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We present soleakon: nonlinear self-trapped leaky modes displaying particlelike features. A “soleakon”
forms when a wave function induces a potential barrier, whose resonant state (leaky mode� corresponds to the
wave function itself. We show that, for a proper set of parameters, soleakons are robust and propagate while
maintaining their envelope almost indefinitely. However, they eventually disintegrate abruptly. These entities
exhibit particlelike interactions behavior, which is nevertheless profoundly different from soliton collisions.
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Optical spatial solitons have been studied extensively:
from the first observations of Kerr solitons in CS2 �1� and
glass slab waveguide �2�, to observations of non-Kerr soli-
tons supported by a variety of physical mechanisms �3�.
However, in spite of the diversity of mechanisms supporting
solitons, they all share universal features of particlelike be-
havior �4�. This is manifested in their interaction properties,
including elastic collisions in integrable systems which con-
serve the number of solitons �5�, as well as complex interac-
tions in non-Kerr media �6� in which solitons exhibit fusion
�7�, fission, annihilation �8� and spiraling �9�. Solitons inter-
act through their jointly induced refractive-index change.
The interactions are short range in all nonlinear media with a
local response �5–9�, or long range, if the medium displays a
highly nonlocal response �10�, where the index change ex-
tends far away from the localized optical field. Another uni-
versal property of solitons is that their tails decay exponen-
tially, which arises from the fact that solitons are guided
modes �bound states� of their self-induced waveguides �po-
tentials� �11�. This concept holds for any bright solitons, in-
cluding temporal solitons, for which the self-trapping occurs
in a moving time frame, and solitons in other systems be-
yond optics.

However, waveguiding does not necessarily imply that the
wave must be a guided mode. In fact, efficient linear
waveguiding can also be achieved by populating leaky
modes �unbound states�. A leaky mode is a superposition of
radiation �continuum� states �12,13�, forming a wavepacket
that is highly localized at the vicinity of the structure, but
oscillatory outside the waveguide and diverges exponentially
far away from it. As such, leaky modes behave fundamen-
tally different from guided modes. The propagation constant
of a leaky mode is complex �13�, with the imaginary part
associated with unidirectional power flow from the localized
section to the radiative part. The power in the localized sec-
tion decays with propagation. However, the decay rate can be
extremely small, yielding long-lived localized modes.

Here, we take the key concept of solitons: nonlinear
modes of their own self-induced potential and generalize it to
leaky modes. We find a type of a self-trapped wave—the
soleakon: a wavepacket that induces a potential and at the
same time populates its leaky mode, self-consistently. Like
solitons, soleakons are elementary entities that should appear
in a large number of nonlinear systems. Soleakons share
some of the properties of solitons: they are robust, maintain
their shape, and conserve most of their power for very long

�yet finite� propagation distances: orders of magnitude larger
than the “diffraction length” of the same wavepacket in a
linear medium. Soleakon interactions exhibit repulsion at
small angles, and then fusion and annihilation at larger
angles �unlike bright solitons in non-Kerr media, which fuse
only at small angles�. At the same time, soleakons display
properties unique to leaky modes, interacting with each other
through radiation �continuum� waves, giving rise to a very
long-range, position-dependent interaction. Furthermore, be-
cause soleakons decay into specific spatial frequencies, we
find that they can be resonantly amplified by a plane wave.

Soleakons are nonlinear entities associated with linear
leaky modes of their self-induced waveguide. Let us discuss
leaky modes first. Leaky modes are solutions of the propa-
gation equation when applying outgoing boundary condi-
tions. A leaky mode radiates power to infinity, and the imagi-
nary part of its propagation constant reflects this decay.
Interestingly, the real part of the propagation constant is
smaller than the wavenumber k0ncl, where ncl is the refrac-
tive index far away from the waveguide. As such, the spatial
spectrum of a leaky mode belongs entirely to radiation
modes. In order to excite a leaky mode, one has to excite
properly its localized section, which resembles a bound state.
Because a leaky mode is not a true eignemode, the radiation
modes comprising it dephase, hence radiation is constantly
emitted away at a distinct angle.

