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We investigate realistic experimental conditions under which the collective Dicke model can be imple-
mented in the ion-cavity QED context. We show how ideal subradiance and superradiance can be observed and
we propose an experiment to generate entanglement exploiting the existence of the subradiant state. We explore
the conditions to achieve optimal entanglement generation and we show that they are reachable with current
experimental technology.
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I. INTRODUCTION

The Dicke model describes the dynamics of N identical
two-level atoms interacting with a quantized three-
dimensional electromagnetic �EM� field �1�. Under certain
conditions the model predicts that the atoms interact with the
quantized EM field collectively, giving rise to the widely
studied phenomena of superradiance and subradiance �2,3�.
In free space ideal superradiance and subradiance take place
in the so-called small sample limit, i.e., when the atoms are
so close to each other that one can ignore any effect resulting
from their different spatial positions. In this case the atoms
are indistinguishable with respect to their emission and ab-
sorption properties; hence, the presence of equivalent paths
through which the emission process may occur gives rise to
fully constructive �superradiance� or destructive �subradi-
ance� interference.

Ideal superradiance or subradiance in free space is very
difficult to observe in the experiments since it requires that
the atoms are placed in a regular pattern within a sample
smaller than the wavelength of the EM field they interact
with �small sample case�. The requirement of a regular pat-
tern is due to the presence of the dipole-dipole forces that
would otherwise break the symmetry under permutation of
any two atoms necessary to observe superradiant-subradiant
behavior. Such a regularity can be achieved, e.g., with
trapped-ion crystals �4� or atoms in optical lattices �5�. In
these systems, however, the separation between the particles
is typically larger or on the same order of magnitude than the
resonant wavelength �large sample case�. In the large sample
case, cooperative effects still occur but the subradiant state is
not completely decoupled from the dynamics. Indeed, partial
subradiance and superradiance have been observed with
trapped ions �6�.

A way for relaxing the requirement for configuration
regularity is to place the small sample in a cavity resonator.
In this case, indeed, due to the Purcell effect, the cooperative
atomic behavior can be observed at much lower atomic den-
sity than in free space, making the van der Waals dephasing
caused by the irregular atomic configuration negligible �2�.
Experiments observing superradiance in the small sample

case in a cavity have been performed with Rydberg atoms
�7�, giving results in a very good agreement with the predic-
tions of the single-mode superradiance theory. In this experi-
ment, all of the atoms are equivalently coupled to the quan-
tized mode of the EM field �homogeneous case�.

Recent advances in ion-cavity QED experiments make it
possible to confine arrays of ions inside an optical cavity in a
regime in which the width of their wave packet in position
space is smaller than the wavelength of the cavity mode they
interact with �Lamb-Dicke regime� �8,9�. Moreover, it is pos-
sible to accurately manipulate the position of the single ions
with respect to the intensity profile of the standing cavity
mode, thereby allowing us to change the strength of the cou-
pling between each ion and the quantized EM field.

It has been demonstrated theoretically that, when the at-
oms are coupled with different strengths to the EM field,
ideal superradiance or subradiance can still occur, depending
on the particular spatial distribution of the atoms �10–12�.
However, no experiments have up to now confirmed these
predictions by the inhomogeneous Dicke model. Very re-
cently, an important step in this direction has been achieved
at the University of Aarhus, where a collective strong cou-
pling between an ion crystal and a cavity mode was observed
�13�. In this paper, we investigate in detail how the inhomo-
geneous single-mode Dicke model �or Tavis-Cummings
model �14�� can be realized in the ion-cavity QED context
and the conditions under which subradiance and superradi-
ance can be observed.

Besides the importance in the study of fundamentals of
quantum theory, the realization of the Dicke model and the
generation of the subradiant state play a crucial role in quan-
tum information technology and quantum communication.
Indeed, arrays of ions are ideal candidates for quantum reg-
isters and their controlled interaction with photons allows us
to realize atom-light quantum interfaces �15� and to distrib-
ute entanglement to different nodes of quantum networks.
The importance of the subradiant states in this context stems
from the fact that they are robust entangled atomic states
since they are completely decoupled from the EM field.

The aim of this work is to discuss a realistic setup that is
able to show the collective behavior of trapped ions in a
cavity. In particular, since in the experiments performed so
far the ions are coupled to the EM mode via a Raman
scheme in a � configuration, we will include the entire level
structure, which is important in order to understand the de-*kari.harkonen@utu.fi
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cohering role of the spontaneous emission from the upper
and essentially unpopulated level. We will also include cav-
ity losses in order to study in detail the deviation from the
ideal cooperative Dicke model and to identify the parameter
regions in which such deviations are as small as possible.

