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Strengthened Bell inequalities for entanglement verification

Pavel Lougovski] and S. J. van Enk'?
1Department of Physics and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403, USA
Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125, USA
(Received 3 August 2009; published 30 September 2009)

Bell inequalities were meant to test quantum mechanics vs local hidden variable models, but can also be
used to verify entanglement. For entanglement verification purposes one assumes the validity of quantum
mechanics as well as quantum descriptions of one’s measurements. With the help of these assumptions it is
possible to derive a strengthened Bell inequality whose violation implies entanglement. We generalize known
examples of such inequalities by relating the expectation value of the Bell operator to a particular quantitative
measure of entanglement, namely, the negativity. Moreover, we obtain statistics illustrating the fact that vio-
lating a given (strengthened or not) Bell inequality is a much more rare feat for a quantum state of two qubits

than it is to be entangled.
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Bell introduced his famous inequality as a way of testing
predictions of quantum mechanics versus those of all pos-
sible local hidden variable (LHV) theories [1]. But the in-
equality (or its experimentally useful generalization, the
Clauser-Horne-Shimony-Holt (CHSH) inequality [2]) can
also be used to verify the presence of entanglement under the
specific assumption that quantum mechanics is correct, if the
inequality is violated. In fact, since the Bell-CHSH inequali-
ties are derived from classical probability theory, without
depending at all on quantum mechanics, such tests are safe in
the sense of avoiding pitfalls resulting from assuming too
much about the quantum state generated [3].

Let us consider a scenario where (a multitude of copies
of) a quantum state p is shared by two parties A and B.
Moreover, each party has a choice of two local measure-
ments with dichotomic outcomes *1, say, A;, A, for party
A and B, B, for party B. Then one can define the Bell-
CHSH [2] operator,

B=A1®(BI+B2)+A2®(BI—32). (1)

In order to calculate the expectation value of B for a quan-
tum state p the standard quantum-mechanical rule should be
applied, i.e.,

(B)om =Tr(Bp). (2)

On the other hand, if we assume that a LHV model is correct,
then expectation values should be calculated differently [and
the tensor product in Eq. (1) should be replaced by an ordi-
nary product], namely, by

B)ruy= fQ dop(w)B(w), (3)

where w is a set of “hidden” variables and p(w) is the prob-
ability density for those variables. The CHSH inequality
reads

KB) | = 2. 4)

This inequality holds true for all LHV models but can be
violated by some quantum-mechanical states for certain
choices of operators A;,, Bj,. That is, there are states for
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which [(B)gy|>2. Such quantum states must be entangled,
as all separable states satisfy the inequality. Hence, the vio-
lation of the CHSH inequality provides a sufficient criterion
for entanglement.

The largest possible violation of the CHSH inequality al-
lowed by quantum mechanics is given by Cirel’son’s bound

[4]:
(Byou| =212. (5)

On the other hand, it was recently shown by Uffink and
Seevinck [5] that, in the special case that the measurements
Ay, and B;, correspond to spin measurements in locally
orthogonal spatial directions [6] (on spin-1/2 systems, which
we will refer to as qubits), a significantly stronger inequality
can be found for separable states. From that inequality one
can derive a “strengthened Bell inequality”

|<B>QM,sep,J_| = \‘E (6)

(derived explicitly first, as far as we know, by Roy in Ref.
[7]; the inequality is also implicit in, e.g., Ref. [8]). We will
refer to this inequality as the Roy-Uffink-Seevinck (RUS)
bound. The subscript L reminds us that it holds only for spin
measurements in orthogonal directions and the subscript sep
reminds us the inequality refers to separable states. The RUS
bound demonstrates the known fact that one certainly does
not have to violate the CHSH inequality (4) in order to con-
clude one has entanglement. In other words, all data from an
experiment measuring the Bell correlations in which the
RUS bound is violated, but the CHSH inequality is not, can
be reproduced by a LHV model, although the underlying
quantum state must be entangled, if orthogonal spin direc-
tions were measured.