Let us introduce nonlinearity and seek self-trapped leaky
modes. We seek a wavepacket launched into a homogeneous
nonlinear medium �14� and inducing an index change, for
which the wave function corresponds to the leaky mode �at
the vicinity of the waveguide�. This leads to “self-
confinement,” with small power leakage corresponding to
the imaginary part of the propagation constant �which now
varies with propagation�. We find the wave functions and
propagation constants of soleakons numerically, through a
modified self-consistency method �11�. To apply outgoing
boundary conditions, we add a complex absorbing potential
�CAP� �15� to the self-consistency method. Then, in each
iteration, instead of choosing the bound states �which would
lead to solitons� we choose a leaky mode–a localized wave
function having a complex eigenvalue. The calculation con-
verges after a few iterations. An example of a soleakon is
shown in Fig. 1�a�. It has one pronounced peak with oscilla-
tory tails, self-trapped in the index structure shown below it.

Having found soleakons, it is natural to ask whether they
are robust to noise and can maintain their entity for large
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propagation distance. We study soleakons in a medium in
which a “double-barrier” W structure �Fig. 1�a�� can be re-
alized. Linear leaky modes of such structures can be long
lived �16�. Inducing a W-shaped index change can be real-
ized in any medium containing both positive and negative
nonlinearities, with different functionalities with respect to
the intensity. The negative nonlinearity should have a wider
profile, which could arise, for example, from a saturable �17�
or from a nonlocal �10� nonlinearity. The positive �self-
focusing� nonlinearity could have any other form that creates
a narrower profile, to achieve an index change as in Fig. 1�a�.
The joint effect of the negative-wide and positive-narrow
nonlinearities, results in the desired double-barrier potential.
This is just one realization, and one can implement many
others, e.g., index change similar to that of hollow
waveguides, etc. The case depicted in Fig. 1�a� can be real-
ized for example in glasses, polymers etc. �which exhibit
both a negative nonlocal nonlinearity and the self-focusing
optical Kerr effect�, or in photorefractive crystals �with a
saturable self-defocusing screening nonlinearity �17� and the
self-focusing optical Kerr effect�. Beyond optics, Bose-
Einstein condensates display a nonlocal nonlinearity due to
the dipole effects of the atoms �18�. Here we demonstrate the
effects by using the nonlocal negative nonlinearity and a
positive Kerr nonlinearity, although we stress that we inves-
tigated the existence of soleakons also for saturable nonlin-
earity combined with the Kerr effect, and did not find any
fundamental difference. The paraxial system is described by
the nonlinear Schroedinger-like equation

i
��

�z
+

�2�

�x2 + n1��
−�

�

����−x��2e−��/��2
d��� + n2���2� = 0

where � is the slowly varying envelope of the electric field,
n1 is the strength of the nonlocal nonlinearity �n1�0�, � is
the nonlocality range, and n2 is the Kerr coefficient.

We use the modified self-consistency method as described
above, and find the soleakon wave function and refractive-
index change �Fig. 1�a��. In contrast to solitons, here � does
not decay exponentially away from the center, but is instead
oscillating with constant amplitude �inset in Fig. 1�a��. Hav-

ing found the soleakon, we study its propagation by using it
as an initial condition and simulating Eq. �1�. First, we ex-
amine linear propagation �both n1 ,n2=0�, and find that the
beam broadens within a distance smaller than 10 in normal-
ized units. However, under the proper nonlinear conditions
�for which � was calculated�, the beam is propagating al-
most without change to a distance of 	1500, and then it is
abruptly terminated, due to the continuous losses of this self-
trapped leaky mode �Fig. 1�b��. It is instructive to examine
the spatial power spectrum of the soleakon during propaga-
tion �Fig. 1�c��. Expectedly, the power spectrum is almost
propagation invariant �until the soleakon abruptly disinte-
grates�, comprising of a central lobe and two side lobes as-
sociated with the radiation into a narrow region in k space
�lower insert�. As the soleakon disintegrates �upper insert�,
the side lobes become pronounced and the spectrum between
the side lobes becomes flat. The position of the side lobes
can be calculated from the propagation constant of the solea-
kon. We define a decay rate of the soleakon as

��z� =
�

�z
log
��x,z����x,z = 0�� ,

where the brackets denote integration over all x, and
��x ,z=0� is localized in the induced-waveguide area. In a
linear waveguide, the decay rate of a leaky mode is constant.
Since the soleakon is a leaky mode of its own induced
waveguide, its decay rate is increasing with propagation.
Near z=0, the decay rate is equal to the rate in a fixed wave-
guide. As z increases, radiation is emitted from the soleakon,
hence the waveguide slowly changes its shape and the decay
rate increases. As the soleakon disintegrates, the decay rate
sharply increases, reflecting the strong loss from the local-
ized section, in both the spatial and spectral domains. We
find strong dependence on the nonlocality range �: 20%
change in � increases the propagation distance by an order of
magnitude.

