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The amplification obtained using weak values is quantified through a detailed investigation of the signal-to-
noise ratio for an optical beam-deflection measurement. We show that for a given deflection, input power and
beam radius, the use of interferometric weak values allows one to obtain the optimum signal-to-noise ratio
using a coherent beam. This method has the advantage of reduced technical noise and allows for the use of
detectors with a low saturation intensity. We report on an experiment which improves the signal-to-noise ratio
for a beam-deflection measurement by a factor of 54 when compared to a measurement using the same beam
size and a quantum-limited detector.
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The ultimate limit of the sensitivity of a beam-deflection
measurement is of great interest in physics. The signal-to-
noise ratio �SNR� of such measurements is limited by the
power fluctuations of coherent light sources such as a laser,
providing a theoretical bound known as the standard quan-
tum limit �1�. It was found that interferometric measure-
ments of longitudinal displacements and split detection of
transverse deflections have essentially the same ultimate sen-
sitivity �2�. In this Rapid Communication we consider a
beam-deflection measurement technique that combines inter-
ferometry with split detection. The technique makes use of
weak values and results in the same ultimate sensitivity but
with a number of advantages for precision measurement sci-
ence.

Weak values were introduced in 1988 by Aharonov et al.
�3�. They claimed that the measurement of a component of
the spin of a spin-1/2 particle can turn out to be 100, far
outside the eigenvalue range of the measurement operator.
More recently, the phenomenon known as weak values has
been explored in the field of quantum optics �4–7� and solid-
state physics �8,9�. Typically, a weak value experiment goes
as follows: �1� preselection of an initial quantum state; �2� a
weak interaction that couples a two-state observable �the sys-
tem� with a continuous variable �the meter�; and �3� postse-
lection on a state nearly orthogonal to the preselected system
state. The meter variable is the measured amplified param-
eter. This scheme throws away most of the data with the
postselection and yet, as we will show, the amplification of
the measured parameter outweighs this effect.

In an interferometric weak value setup measuring beam
deflection �caused by a piezoactuated �PA� mirror�, Dixon
et al. �7,10� used the which-path degree of freedom �the
system observable� of a Sagnac interferometer coupled with
the transverse degree of freedom �the meter variable� of a
laser beam �see Fig. 1�. With this method, they measured the
angular deflection of a beam down to 400 femtoradians.

Standard techniques to optimize the SNR of a beam-
deflection measurement include focusing the beam onto a
split detector or focusing the beam onto the source of the
deflection. The improvement of the SNR is of great interest
in not only deflection and interferometric phase measure-
ments but also in spectroscopy and metrology �11,12�, an-

emometry �13�, positioning �14�, microcantilever cooling
�15�, and atomic force microscopy �16,17�. In particular,
atomic force microscopes are capable of reaching atomic
scale resolution using either a direct beam-deflection mea-
surement �16� or a fiber interferometric method �17�. We
show that for any given beam radius, interferometric weak
value amplification �WVA� can improve �or, at least match�
the SNR of such beam-deflection measurements. It has also
been pointed out by Hosten and Kwiat that WVA reduces
technical noise, which combined with our result provides a
powerful technique �6�.

The analogy between interferometry and beam deflection
described in a paper by Barnett et al. �18� allows one to
predict the SNR for a deflection of an arbitrary optical beam
�e.g., coherent or squeezed�. For a coherent beam with a
horizontal Gaussian intensity profile at the detector of

I�x� =
1

�2��
e−x2/2�2

, �1�

they show that the SNR is given by

R =� 2

�

�Nd

�
, �2�

where N is the total number of photons incident on the de-
tector, d is the transverse deflection, and � is the beam radius
defined in Eq. �1�. Equation �2� represents the ultimate limit
of the SNR for position detection with a coherent Gaussian
beam.

We now incorporate weak values by describing the ampli-
fication of a deflection at a split detector as a multiplicative
factor A. Thus, da=Ad is the amplified deflection caused by
the weak value. Also, the postselection probability Pps modi-
fies the number of photons incident on the detector such that
Na= PpsN. The beam radius is not altered. Dixon et al.
showed that for a collimated Gaussian beam passing through
a Sagnac interferometer �see Fig. 1� the WVA factor and the
postselection probability are given by
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A =
2k0�2

lmd
cot��/2�, Pps = sin2��/2� , �3�

where lmd is the distance from the piezoactuated mirror to the
detector, k0 is the wave number of the light, and � is the
relative phase of the two paths in the interferometer.

