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We present a combined experimental and theoretical study of angular momentum depolarization in cold
collisions of 2P atoms in the presence of an external magnetic field. We show that collision-induced Zeeman
relaxation of Ga�2P1/2� and In�2P1/2� atoms in cold 4He gas is dramatically suppressed compared to atoms in
2P3/2 states. Using rigorous quantum-scattering calculations based on ab initio interaction potentials, we
demonstrate that Zeeman transitions in collisions of atoms in 2P1/2 electronic states occur via couplings to the
2P3/2 state induced by the anisotropy of the interaction potential. Our results suggest the feasibility of sympa-
thetic cooling and magnetic trapping of 2P1/2-state atoms, such as halogens, thereby opening up exciting areas
of research in precision spectroscopy and cold-controlled chemistry.
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For over a decade, ultracold atomic gases have served as
a unique platform for exploring new states of matter �1�,
implementing scalable algorithms for quantum information
processing �2�, and simulating quantum condensed-matter
systems �3�. Although most of the research focused on the
alkali-metal atoms, there has been growing interest in cool-
ing and trapping of the alkali-earth and rare-earth atoms �4�,
transition metals �5�, and nonmetals �6�. Ultracold samples
of these elements offer a wealth of research applications,
ranging from ultraprecise atomic clocks �4� to studies of di-
polar quantum matter �7� to novel ideas for quantum infor-
mation processing �8�. Whether or not these ideas will be
realized in experiments depends on the availability of effi-
cient methods for cooling and trapping of non-S-state atoms.

The experimental technique of buffer gas cooling relies
on elastic collisions with cryogenic He gas to cool paramag-
netic atoms to temperatures below 1 K and load them in a
permanent magnetic trap �5,6�. The atoms are confined in
low-field-seeking Zeeman states, which are intrinsically un-
stable and may undergo Zeeman relaxation in collisions with
background He atoms, causing trap loss. The lifetime of
trapped atoms is determined by the ratio � of the cross sec-
tions for elastic and inelastic collisions. The ratio must be
large enough ���104� to allow for efficient cryogenic cool-
ing and trap loading. The detrimental inelastic collisions oc-
cur due to couplings between different Zeeman levels in-
duced by the anisotropy of the interaction potential between
the atoms �9–11�. Previous experimental and theoretical
work has shown that anisotropic interactions in collisions of
P-state atoms, such as Ca�3P2� or Yb�3P2�, are strong
���1�, leading to the belief that sympathetic cooling of
non-S-state atoms in a magnetic trap would not be successful
�10,12�.

Here, we present a joint experimental and theoretical
study of low-temperature collisions of Ga and In atoms in a
magnetic field. We find that inelastic transitions in collisions
of 2P1/2 atoms with 4He are dramatically suppressed. Using
rigorous quantum calculations based on ab initio interaction

potentials, we show that the suppression is common to all
2P1/2 atoms. Our results suggest the possibility for sympa-
thetic cooling and magnetic trapping of 2P1/2 atoms, with
potential applications in precision spectroscopy, quantum op-
tics, and cold-controlled chemistry �13�.

Our experimental apparatus is similar to that described in
Ref. �14�. Ga�In� atoms are produced by laser ablation of
Ga-Cu alloy �In metal� targets, and subsequently cooled to a
translational temperature of 5 K with a cryogenic 4He
buffer gas. Laser absorption spectroscopy on the
�ns2np�2P1/2

� → �ns2�n+1�s�2S1/2 transitions at 410 and 403
nm is used to state-selectively monitor the ground fine-
structure-state populations of In and Ga, respectively �15�. A
typical spectrum of atomic Ga is shown in Fig. 1�a�. The low
translational temperature allows us to spectrally resolve the
isotopes and hyperfine states. By measuring the diffusion
lifetime as a function of helium density, we determine the
thermally averaged diffusion cross section of Ga to be
�7.5�2.0��10−15 cm2 and of In �9.1�2.5��10−15 cm2.

