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Recently, the principle of information causality has appeared as a good candidate for an information-
theoretic principle that would single out quantum correlations among more general nonsignaling models. Here,
we present results going in this direction, namely, we show that part of the boundary of quantum correlations
actually emerges from information causality.
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I. INTRODUCTION

Nonlocality is a central feature of quantum mechanics
�QM� and a powerful resource for processing information.
However, as Tsirelson �1� first proved, the amount of nonlo-
cality allowed by QM is limited. In a seminal paper, Popescu
and Rohrlich �PR� �2� showed that this limitation is not a
consequence of relativity. Indeed, there exist theories which
are more nonlocal than QM yet do not allow for superlumi-
nal signaling. Identifying the physical principles underlying
the limits to quantum nonlocality is now a central problem in
foundational QM.

Recently, several works have studied the physical and
information-theoretic properties of general nonsignaling
models. Surprisingly, it appears that these models have nu-
merous properties in common with QM, such as no-cloning
�3,4�, no-broadcasting �5�, monogamy of correlations �3�,
and information-disturbance trade-offs �6�. General nonsig-
naling models also allow for secure key distribution �7,8� as
well as quantumlike dynamical processes �9�. Therefore,
none of these properties, usually thought of as being typi-
cally quantum, are useful for separating quantum from
postquantum correlations.

On the other hand, it is known that some particular
postquantum correlations have extremely powerful commu-
nication properties. For instance, the availability of PR
boxes—the paradigmatic example of postquantum
correlations—makes communication complexity trivial �10�.
However, communication complexity is not trivial in QM
�11�, and it is strongly believed not to be trivial in nature.
Therefore, correlations which collapse communication com-
plexity, such as PR box correlations, appear unlikely to exist.
More recently, a similar conclusion has been shown to hold
for two classes of noisy PR boxes �12,13�. However, there is
a large class of postquantum correlations for which it is still
unknown whether communication complexity collapses or
not.

In parallel, nonlocality has also been studied from the
point of view of nonlocal computation �14�. Remarkably,

here Tsirelson’s bound �of quantum nonlocality� naturally ap-
pears since all postquantum correlations violating this bound
offer an advantage over classical and quantum correlations.
It is also known that part of the quantum boundary emerges
from nonlocality swapping �9,15� �an analog of entangle-
ment swapping�, although the origin of this connection is
still not understood. Finally Tsirelson’s bound also appears in
theories with relaxed uncertainty relations �16�.

More recently, Pawlowski et al. �17� introduced a new
physical principle, the principle of information causality
�IC�, which is satisfied by both classical and quantum corre-
lations. The essence of IC is that the communication of m
classical bits can cause a potential information gain of at
most m bits. As is the case for nonlocal computation, Tsirel-
son’s bound naturally emerges since all correlations exceed-
ing Tsirelson’s bound violate the principle of IC. Therefore,
IC is a potential candidate for separating quantum from
postquantum correlations. However, Tsirelson’s bound iden-
tifies only one point on the boundary of the set of quantum
correlations. There are also postquantum correlations which
lie below Tsirelson’s bound. Thus, while the emergence of
Tsirelson’s bound from IC is a remarkable feature, it is not
sufficient for singling out quantum correlations. More gener-
ally, one aims at finding a principle underlying the full quan-
tum boundary.

In the present Rapid Communication, we show that part
of the quantum boundary actually emerges from IC. More
precisely, we show that in two two-dimensional slices of the
binary-input–binary-output nonsignaling polytope, the IC
criterion analytically coincides with the quantum boundary.

The organization of the Rapid Communication is the fol-
lowing. In Sec. II we review the geometrical approach to
nonsignaling correlations, while in Sec. III we review IC. In
Sec. IV, we study the link between IC and the quantum
boundary.

II. GEOMETRY OF NONSIGNALING BOXES

It will be convenient to describe bipartite nonsignaling
correlations in terms of black boxes shared between two par-
ties: Alice and Bob. Alice and Bob input variables x and y at*jon.allcock@bristol.ac.uk
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their ends of the box, respectively, and receive outputs a and
b. The behavior of a given correlation box is fully described
by a set of joint probabilities P�ab �xy�. We focus on the case
of binary inputs and outputs �a ,b ,x ,y� �0,1��, for which

P�ab�xy� = 1
4 �1 + �− 1�aCx + �− 1�bCy + �− 1�a�bCxy� ,

where � is addition modulo 2, the correlators are given by
Cxy =�a�=b�P�a�b� �xy�−�a��b�P�a�b� �xy�, and the margin-
als are given by Cx=�b��P�0b� �x0�− P�1,b� �x0�� and
Cy =�a��P�a�0 �0y�− P�a�1 �0y��. In this case, which corre-
sponds to the famous Clauser-Horne-Shimony-Holt �CHSH�
�18� scenario, the full set of nonsignaling boxes forms an
eight-dimensional polytope �19� which has 24 vertices: eight
extremal nonlocal boxes and 16 local deterministic boxes.
The extremal nonlocal correlations have the form

PNL
����ab�xy� = 	 1

2 if a � b = xy � �x � �y � �

0 otherwise,



where � ,� ,�� �0,1� and the canonical PR box corresponds
to PR= PNL

000. Similarly, the local deterministic boxes are de-
scribed by

PL
�����ab�xy� = 	1 if a = �x � �, b = �y � �

0 otherwise.