Using Eqs. �3� and making the substitutions d→Ad and
N→PpsN into Eq. �2�, we find the weak value amplified
SNR,

RA = �R , �4�

where �=2k0�2 cos�� /2� / lmd. For a typical value of � we
note that cos�� /2��1.

Dixon et al. extend their analysis by inserting a negative
focal length lens before the interferometer, creating a diverg-
ing beam. This modifies the WVA such that the new SNR is
given by

RA� = �R llm + almd/�
llm + lmd

= C�� + a
lmd

llm
� , �5�

where C=��8N� /��k0llmd cos�� /2�� / �lmd�llm+ lmd�� and a is
the radius of the beam at the lens which is a distance llm from
the piezoactuated mirror. It is interesting to note that the
dependence of the SNR is proportional to the beam radius at
the detector in the amplified case �Eq. �5�� but inversely pro-
portional when there is no amplification �Eq. �2��.

Equations �4� and �5� are the main theoretical results of
this Rapid Communication. We see that it is possible to
greatly improve the SNR in a deflection measurement with
experimentally realizable parameters. Typical values for
the experiment to follow are � /2=25°, �=1.7 mm, lmd
=14 cm, and k0=8�106 m−1 such that the expected SNR
amplification is ��300.

We notice that for small �, the value of � is the ratio of
the SNR for a beam-deflection measurement in the far field
and the near field. The far-field measurement can be obtained
at the focal plane of a lens. This is recognized as a typical
method to reach the ultimate precision for a beam-deflection
measurement �2�. Consider a collimated Gaussian beam with
a large beam radius � which acquires a transverse momen-
tum shift k given by a movable mirror. The beam then passes
through a lens with focal length f followed by a split detec-
tor. The total distance from the source of the deflection to the
detector is lmd, and the detector is at the focal plane of the
lens. This results in a new deflection d�= fk /k0 and a new
beam radius ��= f /2k0� at the detector. Making the substi-
tutions d→d� and �→�� into Eq. �2�, we see that when the
beam is focused onto a split detector the SNR is amplified:

R f = � fR , �6�

where � f =2k0�2 / lmd is the improvement in the SNR relative
to the case with no lens �i.e., Eq. �2��. Yet this is identical to
the improvement obtained using interferometric weak values,
up to a factor of cos�� /2��1 for small �. Thus we see that
the improvement factors are equal using either WVA or a
lens focusing the beam onto a split detector, resulting in the
same ultimate limit of precision. However, WVA has three
important advantages: the reduction in technical noise, the
ability to use a large beam radius, and lower intensity at the
detector due to the postselection probability Pps=sin2�� /2�.

We now consider the contribution of technical noise to the
SNR of a beam-deflection measurement. Suppose that there
are N photons contributing to the measurement of a deflec-
tion of distance d. In addition to the Poisson shot noise �i,
there is technical noise ��t� that we model as a white noise
process with zero mean and correlation function 	��t���0�

=S�

2��t�. The measured signal x=d+�i+��t� then has contri-
butions from the signal, the shot noise, and the technical
noise. The variance of the time-averaged signal x̄ is given by
	x̄2= �1 /N2��i,j=1

N 	�i� j
+ �1 / t2��0
t dt�dt�	��t����t��
, where

the shot noise and technical noise are assumed to be uncor-
related with each other. For a coherent beam described in Eq.
�1�, the shot noise variance is 	�i� j
=�2�ij. Therefore, given
a photon rate 
 �so N=
t�, the measured distance �after in-
tegrating for a time t� is given by

	x
 = d �
�

�
t
�

S�

�t
. �7�

We now compare this with the weak value case. Given the
same number of original photons N, we will only have PpsN
postselected photons, while the technical noise stays the
same. Taking d→Ad this gives

