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The two-loop self-energy correction to the ground-state Lamb shift is calculated for hydrogenlike ions with
the nuclear charge Z=10–30 without any expansion in the binding field of the nucleus. A calculational
technique is reported for treatment of Feynman diagrams in the mixed coordinate-momentum representation,
which yields significant improvement in numerical accuracy as compared to previous results. An extrapolation
of the all-order numerical data yields a result for the higher-order remainder function for hydrogen. The
previously reported disagreement between the all-order and the perturbative approaches is reduced to the
marginal agreement.
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Calculations of the two-loop QED corrections to all or-
ders in the binding-strength parameter of the nucleus Z� �Z
is the nuclear charge and � is the fine structure constant�
were motivated almost two decades ago by progress in the
experimental spectroscopy of heavy lithiumlike ions �1�. To
date, experimental investigations of the 2pJ-2s transitions in
high- and medium-Z lithiumlike ions are sensitive to the two-
loop QED effects on the level of about 10% �2,3�. All-order
calculations of the two-loop Lamb shift were recently ac-
complished in Ref. �4� for high-Z hydrogenlike ions and in
Ref. �5� for high-Z lithiumlike ions.

The ratio of the QED effects to the binding energy scales
as Z2 so that the relative QED contribution gets smaller for
lighter ions. However, the experimental precision is also bet-
ter there and the two-loop QED effects in light systems have
long being observed. The best studied case is atomic hydro-
gen, whose spectroscopy is nowadays carried out with an
accuracy of a few parts in 1014 �6�.

Until recently, calculations of the QED effects in hydro-
gen relied on the approach perturbative in the binding-
strength parameter Z�. Technical difficulties of this ap-
proach, however, grow rapidly with the increase in the order
of the perturbative expansion. The state of the art of such
calculations is the evaluation of the dominant part of the
�2 �Z��6 correction �7–9�. An alternative way is to perform a
numerical calculation to all orders in Z� and to identify the
higher-order remainder by subtracting the known low-order
terms from the all-order results. The problems on this way
are, first, significant internal cancellations in numerical cal-
culations, which grow as Z decreases, and second, additional
losses of accuracy occurring when the higher-order remain-
der is inferred from the all-order results.

The first attempt at the evaluation of the all-order two-
loop remainder for the ground state of hydrogen was made in
Ref. �10�. In that work, a numerical calculation of the two-
loop self-energy correction was reported for Z�10. This cor-
rection is expected to give the dominant contribution to the
two-loop remainder. An extrapolation toward Z=1 per-
formed in Ref. �10� yielded a result approximately twice as
large as the estimate based on the analytical calculations �8�.
This disagreement is presently the main source of the theo-
retical uncertainty of the ground-state Lamb shift in hydro-
gen and influences the values of the Rydberg constant and

the proton charge radius obtained from the hydrogen spec-
troscopic data �11�.

This investigation presents an attempt to resolve the dis-
agreement between the numerical and analytical approaches
by improving the calculational accuracy of the all-order re-
sults. To this end, we develop a scheme for the evaluation of
Feynman diagrams in the mixed coordinate-momentum rep-
resentation �the corresponding part of the two-loop self-
energy is conventionally termed as the P term�. This is the
most nontrivial part of the evaluation of the two-loop self-
energy correction as it has no analog in the one-loop calcu-
lations.

For the first time the P term was calculated in Ref. �12�
with help of a finite basis set representation of the spectrum
of the Dirac equation. Later investigations �4,5,10� pro-
ceeded along the same way with adopting an improved �dual
kinetically balanced� basis set �13�. The main problem of the
basis-set approach is a relatively slow convergence with re-
spect to the number of basis functions. In order to overcome
this limitation, in this work we employ the analytical repre-
sentation of the Dirac-Coulomb Green’s function �DCGF� in
terms of the Whittaker functions. As a result, the numerical
accuracy of the P term is improved by more than an order of
magnitude, the error now being mainly due to the termina-
tion of the partial-wave expansion.

In the present investigation, we perform a reevaluation of
the two-loop self-energy correction for the ground state of
hydrogenlike ions with the nuclear charge numbers in the
interval Z=10–30. The calculation of the P term is carried
out with the technique developed in this work. The other
parts of the correction are evaluated by the methods de-
scribed previously �14� but with the increased number of
partial waves included and with denser integration grids.
The nonperturbative remainder incorporating terms of order
�2 �Z��6 and higher is inferred from the numerical results
and extrapolated toward Z=0 and Z=1.