The dynamics of soleakons is slow �compared to diffrac-
tion broadening� and adiabatic: the soleakon slowly loses
power, hence the induced waveguide varies, but the wave
function self-adjusts-until disintegration point, where transi-

FIG. 1. �Color online� Soleakon properties. �a� Wave function �blue solid line� and induced refractive index �red dashed line�. Inset: the
oscillating field far from the waveguide. �b� Nonlinear propagation in real space. �c� K-space nonlinear propagation. The insets show the
spatial Fourier transform of the wave function at the early stages of propagation and after the soleakon disintegrates. �d� The projection A�z�
from the simulation �solid line� and the model �dashed line�.
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tion is abrupt. During the adiabatic evolution, the decay rate
��z� at plane z corresponds to the decay rate of the exact
linear leaky mode of the induced waveguide at the same
plane z. We construct an analytic model for the particular
case where the wave function is described by hyperbolic se-
cant, with its functional width dependence, and a radiation
term of amplitude c�z�,

��x,z� = ��z�sech� ��z�
��0�

x

w0

 + c�z�

where w0 is the initial width of � �which differs from the
width of a Kerr soliton, due to the potential barrier�, ��z� is
the amplitude of the hyperbolic secant, and c�z� determines
the radiation amplitude in the vicinity of the waveguide.
One can then define a projection parameter
A�z�= 
��x ,0� ���x ,z��, which is assumed �due to adiabatic-
ity� to obey

da

dz
= − ��z�A�z� . �1�

Using complex scaling �14�, we find the momentary decay
rate for each waveguide realization ���A��. The radiation am-
plitude c�z� is also transformed to c�A� by evaluating the
radiation amplitude in each z according to the previous step
�c can be estimated from knowledge of �, � as �P	

2� , with P
being the power�. Integrating Eq. �1� yields

z = − �
A�0�

A�z� dA

	�A�A
.

We then fit 	�A� to a polynomial function, and solve for
A�z�. Figure 1�d� shows A�z� from the simulations against
A�z� from the model. The correspondence is excellent until
close to the collapse, where evolution is no longer adiabatic.
This model describes well at least one family of soleakons,
facilitating analytic predictions for its features.

The results in Fig. 1 prove that soleakons are indeed soli-
tonlike entities. However, since the soleakon populates a
leaky mode of the induced waveguide and not a bound state,

a plane wave can couple to the induced waveguide through
resonant coupling. Such a situation has never been found
with self-trapped bright beams. Utilizing such resonant cou-
pling to the soleakon, one can either pump power into the
soleakon or extract power from it, depending on the relative
phase between the soleakon and the plane wave. Figure 2�a�
shows a soleakon with the parameters of Fig. 1�e�, amplified
by two plane waves, phase matched to increase the soleakon
power �we use two plane waves to avoid transfer of trans-
verse momentum to the soleakon�. The intensity of the waves
is 100 times smaller than the soleakon intensity, hence the
index change they induce is extremely small. Nevertheless,
these waves amplify the soleakon efficiently when they are at
the resonant angle �Fig. 2�b��: the maximum intensity of the
soleakon increases until z=3000, where the pumping waves
cease to pump the soleakon �due to their finite transverse
width�. Pumping increases the soleakon lifetime from 	1500
�Fig. 1�d�� to 	7500 �Fig. 2�b��.

The profound difference between soleakons and solitons
is also manifested in their interactions. Solitons interact
through the index change induced by their decaying tails �4�,
whereas soleakons interact through the index induced by the
interference between their radiation fields and through reso-
nant coupling of radiation between soleakons. As such,
soleakons display interaction from very large distances even
when the nonlinearity is spatially local. For example, solea-
kons can form in media exhibiting a saturable self-
defocusing �photovoltaic or photorefractive� nonlinearity and
the optical Kerr effect, with both nonlinearities being local in
space. Nevertheless, such soleakons interact from very large
distances, since the radiation from each soleakon travels at a
specific angle, and eventually reaches the other soleakon �for
a small enough decay rate�. Consequently, interactions be-
tween soleakons are extremely long range, even if the under-
lying nonlinearities are fully local. This is fundamentally dif-
ferent from soliton interactions, for which interaction range
is determined by the range of nonlocality �9�.

