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Three-component Fermi gas in a one-dimensional optical lattice
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We investigate the effect of the anisotropy between the s-wave scattering lengths of a three-component
atomic Fermi gas loaded into a one-dimensional optical lattice. We find four different phases which support
trionic instabilities made of bound states of three fermions. These phases distinguish themselves by the relative
phases between the 2k atomic density wave fluctuations of the three species. At small enough densities and
strong anisotropies we give further evidences for a decoupling and the stabilization of more conventional BCS
phases. Finally, our results are discussed in light of a recent experiment on °Li atoms.
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Ultracold multicomponent atomic Fermi gases have re-
cently attracted much interest [1]. In particular the existence
of several internal degrees of freedom might stabilize some
exotic phases. In this respect recent theoretical investigations
strongly support the formation of a molecular state made of
bound states of N atoms. For instance, quartet (N=4) and
trionic (N=3) states have been predicted in both three and
one dimensions in the context of cold atom systems [2-10].
However, these first studies assumed at least an SU(2) sym-
metry and even an SU(N) symmetry between the species,
which may not describe accurately the experimental situation
at nonzero magnetic field. Indeed in a recent experiment,
where a stable N=3-component mixture of atoms in three
different hyperfine states of °Li has been stabilized at small
magnetic field [11], the s-wave scattering lengths a,,, be-
tween the three species exhibit strong anisotropic behavior as
a function of the external magnetic field. In view of the
promising perspective to observe trionic bound states in a
near future, a careful study of the generic asymmetry be-
tween the species is clearly most wanted. It is the purpose of
this work to do so. To this end we will study a three-
component fermionic gas with equal densities, p;,3;=p,
loaded into a one-dimensional (1D) optical lattice of wave-
length N and transverse size a,. Away from resonance and
when the three-dimensional (3D) scattering lengths |a,,,|
<(N,a ), the system is described with a Hubbard-like model
with contact interactions [12],

H=- IE [c;‘r,nciﬂ,n + HC] + E Umnpi,npi,m’ (1)

in in<m

where c;}ln is the creation operator for a fermionic atom of
color n=(1,2,3) at site i and Pi,n=CZan,n is the local density
of the atomic species n. The Hamiltonian (1) is an aniso-
tropic deformation of the U(3) Hubbard model, obtained
when U,,,=U, whose phase diagram has been recently elu-
cidated [6]. In this case, for an attractive interaction U<0, a
spectral gap opens for the SU(3) spin degrees of freedom and
one- and two-particle excitations are gapped for incommen-
surate density p. The dominant fluctuations consist into gap-
less atomic density waves (ADWs) and SU(3)-singlet trionic
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excitations (Taizczlczzcz3) [6]. When U, # Uy # Uiy, the
continuous symmetry of Eq. (1) is strongly reduced to U(1)?
and the resulting anisotropy has dramatic consequences. In-
deed, on top of the previous symmetrical phase, we find by
means of combined low-energy and density-matrix
renormalization-group (DMRG) approaches [13,14] that
there exists for incommensurate density p three different
ADW phases supporting trionic instabilities and even decou-
pled BCS phases.

The (U,V) model. Let us first start with the simplest sym-
metry breaking pattern, U(3)— U(2) X U(1), when two spe-
cies, say 1 and 2, play an equivalent role. In this case
U,=U, Uy=Us;=V, and Eq. (1) may be viewed as a two-
component fermionic Hubbard model with coupling U be-
tween species (1,2) which interacts with a third species 3
with coupling V. As it will be discussed later, this model
captures the essential features of the generic case. In the
weak-coupling limit, its low-energy effective theory can be
expressed in terms of the collective fluctuations of the den-
sities of the three species by the bosonization approach [13].
Introducing three bosonic fields ¢,(x), the density operators
for each species read as follows:

(9*(/’,1(’“) - Lsin[szx +\drd, 0], (2)

P
pi,n -~ + |
a \NTT ma

where x=ia, a=N/2 is the optical lattice spacing, and
kr=2mp/\ is the Fermi wave vector. The second and the last
terms of Eq. (2) describe, respectively, the uniform and 2kg
fluctuations of the density operator of species n=1,2,3. In
our problem the interaction is best expressed in terms of the
collective fluctuations of the total density, described by a
bosonic field ®y=(=]_, ¢,)/ V3, and of the relative density,
described by a two-component bosonic field q3=(<b||,_<13 1)s
where @ =(p;—¢,)/\2 and D =(p;+h,—2¢3)/\6. In
terms of these variables the effective low-energy
Hamiltonian of the (U,V) model splits into three parts,
H=Hoy+H+H iy, Where
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vol| 1
Ho= = (00 + K(5,60)° (3)