In fact, during the last two decades, several theoretical
papers have discussed issues such as entanglement genera-
tion, preparation of nonclassical states, or realization of
quantum gates in the ion-cavity QED context assuming that
the conditions to realize an ideal Tavis-Cummings model
were met �16–26�. Thus, either the spontaneous emission or
the cavity losses �or both processes� are usually neglected
�17,19,23,24�. Concerning spontaneous emission, for ex-
ample, the assumption is made that the emission rate is much
smaller than the cavity coupling constant �16,20–22,25�.
However, this condition is not met in the ion-cavity QED
experiments �8,9�. Furthermore, as we will demonstrate in
this paper, if one deals with simplified atomic level structures
�18,19,26,27�, it is not possible to single out those regions in
parameter space for which the systems of trapped ions be-
have collectively.

In this paper, we will take both the cavity losses and the
spontaneous emissions into account and employ �-type
schemes to describe the ions and to identify the experimental
conditions under which the coherent dynamics predicted by
the single-mode Dicke model is dominant with respect to
losses and decoherence. This will also allow us to present
realistic protocols for entanglement generation and to discuss
ways to optimize the generated entanglement using specific
features of the trapped-ion system, such as the ability to ma-
nipulate in a controlled way the relative coupling between
the ions and the cavity field.

The structure of the paper is the following. In Sec. II we
review the properties of the inhomogeneous single-mode
Dicke model. In Sec. III we present the Hamiltonian for two
ions in a cavity and we make the connection to the Dicke
model by deriving an effective model describing the dynam-
ics under realistic experimental conditions. Section IV is de-
voted to the description of the experimental proposal to ob-
serve subradiance and verify the inhomogeneous Dicke
model. Furthermore, in Sec. V we explore another way to
optimize the entanglement generation by using off-resonant
transitions. Finally, a summary of the results and the conclu-
sions are given in Sec. VI.

II. INHOMOGENEOUS SINGLE-MODE DICKE MODEL

A. Ideal cavity

The single-mode Dicke model, or Tavis-Cummings
model, is the simplest quantum-mechanical model describing
collective effects such as superradiance and subradiance in
cavity. It describes the quasiresonant interaction between N
identical two-level atoms and a single quantized cavity
mode. The Tavis-Cummings Hamiltonian is

HD = �C�a†a +
1

2
� + �

j=1

N

�A�+
�j��−

�j�

+ �
j=1

N

���j�a†�−
�j� + ��j��a�+

�j�� , �1�

where �C and �A are the frequencies of the cavity mode and

the atomic transition, respectively; a and a† are the annihila-
tion and the creation operators for the cavity mode; and
�−

�j�= �0�j�	
1�j�� and �+
�j�= ��−

�j��† are the lowering and the rais-
ing operators for the jth atom, with �0�j�	 and �1�j�	 being its
ground and excited states, respectively. Finally, ��j� is the
coupling strength of the jth atom with the cavity field. Inho-
mogeneity of the coupling strengths originates from different
relative positions of the atoms with respect to the intensity
profile of the standing EM mode supported by the cavity
resonator.

This model assumes that the cavity is ideal, as photon
escape is not taken into account, and that atomic spontaneous
emission from the excited to the ground state is negligible.
The model also neglects the atomic motion as well as recoil
effects due to the absorption and subsequent re-emission of a
photon by the atoms. Moreover, the dipolar coupling of the
atoms and the EM field is expressed within a rotating wave
approximation �RWA�, thereby suppressing the non-energy-
conserving terms. Finally, it implicitly assumes that the cou-
pling between the atoms and the cavity mode does not
change, i.e., that the atoms are kept at fixed positions. While
the RWA has been proven to work extremely well in optical
experiments, all other assumptions need further consider-
ation. In the following sections we will examine them in
detail for the ion-cavity QED setup.

Using a suitable canonical transformation it has been
shown that, when only one excitation is present in the total
system, the N atoms interacting with the quantized field
mode according to Eq. �1� cooperate in such a way that only
one collective atomic mode �superradiant state� is coupled to
the field �11�. Consequently, the energy exchange between
the atoms and the field can be completely suppressed if the
only field-coupled collective mode is unexcited.

For simplicity, we will from now on focus on the N=2
case sketched in Fig. 1, and we will denote the energy eigen-
states for the free ions as �a�1�b�2�	��a�1�	 � �b�2�	 �with a ,b
=0,1� and the corresponding Fock states of the cavity mode
as �n�C�	, where n=0,1 , . . .. The time evolution generated by
HD is easily obtained explicitly. For a cavity initially pre-
pared in the vacuum state, and in the presence of only one
atomic excitation, the time evolution of the amplitudes c10�t�
and c01�t� to find the ions in the states �1�1�0�2�	 and �0�1�1�2�	,
respectively, is given by

c10�t� = ��r�2��2 + �r�1��2E�t��c10�0� − r�1��r�2��1 − E�t��c01�0� ,

�2�

FIG. 1. �Color online� Two binary quantum objects interacting
through a quantized electromagnetic mode supported by a cavity
resonator. The dynamics of such an ideal system is described by the
Dicke model.
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c01�t� = − r�1�r�2���1 − E�t��c10�0� + ��r�1��2 + �r�2��2E�t��c01�0� .