	x
 =
1

�Pps

��d �
�

�
t
�

S�
�Pps

�t
� . �8�

In other words, once we rescale, we have the same enhance-
ment of the SNR by � as discussed in Eq. �4�, but addition-
ally the technical noise contribution is reduced by �Pps from
using the weak value postselection. Therein lies the power of
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FIG. 1. �Color online� A fiber coupled laser beam is launched
into free space before passing through a polarizer, producing a hori-
zontally polarized single mode Gaussian beam. The laser enters the
input port of a Sagnac interferometer via a 50/50 BS. The light is
divided equally and travels through the interferometer clockwise
and counterclockwise, encountering three mirrors before returning
to the BS. The PA mirror positioned symmetrically in the interfer-
ometer causes a slight opposite deflection for the two different
paths, altering the interference at the BS. The dark port is monitored
with both a CCD camera and a QCD positioned at equal lengths
from the second BS. The CCD is used only to verify the mode
quality of the dark port.
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weak value amplification for reducing the technical noise of
a measurement.

The experimental setup is shown in Fig. 1. A 780 nm
fiber-coupled laser is launched and collimated using a
20� objective lens followed by a spherical lens with f
=500 mm �not shown� to produce a collimated beam radius
of �=1.7 mm. For smaller beam radii, the lens is removed
and the 20� objective is replaced with a 10� objective.
A polarizer is used to produce a pure horizontal linear polar-
ization. The beam enters the interferometer �this is the pre-
selection� and is divided, traveling clockwise and counter-
clockwise, before returning to the beamsplitter �BS�. A
piezoactuated mirror on a gimbal mount at a symmetric point
in the interferometer is driven �horizontally� with a 10 kHz
sine wave with a flat peak of duration 10 �s. The piezoac-
tuator moves 127 p.m./mV at this frequency with a lever arm
of 3.5 cm. Due to a slight vertical misalignment of one of the
interferometer mirrors, the output port does not experience
total destructive interference �this is the post-selection on a
nearly orthogonal state� and contains approximately 20% of
the total input power, corresponding to � /2=25°. A second
beamsplitter sends this light to a quadrant cell detector
�QCD� �New Focus model 2921� and a charge coupled de-
vice �CCD� camera �Newport model LBP-2-USB�. The out-
put from the CCD camera is monitored and the output from
the quadrant cell detector is fed into two low-noise pream-
plifiers with frequency filters �Stanford Research Systems
model SR560� in series. The first preamplifier is ac coupled
with the filter set to 6 dB/oct bandpass between 3 and 30 kHz
with no amplification. The second preamplifier is dc coupled
with the filter set to 12 dB/oct low-pass at 30 kHz and an
amplification factor ranging from 100 to 2000. The low-pass
filter limits the laser noise to the 10–90 % rise time of a 30
kHz sine wave �
=10.5 �s� and so we take this limit as our
integration time such that the number of photons incident on
the detector is N= P
 /E�, where P is the power of the laser
and E� is the energy of a single photon at �=780 nm.

In what follows, we compare measurements using two
separate configurations: the WVA setup is shown in Fig. 1
and produces the weak value amplification SNR found in Eq.
�4�; SD setup �for standard detection� is the same as the
WVA setup but with the first 50/50 beamsplitter removed,
resulting in the SNR given by Eq. �2�. The theoretical curves
of the SNR in Fig. 2, to which our data are compared, as-
sume the configuration of SD setup with a noiseless detector
which has a perfect quantum efficiency; this is what we refer
to as an “ideal measurement.” We see reasonable agreement
of the data with theory by noting the trends in Fig. 2 as
predicted by Eqs. �4� and �5�. The quoted error below comes
from the measured data’s standard deviation from the linear
fits.

Data were taken for a fixed beam radius �=1.7 mm and
detector distance lmd=14 cm for two cases: �1� a variable
piezo actuator driving voltage amplitude with a fixed input
power of 1.32 mW �Fig. 2�a��; and with �2� a variable input
power with a fixed driving voltage amplitude of 12.8 mV
�not graphed�. For the first case, using SD setup, we mea-
sured a SNR a factor of 1.77�0.07 worse than an ideal
measurement; with WVA, i.e., WVA setup, an improve-
ment of 39�3 was obtained, corresponding to a SNR that

is a factor of 21.8�0.5 better than an ideal measure-
ment using SD setup. For the second case, we found that the
SNR with WVA was linear in power, resulting in a SNR a
factor of 22.5�0.5 better than an ideal measurement using
SD setup.

