vectors is different from zero �see also
Fig. 2�c��. Note that we here discuss the case of a system of
two qubits only, the results can, however, be extended easily
to arbitrary dimension.

III. QUANTUM DECOHERENCE DUE TO SINGLE-QUBIT
“ENVIRONMENT”

After having presented the technical prerequisites, we
now want to consider a simple model based on a two-qubit
system S �qubits A and B� interacting with a quantum me-
chanical “environment,” consisting of only one single-qubit
R �cf. Fig. 1�. Evolution of the compound system shall be
described by the Hamiltonian

H = HS + HI + HR, �4�

where HS=�1�z
�A�+�2�z

�B� denotes the system Hamiltonian,
HI=	1�z

�A��z
�R�+	2�z

�B��z
�R� describes the interaction be-

tween system and environment, and HR=
� ·�� �R��
�
= �
x ,
y ,
z�� gives the free evolution of the reservoir qubit.

With the usual product initial state � � �, for any given
time t the reduced dynamics of the two qubits defines a phase
damping channel

Et��� ¬ �� = trR�e−iHt�� � ��eiHt� . �5�

Rewriting H in the basis of the system’s energy eigenstates,

H=�n=1
4 �n�
n� � H̃R

�n�, and taking the initial state of the reser-
voir to be pure, i.e., �= ��0�
�0�, we get

S
A B

κ1 κ2

R γ bath

FIG. 1. �Color online� Phase damping channel on the system S
of qubits A and B. The “environment” initially consists of just a
single qubit R, which is later coupled to an additional zero tem-
perature bath.
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�mn� = tr�e−iH̃R
�m�t��0�
�0�eiH̃R

�n�t��mn = 
�t
�n���t

�m���mn,

with the relative states of the environment ��t
�n��

ªe−iH̃R
�n�t��0�, n=1, . . . ,4. The extremality of the phase

damping channel may now be checked by calculating the
volume Vt �3�. We find that extremality requires the param-
eters of our model to meet essentially three conditions.

�I� Asymmetric coupling: 0�	1�	2�0,
�II� 
x�0 or 
y �0, and
�III� 
z�0.
For Vt=0 the channel is not only nonextremal, we can

further show that it is also random unitary. First note that for
a channel with b�1 , . . . ,b�4 pointing to a plane parallel to the
x-y-plane random unitarity follows immediately, for we can

write ��t
�n��= �
1− pei�1

�n�
,
pei�2

�n�
� with the same p for all n

=1, . . . ,4, resulting in the Kraus form E���= �1− p�U1�U1
†

+ pU2�U2
†. For arbitrary coplanar Bloch vectors b�1 , . . . ,b�4 a

suitable rotation of both the initial state ��0� and the Hamil-

tonians H̃R
�n� leaves the phase damping channel unaltered,

whereas the plane spanned by the new Bloch vectors is again
parallel to the x-y plane.

In Fig. 2�a�, the volume Vt is plotted as a function of time
t for a realization with conditions �I�–�III� met. Based on our
considerations we can conclude that for almost all times the
corresponding phase damping channel Et is an extremal
channel �Vt�0�. From the decrease in Purity P����
=tr���2�, we can exclude unitary dynamics, assuring the
channel to be a genuine quantum decoherence channel �cf.
Fig. 4�a�, solid line�.

We now want to quantify the “quantumness” of the deco-
herence by determining the norm distance of the obtained
channel to the set of RU channels, also called the Birkhoff
defect, dB �27�. The norm distance is calculated in terms of
the cb-norm �norm of complete boundedness, for definitions
and properties see �25,28��. It involves numerical minimiza-
tion over �a� the convex set of RU channels, and �b� equiva-
lent operator sum representations of the channel occurring
from the difference of the given phase damping channel and
the corresponding random unitary channel. In order to find
the global minimum we use several starting points, from
where we alternately minimize with respect to �a� and �b�.
For the calculation of the cb-norm a slightly modified ver-
sion of the algorithm described in �28� is used.

The Birkhoff defect shows a remarkable qualitative agree-
ment with the absolute volume of the tetrahedron spanned by
the four Bloch vectors �b�1 , . . . ,b�4	 �see Fig. 3�. Obviously,
the tetrahedron volume not only enables to distinguish the
different classes of dynamics, it also gives a quantitative
measure of the quantumness of the channel.

IV. IRREVERSIBLE QUANTUM DECOHERENCE

Clearly, the three-qubit model is fully reversible. In order
to introduce irreversibility, we include an additional damping

0 2 4 6 8 10

�0.05

0.00
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0.10

Vt

t [a.u.]

(a)

(b) (c)

FIG. 2. �Color online� �a� The volume Vt �3� against time t for a
given set of parameters 	1 ,	2 ,
� . For values of Vt=0, �left circle
and �b�, exemplary� the corresponding Bloch vectors are coplanar,
and the phase damping channel is RU. For Vt�0, �right circle and
�c�, exemplary� the dynamical vectors ���t

�n��	 form a FSOV, so that
the corresponding Bloch vectors are not coplanar. In this case, the
model gives a quantum decoherence channel.
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FIG. 3. �Color online� �a� the calculated cb-norm distance dB of
our quantum phase damping channel to the set of random unitary
channels. The qualitative agreement with �b� the absolute value �Vt�
of the volume spanned by the Bloch vectors characterizing the
channel is remarkable.
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of the reservoir qubit via spontaneous decay �cf. Fig. 1�,
leading to the Markovian master equation for the full density
operator �tot �29�

�̇tot = − i�H,�tot� +



2
�2�−�tot�+ − �+�−�tot − �tot�+�−� ,

where H is the Hamiltonian describing the original model
�4�, �� are the raising and lowering operators acting on the
reservoir qubit. The channel is again given through the re-
duced dynamics Et���=trR��tot�t��¬��. The influence of the
additional damping may be seen in the purity of the two-
qubit system S �cf. Fig. 4�a��.

For this extended model, the FSOV criterion is no longer
suitable �the environment can obviously no longer be de-
scribed as a single qubit�. Yet, the Birkhoff defect dB gives a
way of examining the nature of the channel. We observe �cf.
Fig. 4�b�� that for increasing coupling 
 of the environment
qubit to the zero temperature bath the Birkhoff defect of an
average channel decreases until, for 
 large enough, it is zero
for almost all times. Note, however, that for small coupling
dB stays well above zero: we can still observe quantum de-
coherence.

V. CONCLUSIONS

To summarize, based on a simple model we are able to
give a generic example of a feasible two-qubit decoherence
channel that does not belong to the class of random unitary
channels. Remarkably, we see a strong correlation between
the Birkhoff defect and the volume of the tetrahedron
spanned by the Bloch vectors of the relative states of the
environment qubit. For an extension of our model including
irreversibility, we see genuine quantum decoherence as long
as the coupling to the bath is small enough. We hope that our
model will help to further explore the difference between
“classical” random unitary phase damping and “true” quan-
tum decoherence and thus help to elucidate the true role of
entanglement in open quantum system decoherence.
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