The set of local boxes forms a subpolytope of the full non-
signaling polytope and has facets which correspond to Bell
inequalities—here, the CHSH inequality

C00 + C01 + C10 − C11 � 2, �1�

and its symmetries. Note that there are eight symmetries of
the CHSH inequality �any odd number of terms on the left-
hand side of �1� can have a minus sign�, and that each CHSH
inequality is violated by one of the extremal nonlocal boxes.

The set of quantum boxes, i.e., correlations obtainable by
performing local measurements on a quantum state �of any
dimension�, is sandwiched between the local polytope and
the full nonsignaling polytope. In particular, quantum corre-
lations satisfy a variant of inequality �1�, where the right-
hand side is replaced with 2�2, a value known as Tsirelson’s
bound. The quantum set is a convex body, although it is not
a polytope. Thus, its boundary is described by a smooth
curve. For binary inputs and outputs, Tsirelson, Landau, and
Masanes �TLM� �20� �independently� derived a necessary
and sufficient criterion for a set of correlators Cxy to admit a
quantum description. In the form of Landau, Cxy must satisfy

�C00C10 − C01C11� � �
j=0,1

��1 − C0j
2 ��1 − C1j

2 � . �2�

However, when considering the full probability distribution
�including the marginals�, this criterion remains necessary
but is no longer sufficient. Recently, a refinement of Eq. �2�
has been derived by Navascues, Pironio, and Acin �NPA�
�21�. Their work improves Eq. �2� in that it incorporates the
marginals of the probability distribution. The NPA criterion
reads

�arcsin D00 + arcsin D01 + arcsin D10 − arcsin D11� � � ,

�3�

where Dxy = �Cxy −CxCy� /��1−Cx
2��1−Cy

2�. Note that, for
vanishing marginals, Eq. �3� is equivalent to Eq. �2�. Note
also that Eq. �3� is in general not sufficient for a probability
distribution to be quantum realizable; to determine whether a
probability distribution is quantum or not, one has to test a
hierarchy of semidefinite programming conditions �22�.

III. INFORMATION CAUSALITY

Let us now briefly review the principle of IC. The authors
of �17� considered the following communication task, which
is similar to random access coding �23� and oblivious trans-
fer �24,25�. Alice and Bob, who are separated in space, have
access to nonsignaling resources such as shared randomness,
entanglement, or �in principle� PR boxes. Alice receives N
i.i.d. random bits a� = �a1 ,a2 , . . . ,aN�, while Bob receives a
random variable b� �1,2 , . . . ,N�. Alice then sends m classi-
cal bits to Bob, who must output a single bit � with the aim
of guessing the value of Alice’s bth bit ab. Their degree of
success at this task is measured by

I � �
K=1

N

I�aK:��b = K� ,

where I�aK :� �b=K� is the Shannon mutual information be-
tween aK and �. The principle of IC states that physically
allowed theories must have I�m. Indeed, it was proved in
�17� that both classical and quantum correlations satisfy this
condition. Moreover, suppose that Alice and Bob share arbi-
trary binary-input–binary-output nonsignaling correlations
corresponding to conditional probabilities P�ab �xy�. A con-
dition under which IC is violated was derived in �17�—based
on a construction by van Dam �10� and Wolf and
Wullschleger �25�—for a specific realization of the Alice-
Bob channel. It goes as follows. Define PI and PII,

PI = 1
2 �P�a � b = 0�00� + P�a � b = 0�10��

= 1
4 �2 + C00 + C10� ,

PII = 1
2 �P�a � b = 0�01� + P�a � b = 1�11��

= 1
4 �2 + C01 − C11� . �4�

Then, the IC condition �I�m� is violated for all boxes for
which

EI
2 + EII

2 � 1, �5�

where Ej =2Pj −1. It follows from this that all nonsignaling
correlations which violate Tsirelson’s bound also violate IC.
To see this, it suffices to consider “isotropic” correlations of
the form 	PR+ �1−	�I, where I is the correlation box given
by P�ab �xy�=1 /4 �∀ a ,b ,x ,y�. For such boxes, E1=E2=	
and Eq. �5� is satisfied when 	�1 /�2, which corresponds to
violating Tsirelson’s bound. However, as previously men-
tioned, there are correlations which lie below Tsirelson’s
bound which are nonetheless unobtainable in QM. For such
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correlations, it was not known whether the principle of IC
singles out exactly those allowed by quantum physics. We
now offer a partial answer to this question.