2

is the Hamiltonian of a Luttinger liquid (LL) describing the
low-energy properties of the total density fluctuations. In Eq.
(3), O is the dual field to &, vy=vy/K denotes the density
velocity [vp=2ta sin(kpa) being the Fermi velocity], and
K=[1+2(U+2V)a/3mv;]""? is the Luttinger parameter. The
Hamiltonian H, accounts for the remaining (spin) degrees of
freedom and reads

”F (0,8, + (8,0 )" + N (0D )

Ho= >,

p=ll, L

2

&L 2005\27T<D” COS\'67T(DJ_ 2 cosy 87T(I)”,

(4)

with \y=g;==Ua/2m, A, =(U-4V)a/6m, and g, =—Va/2.
Finally, Hx couples spin and density fluctuations with
Honix=Ain0 Pod, P |, where \i=\2(U—-V)a/37. When
U=V, i.e., \y;x=0, the spin and density fluctuations separate
at low energy, and model (4) is the bosonized version of the
SU(3) Gross-Neveu (GN) model studied in Ref. [6]. In all
other cases, A, 70, and the spin and total density degrees
of freedom do not decouple due to the anisotropy, even
though we are considering incommensurate densities. How-
ever, as we will see, at weak-enough couplings, i.e., when
[Nmix/ 2770 | < 1, thanks to the opening of a spectral gap for
the spin degrees of freedom, the spin-density coupling H ;.
has little effect and can be safely neglected. In this regime
the low-energy properties of the (U, V) model are captured
by those of H, that can be elucidated by means of a one-loop
renormalization-group (RG) approach. For generic values of
the couplings (U, V) we find that (\,,g,), where u=(ll, L),
flow to strong couplings and the three species are strongly
correlated. In the strong-coupling regime, the bosonic fields
<f>(x) get locked and a spin-gap opens. We further distinguish
between two phases, A, and A, depending on the sign of V.
The A, phase is obtained for V<0 and (®(x))=(0,0),

whereas the A, phase is stabilized for V>0 with (D(x))
—(\' 7/2,0). In both phases the low-energy spectrum is an
adiabatic deformation of that of the SU(3) GN model and
consists into three kinks (and antikinks) |w,) [n=(1,2,3)]
[15]. Under the SU(2) group acting on species (1,2), these

glet |ws) with masses and velocities (m,v;) and (m,,v ),
respectively. Although their wave functions are different in
the two phases, they are labeled by the same quantum num-
bers as those of the original lattice fermions cT We thus find
that the one- and two-particle excitations are fully gapped in
Ay - phases. As a consequence the equal-time Green’s
functions, G,(x)=(c],Cisxn)» are short ranged with
Gip)x)~ mn(kpc)e‘”‘””‘ﬁ d and G;(x) ~ sin(kpx)e v Lk,
Furthermore, defining P,,,(x)=(P{ P ) with PI

T T nLnm l+x nm T ’rl
=ci ¢f . we find Pp,(x)~e ikl and P31<2)(x) ~ eI

n lm’

so that neither the A nor the A, phase support BCS pairing
instabilities. The dominant fluctuations rather consist into
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2kr ADW with correlations N,,,(x)={p; ,0;s..») and trionic
excitations made of three fermions.

Atomic density waves and trions. In A, , phases, upon
integrating out the spin degrees of freedom, local density
operators (2) simplify as