To measure inelastic collisions, the internal-state distribu-
tion of the atoms is perturbed by optical pumping on the
same transitions as used for absorption spectroscopy �16�. By
monitoring the return of the atomic population to equilib-
rium, we determine the rates for F-changing and J-changing
transitions in 69Ga-4He collisions, where J is the total angu-
lar momentum F of the atom exclusive of nuclear spin I
�IGa=3 /2 and IIn=9 /2�, and we obtain upper bounds to the
relaxation rates for 115In-4He collisions.

Figure 1�b� shows the time dependence of the optical den-
sity for 69Ga atoms in the J=1 /2, F=2 hyperfine state.
Prior to the pump pulse, there is no measurable polarization
in the atoms. After pumping a large polarization is induced,
as indicated by the relative absorption of �+ and �− light.
This polarization decays over time. By fitting the difference
in the optical densities to the functional form e−t/� and repeat-
ing this measurement over a range of helium densities n, we
determine the effective m-changing rate coefficient from
nkm=1 /�. The dependence of � on the helium density indi-
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cated the presence of additional relaxation mechanisms, and
so we could only place upper limits on the m-changing rates
listed in Table I.

After optical pumping, as shown in Fig. 1�b�, the overall
population in the pumped hyperfine state is reduced. This
population returns to equilibrium on a time scale longer than
is shown in Fig. 1. By fitting the return to equilibrium to an
exponential function, we find time constants TF and TJ for
F-changing and J-changing collisions. We can distinguish

the two processes by monitoring the population of both hy-
perfine states in the J=1 /2 manifold. To determine the rate
coefficients k, we measure these rates over a range of n, as
shown in Fig. 2, and fit our data to the form 1 /�=kn+C /n,
where the term C /n accounts for the diffusion of atoms in
and out of the probe beam.

In order to interpret the experimental observations, we
extended the quantum-scattering formalism of Ref. �11� to
describe collisions of 2P atoms with nonzero nuclear spins.
The Hamiltonian of the M�2P�-He collision complex may be
written in atomic units as �11�

Ĥ = −
1

2	R

�2

�R2R +
�̂2

2	R2 + ĤM + V̂�R,r� + �A�R� − ASO�L̂ · Ŝ ,

�1�

where 	 is the reduced mass of the complex, �̂ is the orbital
angular momentum for the collision, A�R� is the spin-orbit

�SO� constant of the M-He complex, and V̂�R ,r� is the atom-
atom interaction potential as a function of interatomic sepa-
ration �R� and electronic coordinates �r�. The Hamiltonian of
the isolated atom M in a magnetic field is

ĤM = ASOL̂ · Ŝ + aJÎ · Ĵ + 2bJÎ · Ĵ�2Î · Ĵ + 1� + 	0B�L̂z + 2Ŝz�

− B
	I

I
Îz, �2�

where L̂ is the electronic orbital angular momentum and

Ŝ is the electron spin. The SO, Fermi hyperfine, and
nuclear electric quadrupole interactions are parametrized by
the constants ASO=2
 /3, aJ, and bJ �17–19�, where 
 is the
atomic SO splitting �see Table II�. The interaction of the
atom with a magnetic field of strength B is given by

	0B�L̂z+2Ŝz�−B
	I

I Îz, where 	0 is the Bohr magneton and 	I
is the nuclear magnetic moment. We expand the wave func-
tion of the collision complex in the uncoupled basis
�JmJ��ImI���m��, where mJ, mI, and m� are the projections of

Ĵ, Î, and �̂ on the magnetic field axis. Inserting the expansion
into Eq. �1� leads to a system of close-coupled differential
equations, which we solve to obtain the probabilities for
collision-induced Zeeman transitions �JFm�→ �J�F�m��,

TABLE I. Experimental and theoretical rate constants
for Zeeman relaxation of 69Ga and 115In atoms in the
�J=1 /2,F=J+ I ,m=F� hyperfine states by collisions with 4He at
T=5 K and B=3 G �in units of 10−17 cm3 /s�. Also shown are the
ratios of the rate constants for diffusion and inelastic relaxation �.
The values in parentheses are calculated with the interaction aniso-
tropy multiplied by 1.2.