Soleakon interactions are highly sensitive to their relative
distances. Soleakons exhibit both attraction and repulsion,
even for the same realizations: two soleakons can start with
attraction, move toward one another �Fig. 2�c��, and then—
once their relative distance has changed—the interaction be-
comes repulsive �Fig. 2�d��. This is the outcome of interfer-
ence between radiation terms residing outside the induced
waveguide supporting each soleakon. Also, in the same vein

FIG. 2. �Color online� Soleakon pumping and interactions. �a�
Natural logarithm of the absolute value of the field envelope. The
soleakon appears as a thin line in the middle, and two plane waves
appear on either side of the soleakon; the pumping ends at
	z=3000. �b� The maximum absolute value of the soleakon ampli-
tude. In the absence of pumping, the soleakon disintegrates at
z	1500 �Fig. 1�d��. �c� and �d� Soleakon collision for two dis-
tances, where in �c� there are regions of mutual attraction, and the
lifetime is increased due to interaction. The difference between �c�
and �d� results from a tiny change in the initial distance between the
soleakons.

FIG. 3. �Color online� Soleakon collisions. �a� Soleakons repel
at small incidence angles. �b� At larger angles soleakons fuse into
one stronger soleakon, with larger lifetime. �c� Soleakon annihila-
tion. �d� Scattering matrix constructed for the collision process,
with the horizontal axis being the wave vector corresponding to the
launch angle, and the vertical axis corresponding to the Fourier
transform at a distance of z=200.
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as prolonging the soleakon lifetime by “pumping” it with a
plane wave, soleakons can influence the lifetime of each
other through interaction. See Fig. 2�c�, where the soleakons
are identical thus their resonant angle is equal and the radia-
tion plays the role of a pumping wave, prolonging the life-
time of both.

When bringing two in-phase soleakons closer together,
and launching them at small relative angles, the interaction is
repulsion �Fig. 3�a��, due to the negative sign of the wide
nonlinearity. As the relative angle is increased, when it
reaches some threshold, the two soleakons merge to form a
single soleakon, with a stronger peak intensity and longer
lifetime �Fig. 3�b��. Notice that, when the soleakons merge,
radiation is always ejected �as expected from the law of
brightness�, in the form of two symmetric wings. Interest-
ingly, we observe that such interactions can transform two
intense soleakons into a single soliton. As we further in-
crease the angle between the soleakons, there is a critical
angle at which the soleakons annihilate each other into a
continuum of spatial frequencies �Fig. 3�c��. The “kinetic
energy” at this critical angle roughly corresponds to the
maximum of the potential barrier forming when the two
soleakons constructively interfere. The annihilation of the
soleakons occurs for some finite range of relative angles, and
then gradually, as the angle is further increased, the solea-
kons pass through each other virtually unaffected. The inter-
action between soleakons can be summarized by a “scatter-
ing matrix,” depicting the power spectrum of the light at the
output as a function of the mean transverse wavenumber at
incidence kin �incidence angle� �Fig. 3�d��. At small kin, the
soleakons repel, and two soleakons emerge, each with kout
=kin. As kin reaches the fusion region, the output power is
localized around kout=0, and some power is lost to radiation.
As we further increase kin, we reach the critical energy for
annihilation, appearing as a continuum of frequencies. At

even larger kin, the spectrum is continuously transformed into
two beams again, indicating the soleakons passing through
each other. As we increase the soleakons’ intensity, they
transform into interacting solitons: the width of the fusion
and annihilation regions becomes numerically irresolvable.

Before closing, we discuss the difference between solea-
kons and another form of nonlinear localized waves which
decay during propagation: quasisolitons �QSs� �19�. QSs
arise when higher-order dispersion is added to an equation
which otherwise supports solitons, e.g., temporal solitons in
the presence of higher-order dispersion. However, for QSs
the underlying equation is inherently different, and it does
not support any bound states. This gives rise to profound
differences: the origin of the loss to radiation waves, the
decay rate and the resonance frequency, all behave differ-
ently for soleakons and QSs.

To conclude, we presented soleakons: long-lived self-
trapped leaky waves which eventually disintegrate abruptly.
Soleakons are symbiosis between solitons and leaky waves;
hence, they exhibit features of both solitons �self guiding and
collision properties� and leaky modes �finite lifetime and
resonant coupling�. These features suggest ideas of interac-
tions among self-localized waves. For example, two far-
away soleakons interact strongly since they are at resonance,
while they do not interact with other self-localized entities
�solitons or soleakons� that are much closer. Other future
ideas include exciting soleakons by plane waves as a reverse
process to soleakon disintegration. This soleakon concept
holds for various systems beyond optics, e.g., cold atoms
displaying the nonlocal dipole interaction and more.
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