p J®d —
pin~ L ,—”( Y A, sin2px + EA3000], (5)
a \N3ar

where the amplitudes A;=A,=A; and A;=A, are
nonuniversal functions of the couplings (U,V) and are in
general different. We thus find in both phases a power-law
decay for the ADW equal-time correlations functions:
N,y(x) ~p?+A,A,, cos(2kpx)|x|72K3.  However, the two
phases A, and A, distinguish themselves by the relative sign
of the amplitudes A,. Indeed, we find that in the A, phase
AjA | >0 and consequently that the 2k, ADWs of species
(1,2) are in phase with that of species 3. In contrast, in the
A, phase, we have A)A | <0 and the 2k ADWs of species
(1,2) are out of phase from that of species 3. On top of
these ADWs, Ay, phases support trionic excitations
made of three fermions with binding energy E,~m Lvi.
These excitations can also be distinguished in A, , phases
but in a weaker sense. In A, the dominant trions are
characterized by the equal-time correlation function
To(x) =(T§ To 140 ~ To sin(kpx) x| E*7KVewhich is quasi-
long-ranged. In A, the trionic wave function with maximal
ky amplitude is obtained when two atoms (1,2) at one lattice
site i bind antisymmetrically with the thlrd spec1es 3 at two
neighboring sites i—1 and i+1: T i=C lclz(c, 13— Cla1a)-
Its equal-time correlation functlon is given by T (x)
=(T%, T i) ~ T sin(kp)[x|"8+7K)6 5o that both symmet-
ric and antisymmetric trionic correlation functions always
display a power-law decay and only their amplitudes depend
on phases: |To|>|T,| in Ay and |T,|>|T,| in A,. The key
quantity that distinguishes between A, and .4, phases is thus
the relative sign of the 2k amplitudes Aj,A, of the local
ADWs (5). In this respect, when going from the A, to the
A, phase, a quantum phase transition (QPT) takes place on
the critical line V=0 where A; and A vanish and change
their relative signs. There are two different QPTs depending
on the sign of U. In the type-I transition with U>0, all
degrees of freedom become massless at the transition and the
critical theory consists of three decoupled LLs. In the type-II
transition for U<<0, a QPT occurs in the two-component LL
universality class where m;# 0 and only m | vanishes. In this
case, species 3 decouples from the two others which form
well-defined BCS pairs with quasi-long-range pairing corre-
lations Pj,(x) ~ |x|~%, with & being some nonuniversal expo-
nent.

Strong couplings and trionic-BCS transition. So far we
have neglected the spin-density coupling H,;,. At weak cou-
plings, when |\, |/27v;<<1, we find that the only effect of
H mix consists into a small renormalization of the low-energy
parameters and does not modify qualitatively the two-phase
structure discussed above. At larger couplings, when
[Nmix| /270> 1, the structure of the H,,;, term strongly sug-
gests that it may be responsible for a decoupling between the
pair (1,2) and species 3 leading, on top of A, phases, to
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FIG. 1. (Color online) DMRG results for (U/t,V/t)=(-4,-2)
and p=5/12 in the A, phase. Both one-particle Green’s functions
G, and BCS pairing correlations P, are short range, while trionic
correlations decay algebraically. Note that symmetric trions domi-
nate with |Ty|>|T,| and local densities of all species n;(x) are in
phase.

two additional phases: a BCS phase where atoms (1,2) bind
into pairs and even a fully gapless phase of three decoupled
LLs. In the limit of large attractive |U|/t>1 and repulsive
V/t>0, a trionic-BCS QPT occurs from an A, phase to a
decoupled BCS phase in the (1,2) channel at small enough
densities [16]. Apart from this case, the question of how do
the four phases Ay, A,, BCS, and LLs interpolate in the
strong coupling or low-density regime is a difficult problem
which requires a thorough numerical approach like DMRG
calculations.

Numerical simulations. In order to check the above theo-
retical predictions, we have performed extensive DMRG cal-
culations for various densities 1/12=p=5/12 and cou-
plings —4=U/t, V/t=4. Simulations are done on open
chains (up to 144 sites) keeping up to 1600 states. The com-
plete phase diagram will be published elsewhere [16] and we
only report here our main findings. At sufficiently large den-
sities and weak anisotropies the DMRG results strongly sup-
port the two-phase structure, A, and A, predicted by the
weak-coupling approach. As an example Figs. 1 and 2 show
our results for G,(x), P,,,(x), and T .(x), as well as the local
density profiles n,(x)=(p;,) for a density p=5/12 and typi-
cal values of the couplings in the A, and A, phases. At
small densities and larger anisotropies we observe a strong
tendency toward decoupling. For example, by lowering the
density at fixed couplings (U/t,V/t)=(-4,4), we find a QPT
toward a decoupled BCS phase in the (1,2) channel at den-
sities p<p,~1/4 [17].

General asymmetric model. We are now in a position to
discuss the general case where U;, # U, # Us;. The result-
ing phase diagram in the parameter space is rich and com-
plex and will be presented in details elsewhere [16]. It can be
shown that, at large length scales, the low-energy theory is
then equivalent to that of an effective (U, V) model. Since
there are three inequivalent ways to define such a model, we
find that, on top of the A phase, three inequivalent A _(n,m)
phases can be stabilized. The properties of each of these
phases follow from those discussed above for the case
(n,m)=(1,2) by a suitable permutation of the indices in the
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FIG. 2. (Color online) Same as Fig. 1 for (U/t,V/1)=(-4,2)
and p=5/12 in the A phase. The only difference in that case is that
antisymmetric trions dominate with || > |T,| and local densities 7,
and n, are out of phase with n5.

correlation functions. At large couplings and/or small densi-
ties, the system decouples and three BCS(n,m) phases can
be stabilized as well as a fully gapless decoupled LL phase.