The two-loop self-energy correction is shown in Fig. 1. In
this work, we concentrate on the part of the correction that is
treated in the mixed coordinate-momentum representation
and is referred to as the P term. The corresponding Feynman
diagrams are shown in Fig. 2. They arise from the diagrams
in Fig. 1 when the bound-electron propagators are expanded
in terms of the interaction with the binding field. The distinct
feature of the diagrams contributing to the P term is that
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ultraviolet divergences in them originate from the one-loop
subgraphs only. These subgraphs are covariantly regularized
and calculated in the momentum space, whereas the remain-
ing part of the diagrams does not need any regularization and
is treated in the coordinate space.

In order to illustrate the calculational technique used for
the evaluation of the P term, we consider one of the simplest
diagrams in Fig. 2, graph �b�. Its contribution can be written
as

�EN1b,P = 4i��
CF

d�� dp

�2��3� dx1dx4D��,x14�

� �a
†�x1����GV�E,x1,p� − GV

�0��E,x1,p��

�
1

	0E − � · p − m

R

�0��E,p�G�0��E,p,x4�

� ���a�x4� , �1�

where E=�a−�, �a is the reference-state energy, D�� ,x14� is
the scalar part of the photon propagator in the Feynman
gauge defined by D���� ,x14��g��D�� ,x14�, 
R

�0� is the
renormalized free self-energy operator �see, e.g., Ref. �14�
for its definition and evaluation�, GV�� ,x1 ,p� is the Fourier
transform of the product of the DCGF G�� ,x1 ,x2� and the
Coulomb potential VC,

GV��,x1,p� =� dx2eip·x2G��,x1,x2�VC�x2� , �2�

the function GV
�0� is given by an analogous expression with

the DCGF substituted by the free Dirac Green’s function
G�0�, and G�0��E ,p ,x4� is the Fourier transform of the free
Dirac Green’s function.

The main problem of the evaluation of Eq. �1� is the ab-
sence of a convenient representation for the function
GV�� ,x1 ,p�. Because of this, we have to start with the
coordinate-space representation of the Green’s function and
perform the Fourier transformation numerically. The DCGF

is known in terms of the partial-wave expansion over the
relativistic angular parameter , with the radial part given by
�15�

G��,x1,x2� =�− �
0��,x1��

�T
��,x2� , for x1 � x2

− �
���,x1��

0T
��,x2� , for x2 � x1,

�
�3�

where �
0 and �

� are the two-component solutions of the
radial Dirac equation regular at the origin and at the infinity,
respectively, and normalized in such a way that their
Wronskian is unity. The radial part of the Fourier transform
of the DCGF over the second radial variable can be repre-
sented as

G��,x1,p� = − �
���,x1��

0T
��,p;x1� − �

0��,x1��
�T

��,p;x1� ,

�4�

with
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and

�
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dx2x2
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where �,�
0 and �,�

� denote the upper and lower compo-

nents of �
0 and �

�, respectively, l= 
+1 /2
−1 /2 and l̄
= 
−1 /2
−1 /2.

The integration over x2 in the functions ��� , p ;x1� has to
be performed numerically. The problems here are that �i� the
integration interval depends on x1 and �ii� the integrand con-
tains the spherical Bessel function which oscillates rapidly in
the high-momenta region. Clearly, a straightforward use of
Eqs. �5� and �6� would lead to a re-evaluation of the integral
for each new value of x1, making the calculation prohibi-
tively expensive. One can observe, however, that if the func-
tion ��� , p ;x� is known for a particular set of �, p, and x,
then the evaluation of ��� , p ;x�� can be done by computing
the Bessel transform integral over the interval �x ,x�� only.
So, introducing an ordered radial grid �xi, one can store the
set of values ���� , p ;xi� by performing just one Bessel
transform over the interval �0,��. This shows that for a fixed
values of � and p, the integration over x1 can be performed
without a recalculation of the Bessel transform integral. Still,
the evaluation of the functions �k was one of the most prob-
lematic parts of the computation since a controllable accu-
racy was required for momenta as high as p=106.

The next problem to be solved in the numerical evaluation
of Eq. �1� is that the free Dirac Green’s function
G�0��E ,p ,x4� contains a spherical Bessel function jL�px4�
and thus is highly oscillating too in the high-momenta re-
gion. It can be observed that the radial integration over x4
resembles the Bessel transform integral over x2 and so can be

FIG. 1. The two-loop self-energy correction. The double line
represents the electron propagator in the Coulomb binding field of
the nucleus.

� �

(a) (b) (c)

� �

(d) (e)

FIG. 2. The P term. The single line represents the free electron
propagator. The dashed line with a cross indicates the interaction
with the Coulomb field of the nucleus.
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efficiently calculated by introducing analogs of the functions
�k. Details of the numerical procedure will be published
elsewhere.

The results of our numerical evaluation of the two-loop
self-energy correction to the ground-state Lamb shift of
middle-Z hydrogenlike ions are presented in Table I. They
are consistent with but improve upon the data obtained pre-
viously �10,16�.