Next, the beam radius at the detector � was varied from
0.38 to 1.1 mm, while the beam radius at the lens was
roughly constant at a=850 �m. For this measurement, the
input power was 1.32 mW, the distances were llm=0.51 m
and lmd=0.63 m, and the driving voltage amplitude was 12.8
mV. The results are shown in Fig. 2�b�. Using SD setup, we
find that the SNR varies inversely with beam radius as pre-
dicted by Eq. �2�. However, using WVA setup, we see a
linear increase in the SNR as the beam radius is increased as
predicted by Eq. �5�.
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FIG. 2. �Color online� The SNR for SD setup �blue curves� is
calculated using Eq. �2� assuming perfect quantum efficiency. The
SNR was measured with �diamonds, black curves� and without
�circles, red curves� the weak value amplification. As predicted by
Eq. �4�, �a� shows the dependence on driving voltage �and hence
deflection d�. �b� shows the dependence on beam radius as predicted
by Eqs. �2� and �5�. Note that for �a�, the black curve is plotted
using the left axis whereas the blue and red curves are plotted using
the right axis. The lines are linear or 1 /� fits. The y intercepts of the
linear fits in �a� are forced to zero. The statistical variations are
smaller than the data points.
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To verify the dependence of the SNR on lmd, as seen in
Eqs. �2� and �4�, we fixed the input power at 1.32 mW, the
driving voltage amplitude at 12.8 mV, the beam radius at �
=1.7 mm and varied the position of the detector relative to
the piezoactuated mirror. We found that, using WVA setup,
the SNR was roughly constant with a value of 29�1. This
can be understood by realizing that, in Eq. �4�, the lmd in the
denominator cancels the lmd in the numerator owing to the
fact that d= lmd�	��, where 	� is the angular deflection. Us-
ing SD setup, we saw the expected linear relationship and we
found that the system is worse than an ideal system by a
factor of 3.2�0.1.

To demonstrate the utility of this method we constructed a
smaller interferometer with a smaller lmd=42 mm and a
smaller beam radius �=850 �m. For this geometry with 2.9
mW of input light and 390 �W of output light, the predicted
amplification is �=260. With these parameters, the SNR for
an ideal WVA setup is approximately unity. We measured �
to be 150. Combining this with our nonideal detector, we
obtain an improvement of the SNR better than a quantum-
limited SD setup by a factor of 54. Practically, this means
that in order to obtain equal measurement precision with this
quantum-limited system using the same beam radius it would
take over three more orders of magnitude of time or power.

An important note is that the expected WVA of the SNR
for the larger interferometer is approximately �=300; yet
only an �=55 �a factor of 5.5 below� was obtained from the
graphed data. However, for the smaller interferometer, the
measured � was only a factor 1.7 below the predicted value.

The connection between standard deflection measurement
techniques and the weak value scheme presented here will be
elucidated at a later time. While this method does not beat
the ultimate limit for a beam-deflection measurement, it does
have a number of improvements over other schemes: �1� the
reduction in technical noise; �2� the ability to use high power
lasers with low power detectors while maintaining the opti-
mal SNR; and �3� the ability to obtain the ultimate limit in
deflection measurement with a large beam radius. Addition-
ally, we point out that, while weak values can be understood
semiclassically in this experiment, the SNR in a deflection
measurement requires a quantum mechanical understanding
of the laser and its fluctuations.

It is interesting to note that interferometry and split detec-
tion have been competing technologies in measuring a beam
deflection �2�. Here we show that the combination of the two
technologies leads to an improvement that cannot be ob-
served using only one, i.e., that measurements of the position
of a large radius laser beam with WVA allows for better
precision than with a quantum-limited system using split de-
tection for the same beam radius. Applications that can take
advantage of this setup include: measuring the surface of an
object by replacing the piezoactuator with a stylus such as
with atomic force microscopy; or measuring frequency
changes due to a dispersive material such as in Doppler an-
emometry.
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