Atom Ga In

Rate constant Exp. Theory Exp. Theory

km �300 0.8 �2.3� �50 3.8

kF 5.3�1.3 2.3 �6.6� �2.3�1.4 0.1

kJ 1.0�0.3 0.03 �1.3� �8 0.0004
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FIG. 1. �Color online� �a� Absorption spectrum of 69Ga�2P1/2
� �.

The peaks are labeled according to their isotope and hyperfine tran-
sitions. �b� Optical density of 69Ga as observed by �+ and �− probe
beams on the F=2→1 transition at a helium density of
6.4�1016 cm−3 and a bias field of 3 G. The ablation laser fires at
t=0 and a strong �+ pump beam is turned on for 1 ms at
t=0.55 s. Also shown is the optical density in the absence of opti-
cal pumping; its level is renormalized to compensate for shot-to-
shot inconsistencies in ablation yield.
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FIG. 2. �Color online� Measured 69Ga F- and J-relaxation rates
1 /� for different 4He densities.
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where m=mJ+mI. We identify three main contributions to
the total Zeeman relaxation rate arising from the m-changing
�
J=
F=0�, F-changing �
J=0�, and J-changing �
J�0�
transitions. The matrix elements of the interaction potential
in Eq. �1� are �11�

�JmJ��ImI���m��V̂�R,r��J�mJ���ImI�����m���

= �mImI�
�− �S+J+J�−mJ−m����2L + 1��2L + 1��2J + 1��2J� + 1�

��2� + 1��2�� + 1��1/2 	

=0,2

V
�R�
 L J S

J� L 

�

�� J 
 J�

− mJ mJ − mJ� mJ�

� � 
 ��

− m� m� − m�� m��



��L 
 L

0 0 0

�� 
 ��

0 0 0

 , �3�

where the symbols in parentheses and figure brackets are
3− j and 6− j symbols, and V
’s are the isotropic �V0� and
anisotropic �V2� parts of the interaction potential of the
M�2P�-He complex �11�.

To evaluate the interaction potentials, we used the coupled
cluster method with single, double, and noniterative triple
excitations as implemented in the MOLPRO suite of programs
�20�. For Ga and In, we employed relativistic effective core
pseudopotentials �21� in combination with extended
correlation-consistent aug-cc-pV5Z �AV5Z� basis sets �22�,
augmented with diffuse functions �spdfgh�. For He, we used
a doubly augmented AV5Z basis of similar quality �23�. An
additional set of basis functions �3s3p2d2f1g� was placed at
the midpoint of the M-He bond �24�, and the full counter-
poise correction procedure was applied to eliminate the basis
set superposition error. The SO constants A�R� were evalu-
ated using the multireference configuration-interaction
method.

The cross sections for collision-induced Zeeman relax-
ation of Ga and In atoms in fully spin-polarized states
�J ,F=J+ I ,m=F� are plotted in Fig. 3 as functions of colli-
sion energy. The inelastic relaxation of atoms in 2P3/2 states
proceeds almost entirely via J-conserving transitions, which
occur at a large rate comparable to that for elastic energy
transfer �10�. In contrast, Zeeman transitions in collisions of

2P1/2-state Ga and In atoms are strongly suppressed over a
wide range of collision energies. Table I presents the calcu-
lated and measured rate constants for Zeeman relaxation of
Ga and In atoms in a buffer gas of 4He at T=5 K. Although
the calculated m-changing rates are consistent with the mea-
sured upper bounds for both Ga-4He and In-4He, the theo-
retical rates for F-changing and J-changing transitions for
Ga-4He are too small, which indicates that our ab initio cal-
culations may underestimate the Ga-He interaction aniso-
tropy. Table I shows that the increase in the interaction an-
isotropy leads to quantitative agreement of both F-changing
and J-changing rates with experimental measurements. The
calculated elastic-to-inelastic ratios � are large and consistent
with the measured lower bounds. Thus, both experiment and
theory suggest that cryogenic cooling and magnetic trapping
of Ga and In atoms at buffer gas densities n�1015 cm−3