Experimental realization. A stable mixture made of
a balanced population of three hyperfine states of
Li atoms, |F,mg)=|1)=|1/2,1/2), |2)=|1/2,-1/2), and
[3)=[3/2,-3/2), has been stabilized recently in an
optical dipole trap [11,18]. One may in principle further
load the atoms in a 3D optical lattice with potential
V(x,y,z)=s | Eg[sin?(kx)+sin?(ky)]+s,Eg sin*(kz), ~ where
51 4=Vo./Eg, Ex=1i*%*/2M being the recoil energy. A 1D
optical lattice in the z direction would then be further stabi-
lized by increasing the lattice potential to a high enough
value s, >s; and s, >1. Neglecting the harmonic potential
and for small enough scattering lengths a,,,, the low-energy
physics of such a system is captured by the fully
anisotropic Hubbard model (1) [12] with parameters
Upm=\8/ TER(s 1 5)*a1gmnla, and t=4/\wEg s7"e™2",
where a4, =a,,/[1-(C/\N2)(a,,/a,)] is the effective 1D
scattering length, a, =N/ 2’7TS11/4 is the transverse confine-
ment length, and C=1.4603 [19]. We show in Fig. 3 the
dependence of the ratio U,,,/t as a function of the external

10F
— U, /t A
sL | --- U/t 0
_____ 0t phase
31
0
5
5
I (1) S T —— *”"E/__</_// //,
A5z T |
L ‘ . ‘ ‘ ‘
300 400 500 600

magnetic field [G]

FIG. 3. (Color online) Effective Hubbard parameters U, as a
function of magnetic field. The cross indicates the critical field B,.
between Ay and A, (or BCS) phases.
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magnetic field B for typical optical lattice parameters
A=1 um, s, =20, and s;=4.

Using the one-loop RG approach discussed above and
large-scale DMRG calculations, we find the following phase
diagram, which is depicted in Fig. 3. An .4, phase with sym-
metric trions is stabilized independently of the density for
magnetic fields B<B,. Above B, and at large enough densi-
ties p an A (2,3) phase emerges. The latter phase is unstable
toward decoupling when decreasing the density below
p<<1/3. In the decoupled phase a BCS instability occurs
with pairs of atoms in states 2 and 3, with species 1 being
decoupled. The critical field is estimated with the help of RG
equations to be B.~563 G, a value which is consistent with
our numerical data. The numerical values of the trionic bind-
ing energy strongly depend on the phases. In A, they are
mostly independent of the density and only depend on B. For
example, we find trionic binding energies Ej/kz~2600 nK
for B=320 G and E,/kz~ 100 nK for B=553 G at all den-
sities. In the A,(2,3) phase (i.e., B>B, and p>1/3), we
find that the trionic binding energies are small (typically
E,/kp<30 nK). In the decoupled case (i.e., p=1/6 and
B>B,), we estimate the BCS gap to be on the order of 100
nK. The different phases discussed above may be probed in
experiments [10,20] by measuring, with absorption imaging
and via a series of magnetic field ramps, the average num-
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bers of paired atoms (n,m) relative to the noninteracting
theory: N,,,,=1/L[$dx[{p,(x)p,,(x))—p*]. In a decoupled
BCS phase with pairs in the (n,m) channel and decoupled
species p, the number of bound pairs (n,m) is macroscopic
and one finds that, in the limit of large sample size L,
N, .70 whereas N,, ,=N,,=0. In both trionic phases all
atoms are bound into pairs and N, ,#0, N, ,#0, and
N,,#0. Although in the A, phase all N, ,’s are positive
reflecting the presence of symmetrical trions lying on the
same lattice site, in the A (n,m) phases we find N, ,,> 0 but
N, , <0 as well as N, , <0 reflecting the fact that the atoms
of species p lie on neighboring sites where the pairs (n,m)
sit. In addition, there remains to discuss the effect of the
three-body losses [11] which will reduce the lifetime of the
trionic A, phase, but are expected to have little effect on the
A, or BCS phases. Therefore, provided that the temperature
is low enough, current available experiments could achieve a
BCS pairing instability in the (2,3) channel at small density
or a A_(2,3) phase for larger densities.
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