We now generalize the RUS and Cirel’son’s bounds. We
consider, after Uffink and Seevinck [5], orthogonal spin mea-
surements {A,,A,} and {B;,B,} on a spin-1/2 system (qubit)
for each party. For this choice of local measurements the
Bell-CHSH operator B in Eq. (1) has only two nonzero ei-
genvalues i2\s’§, with the corresponding eigenvectors being
two orthogonal maximally entangled two-qubit states. Let us
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now maximize the expectation value of B over all possible
pairs of orthogonal spin measurement directions,

(B)ax = max{Tr(UBU ' p),U= U, ® Ug}. (7)

Calculating the trace in the basis where B is diagonal we
immediately obtain

(B)gmax = max[2\ 20U pUlyp) — (¢ U pUI )], (8)

where |¢) and |¢$) are maximally entangled states, the eigen-
states of B with eigenvalues +2v2. Now we recall that for
an arbitrary two-qubit quantum state p we can define a fidel-
ity F [9],

F(p) =max(W|U, ® Upp(Uy ® Up)~'[W), ©)

where |¥) is a maximally entangled state and U,, Ujp are
local unitaries. Combining these two definitions shows that
the absolute value of (8),,.« is bounded from above by

(Bl = 212F(p). (10)

Furthermore, for any mixed two-qubit state p we have the
inequality (proven in Ref. [10])

F(p)=[1+N(p)]2, (11)
where N(p) is the negativity [11,12], defined as
N(p) =22 max(0,= \y), (12)
k

in terms of the eigenvalues N, of the partial transpose of p.
We thus arrive at the announced generalization of the RUS
inequality for two-qubit states:

By ] = \2[1+N(p)]. (13)

It is straightforward to see that the last inequality, Eq. (13),
contains both the RUS and Cirel’son’s bounds. Namely,
when N(p)=0, p is a separable state (this is true for our
two-qubit states, although not in general) and we recover the
RUS bound. On the other hand, for maximally entangled
states N(p)=1 and Cirel’son’s bound is recovered. Moreover,
Eq. (13) provides a lower bound on the degree of entangle-
ment in terms of negativity, if one violates the RUS bound.
The bound complements the relations found in [13] between
Bell inequalities and the concurrence and purity of mixed
states.

The next question we address is this: if one measures spin
in two fixed orthogonal spatial directions, then what is the
probability that a randomly picked two-qubit state violates
the original CHSH inequality? Or what is the probability it
violates the RUS bound? How do these two probabilities
compare to the probability of the state being entangled?

In order to answer these questions, we have to specify
how to “randomly” pick a two-qubit state. In fact, this boils
down to choosing a measure on the space of all two-qubit
density matrices. This choice is rather arbitrary. The only
(rather weak) property we wish the random distribution of
states to have is that a non-negligible fraction is entangled
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and that a non-negligible fraction is separable. We pick then,
for no other reason in particular, a parametrization based on
Ref. [12] (see also [14]). A random sample of 3 X 10 states
showed a fraction (36.437 £0.010)% to be entangled a pri-
ori [as compared to (36.8 +0.2)% obtained in [12] for the
same measure], thus fulfilling our one weak condition.

The following statistics apply to a fixed set of four corre-
lation measurements involving spin measurements in two
fixed orthogonal spatial directions on each of the two qubits.
We note that in this case we can construct four Bell-CHSH
operators from the four measured correlations:

Bi=A,® (B +By)+A,® (B, - By),
By=A,® (B;+B,)-A, ® (B, - By),
By=A,;® (B;-B,)+A,® (B, +B)),

84:A1®(—BI+B2)+A2®(B]+B2). (14)

From our numerical investigations we obtained the following
statistics for random mixed two-qubit states:

(i) Only a tiny fraction (3.31%0.03)X 107* violates at
least one of the four CHSH inequalities that can be con-
structed from the four Bell-CHSH operators [Eq. (14)].

(ii) Only a small fraction (1.244+0.003)% violates at
least one of the four RUS inequalities that can be constructed
from the same operators [Eq. (14)].

We also checked the case of a tomographically complete
measurement, where one measures each spin in three fixed
spatial directions in each location: from these data 36 Bell-
CHSH operators can be constructed. For this sort of mea-
surements we find the following:

(i) The probability to violate at least one of the 36 CHSH
inequalities is still small, (0.249 = 0.0008)%.

(ii) The probability to violate at least one RUS bound out
of 36 is (5.690 = 0.004) %.

Finally, what if we construct a set of pure states (ran-
domly distributed according to the Haar measure)? First of
all, all pure states, except for a set of measure zero, are
entangled. Furthermore, we find the following:

(1) A fraction (9.908 = 0.005)% violates at least one of the
four CHSH inequalities that can be constructed from opera-
tors (14).

(i) A fraction (46.627 +0.010)% violates at least one of
the four RUS inequalities that can be constructed from the
same operators.

These statistics (although the exact numbers are measure
dependent, of course) illustrate the fact that violating a
CHSH inequality or violating the RUS bound for a fixed
correlation measurement is far from necessary for entangle-
ment (it is always sufficient, though); being entangled is
much less rare than violating a given CHSH or RUS inequal-
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