In the present investigation we are concerned with the
higher-order remainder function that incorporates contribu-
tions of all orders starting with �2�Z��6 and is denoted as
GSESE

h.o. . It is obtained from the two-loop self-energy correc-
tion �ESESE by separating out the first terms of its Z� expan-
sion,

�ESESE = m��

�
�2

�Z��4�B40 + �Z��B50 + �Z��2

��L3B63 + L2B62 + LB61 + GSESE
h.o. �Z�� , �7�

where L� ln��Z��−2� and the expansion of the remainder
starts with a constant, GSESE

h.o. �Z�=B60+Z�� . . . �. The results
for the expansion coefficients �see Refs. �7–9,11� and
references therein� are: B40=1.409244, B50=−24.2668�31�,
B63=−8 /27, B62=16 /27− �16 /9�ln 2, B61=48.388913, and
B60=−61.6�9.2�. The remainder function inferred from our
numerical results is plotted in Fig. 3.

In order to obtain a value of the remainder function for
hydrogen, we have to extrapolate the numerical data ob-
tained for Z�10. For this we use a variant of the procedure
first employed in Ref. �17�. The extrapolation toward the
required value of Z=Z0 �=0 and 1 in our case� is performed
in two steps. First, we apply an �exact� linear fit to each pair
of two consecutive points from our data set and store the
resulting values at Z=Z0. Second, we perform a global para-
bolic least-squares fit to the set of data obtained on the first
step and take the fitted value at Z=Z0 as a final result. Simi-
lar procedure applied to the determination of the B50 coeffi-
cient reproduces the known analytical result with the accu-
racy of about 1%. For comparison, a global polynomial fit
yields a result for the B50 coefficient accurate within 5%
only.

When applied to the remainder function GSESE
h.o. �Z�, the ex-

trapolation procedure described above gives

GSESE
h.o. �Z = 0� � B60 = − 84�15� , �8�

GSESE
h.o. �Z = 1� = − 86�15� . �9�

The extrapolated value for Z=1 �Eq. �9�� is higher than but
marginally consistent with the 2005 result of −127�42� �10�.
The shift of the central value is due to two reasons. First, the
analytical result for the B61 coefficient was recently changed
by �B61=−1.4494. . . �9�, thus pushing the higher-remainder
higher up. Second, the improved numerical accuracy of the
present calculation and the increased number of data points
allowed us to identify the upward trend in the numerical
data, which influenced the extrapolated values considerably.
A result of this improvement is that the difference between
the previous numerical result of −127�42� and the analytical
value of B60=−62�9� �8� is now significantly reduced. The
present result for Z=0 �Eq. �8�� is consistent �but still not in
perfect agreement� with the analytical value.

Finally, we account for the contribution from the diagrams
with closed fermion loops calculated recently in Ref. �18�.
The total value of the remainder function for hydrogen is

Gh.o.�Z = 1� = − 86�15� − 15�2� = − 101�15� . �10�

To conclude, the present investigation reports a technique

TABLE I. The two-loop self-energy correction for the ground state of hydrogenlike ions, in units of
�E / �m�2�Z��4 /�2�. “LAL” denotes the loop-after-loop correction. Definitions and detailed description of
individual contributions can be found in Ref. �14�.

Z LAL F term P term M term Total 2005 results �10�

10 −0.358 822.138�5� −721.311�6� −100.297�35� 0.172�36� 0.25�16�
12 −0.417 519.603�2� −439.065�6� −80.117�38� 0.004�38�
15 −0.495 292.901�2� −235.211�4� −57.406�11� −0.212�12� −0.164�85�
17 −0.541 211.052�1� −164.280�3� −46.567�9� −0.336�10�
20 −0.602 136.909�1� −102.029�2� −34.780�4� −0.501�5� −0.481�58�
25 −0.686 74.501�1� −51.982�2� −22.560�6� −0.728�6�
30 −0.756 44.728�1� −29.414�3� −15.468�3� −0.910�5� −0.903�26�
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FIG. 3. The higher-order remainder function of the two-loop
self-energy correction. The cross on the y axis indicates the analyti-
cal result.
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for the evaluation of Feynman diagrams in the mixed
coordinate-momentum representation, which allows one to
significantly improve the numerical accuracy. A complete re-
calculation of the diagrams of the two-loop self-energy is
presented for the ground state of hydrogenlike ions with the
nuclear charge number Z=10–30. The higher-order �in Z��
remainder function is inferred from numerical all-order re-

sults and extrapolated toward Z=0 and 1. The extrapolated
value of the higher-order remainder function is in marginal
agreement with the analytical result obtained within the per-
turbative approach.

The work reported in this Rapid Communication was sup-
ported by the “Dynasty” foundation.
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