IV. IC AND THE QUANTUM BOUNDARY

Here, we investigate the link between IC and the set of
correlations achievable in QM. We would like to determine
whether the entire quantum boundary can be recovered from
the principle of IC. It will be convenient to re-express con-
dition �5� for the violation of IC in terms of the correlators
Cxy as follows:

�C00 + C10�2 + �C01 − C11�2 � 4. �6�

Interestingly, this is equivalent to a violation of Uffink’s qua-
dratic inequality �26�; note that Uffink’s inequality is known
to be strictly weaker than the TLM criterion �27�.

In the following, we compare Eq. �6� with the TLM and
NPA criteria for quantumness. We shall investigate several
two-dimensional slices of the nonsignaling polytope, which
can be grouped into two families. More precisely, we con-
sider noisy PR boxes of the form

PR	,� = 	PR + �B + �1 − 	 − ��I , �7�

where B is an extremal nonlocal box in the first family and
an extremal local deterministic box in the second. Remark-
ably, in the first family we find two different slices of the
polytope where boxes that satisfy IC coincide analytically
with the set of quantum boxes. In other words, in these slices
IC exactly singles out quantum correlations in that all
postquantum correlations violate IC. Note that, because of
the symmetry of the polytope, it is sufficient here to focus on
nonsignaling boxes violating the CHSH inequality �1�, and
not those which violate the seven other symmetries of
CHSH; basically, a nonsignaling box can never violate more
than one symmetry of CHSH.

Family 1. We first consider correlations of form �7�,
where B= PNL

��� and ��� can take any values except
for 000 and 001 �since these are collinear with PR
and I�. The corresponding correlators are given by
C00=	+ �−1���, C01=	+ �−1�����, C10=	+ �−1�����, and
C11=−	+ �−1�������1�.

We see from Eq. �2� that if boxes of this form are to be
quantum realizable then we require that 	2+�2�

1
2 . Note

that here the TLM criteria are necessary and sufficient for
quantumness since the probability distribution given by
boxes in this family has a specific form �28�. On the other
hand, we see from Eq. �6� that, if B= PR2= PNL

010, then IC is
violated when

	2 + �2 �
1
2 . �8�

Thus, in this particular slice of the nonsignaling polytope, a
box violates IC if and only if it is postquantum �Fig. 1�. Note
that here we could have chosen B=PR2= PNL

011 as well.
The above proof is easily adapted to another slice. By

exchanging the roles of Alice and Bob, the same can also be
seen to hold in the slice where B= PR3= PNL

100 �or equivalently
B=PR3= PNL

101�.

Finally, note that in the case where B= PR4= PNL
111, the cri-

terion for violating IC reduces to 	�
1
�2

. Thus, boxes below
Tsirelson’s bound are not known to violate IC in this slice
�Fig. 2�. We stress that this does not imply that there exist
postquantum boxes lying below Tsirelson’s bound which do
not violate IC. The fact that boxes which satisfy Eq. �6� also
violate IC follows from considering a particular strategy for
using the boxes, found in �17�. It remains possible that a
different strategy could be used to show that all postquantum
correlations violate IC in this slice as well.

Family 2. Next, we consider correlations of form �7�,
where B= PL

���� with �� � � � �=0; note that these
are the local deterministic boxes sitting on the CHSH facet
below the PR box. For simplicity, we will focus here on
B= PL

0000. In this case, the correlators are given by
C00=C01=C10=	+�, C11=�−	, and the marginals are
given by C0

a=C1
a=C0

b=C1
b=�. It follows from Eq. �6� that

IC is violated whenever
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FIG. 1. �Color online� A slice of the nonsignaling polytope
where correlations violate IC if and only if they are postquantum.
Above the blue dashed curve, IC is violated; below, correlations are
quantum realizable.
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FIG. 2. �Color online� A slice of the nonsignaling polytope
where postquantum boxes which lie below Tsirelson’s bound
�CHSH=2�2� are not known to violate IC. The red solid line is the
quantum boundary.

RECOVERING PART OF THE BOUNDARY BETWEEN … PHYSICAL REVIEW A 80, 040103�R� �2009�

RAPID COMMUNICATIONS

040103-3



�	 + ��2 + 	2 � 1. �9�

However, this does not coincide with the NPA criterion �3�.
Figure 3 shows clearly the discrepancy between the quantum

boundary, or more precisely the upper bound given by NPA,
and the IC condition �9�. Let us reiterate that the bound �9�
follows from a particular strategy in �17� for using boxes to
violate IC. Thus, it might still be the case that a better strat-
egy would single out quantum correlations in this particular
slice.

V. CONCLUSION

We have shown that in the binary-input–binary-output
nonsignaling polytope, part of the quantum boundary
emerges from the principle of IC. The central question is
now whether this connection can be extended to the full
nonsignaling polytope, which would establish IC as the in-
formation theoretic principle singling out quantum correla-
tions.
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FIG. 3. �Color online� A slice of the nonsignaling polytope
where IC does not single out quantum correlations. The red solid
line is the upper limit on quantum correlations, as given by the NPA
criteria.
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