would be efficient.
An analysis of Eq. �3� shows that Zeeman transitions in

collisions of 2P atoms occur due to couplings between dif-
ferent mJ levels induced by the anisotropic part of the inter-
action potential �11�. Because the first 3− j symbol in Eq. �3�
vanishes for J=J�=1 /2, different Zeeman states within the
J=1 /2 manifold are not coupled. In contrast, the levels
within the J=3 /2 manifold and those in different J manifolds
are directly coupled by the anisotropy of the interaction po-
tential. As a result, Zeeman relaxation in collisions of 2P1/2
atoms occurs indirectly via couplings to the 2P3/2-excited
state. As shown in Fig. 3, this process slows down dramati-

TABLE II. The calculated ratios of the rate constants for elastic
scattering and Zeeman relaxation in collisions of Al, Ga, In, and
halogen atoms with 3He at T=0.5 K and B=0.5 T.

Atom



�cm−1� ��J=1 /2� ��J=3 /2�

F 404.14 1.9�102 4.7

Cl 882.35 5.0�104 2.7

Br 3685.24 1.3�108 3.0

I 7603.15 1.6�109 3.0

Al 112.06 7.0�103 2.4

Ga 826.19 4.1�106 33.0

In 2212.60 4.6�107 15.1
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FIG. 3. �Color online� The cross sections for m-changing ��m�
and F-changing ��F� transitions in M�2P1/2�-4He collisions with �a�
M = 69Ga and �b� 115In calculated as functions of collision energy at
a magnetic field of 3 G. Also shown are the cross sections for
collision-induced Zeeman relaxation of 2P3/2 atoms defined as
�ZR=�m+�F+�J, where �J is the cross section for the transition
J=3 /2→J=1 /2.
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cally with an increase in the energy separation between the
2P1/2 and 2P3/2 terms �test calculations for Ga-4He show that
km�ASO

−4.5�. For atoms colliding in 2P3/2 states, direct cou-
plings of different mJ levels lead to large relaxation rates,
which are insensitive to the SO splitting. This result may be
qualitatively explained as follows. The electron-density dis-
tribution of atoms in 2P1/2 electronic states is spherically
symmetric and that of 2P3/2 atoms is not. The interaction
with the He atom couples the two fine-structure states and
distorts the spherical symmetry of the 2P1/2 state, leading to
Zeeman relaxation. This is different for atoms in J�1 /2
states, which undergo Zeeman relaxation through direct cou-
plings within a single fine-structure state.

To determine whether the observed suppression of inelas-
tic collisions occurs for other 2P1/2 atoms, we extended our
scattering calculations to include the halogen atoms in both
the ground �J=3 /2� and metastable �J=1 /2� electronic states
using the ab initio interaction potentials from Ref. �25�.
Table II shows that elastic-to-inelastic ratios for collisions of
spin-polarized Al, Ga, In, and metastable halogen atoms with
3He are large even in the presence of a strong magnetic field.

In summary, we have presented evidence for low Zeeman
relaxation rates in cold collisions of Ga�2P1/2� and In�2P1/2�
atoms with both isotopes of He in a magnetic field. We hope
that our results will stimulate research in heretofore unex-

plored areas of atomic, molecular, and chemical physics. In
particular, Eq. �3� shows that inelastic collisions of 2P1/2 at-
oms with spin-polarized S-state atoms may be similarly sup-
pressed if the atom-atom interaction anisotropy is weak com-
pared to the SO splitting. This suggests that sympathetic
cooling of 2P1/2 atoms with alkali-metal atoms in a magnetic
trap may be within reach. Cooling and trapping of heavy
2P1/2 atoms �such as Tl� may enhance the sensitivity of spec-
troscopic experiments to measure the electric dipole moment
of the electron �26�. An experimental study of cold chemical
reactions involving halogen atoms would greatly increase the
scope of ultracold chemistry �13� and possibly lead to the
realization of the external field control of chemical reactivity
at low temperatures.
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