�3�

In the equations above the relative coupling strengths are
defined as r�j�=��j� / ��T�, where ��T�=����1��2+ ���2��2 is the
total coupling strength, and

E�t� = ei�t/2cos��vt

2
� − i

�

�v
sin��vt

2
�� , �4�

where �=�A−�C is the detuning and �v=�4��T�2+�2 is the
vacuum Rabi frequency. Note that r�1� and r�2� are not inde-
pendent parameters since �r�2��=�1− �r�1��2.

The subradiant ��−	 and the superradiant ��+	 states are

��−	 = r�2��1�1�0�2�	 − r�1��0�1�1�2�	 , �5�

��+	 = r�1���1�1�0�2�	 + r�2���0�1�1�2�	 , �6�

and, in this case, they are position dependent through the
relative coupling strength parameters r�1� and r�2�. As one can
see directly from Eq. �1�, the state ��−	 � �0�C�	 is an eigen-
state of the Tavis-Cummings Hamiltonian with eigenvalue
1
2�C+�A. Therefore, when the atoms are prepared in this
state, they are completely decoupled from the cavity field
and the system does not evolve at all. In the case of equally
strong couplings, i.e., for �r�1��= �r�2��=1 /�2, the subradiant
and the superradiant states coincide with the maximally en-
tangled Bell states. In general, however, these states are not
maximally entangled.

B. Nonideal cavity

We now proceed to generalize Eq. �1� to the case of a
lossy cavity. The imperfect reflectivity of the cavity mirrors
and consequent leakage of photons causes a Lorentzian
broadening of the spectral line corresponding to the mode
supported by the ideal cavity. Accordingly, the microscopic
atom-field interaction should now take into account a con-
tinuum of modes described by a Lorentzian distribution
peaked at the central cavity frequency �C. For the sake of
simplicity, and in view of the discussion in the ion-cavity
QED context, we restrict our attention to a one-dimensional
cavity model. Namely, we neglect the coupling with all the
EM modes other than the ones supported by the lossy cavity.
In the rotating wave approximation, the Hamiltonian is given
by

H = �
k

�k�ak
†ak +

1

2
� + �

j=1

N

�A�+
�j��−

�j�

+ �
k

�
j=1

N igk sin��k

c
x�j��ak

†�−
�j� + H.c.� , �7�

where ak and ak
† are the annihilation and the creation opera-

tors of cavity photons of frequency �k, respectively. Above,
we have assumed that all the atoms have the same electric
dipole moment, which has been incorporated in the coupling
constants gk, and we indicate with x�j� the position of the
atoms along the cavity axis. In the following we will assume

that each atom is kept at a fixed position inside the cavity
and that they are all well localized, i.e., the spread of their
wave function in position space is smaller than the wave-
length of the central cavity field mode: �x�j�	c /�C. Since
all the significantly contributing modes are close to the cen-
tral mode �of frequency �C�, we have

sin��k

c
x�j�� � sin��C

c
x�j�� , �8�

and Eq. �7� takes the form

H = �
k

�k�ak
†ak +

1

2
� + �

j=1

N

�A�+
�j��−

�j�

+ �
j=1

N

�
�j��−
�j��

k

gkak
† + H.c.� , �9�

with 
�j�= i sin��Cx�j� /c�. In the continuum limit the sum
over the k modes is replaced with an integral

�
k

�gk�2 →� d� J��� ,

where J��� is the reservoir spectral density. As mentioned
above, we assume a Lorentzian distribution for the spectrum
of the field inside the cavity; therefore, we take a spectral
density of the form

J��� =
W2

2�

�

�� − �C�2 + ��/2�2 , �10�

where the distribution is characterized by its full width at
half maximum value � and by a normalization parameter
W2=�d� J���. Hence, � describes the cavity losses and W
describes the total coupling strength.

We focus again on the two-atom case, i.e., N=2, and we
consider the situation in which only one excitation is present
in the total atom-field system. Starting from the Hamiltonian
�7� and using the Lorentzian spectral density �10�, it is pos-
sible to derive an effective master equation

d�

dt
= − i�HD,�� −

�

2
�a†a� + �a†a − 2a�a†� �11�

for the dynamics of the atoms and the cavity mode of fre-
quency �C �28�. Here, a and a† are the annihilation and the
creation operators for the central cavity mode, which is
damped at rate �, and the coherent dynamics is generated by
HD in Eq. �1�, where the coupling constants are identified as
��j�=
�j�W. From the exact solution of the effective master
equation �11�, one can obtain the state of the atomic system
by tracing out the cavity degree of freedom: �t�=trC���t��.

After performing the trace, and for an initially empty cav-
ity, the problem can be solved exactly. In the ordered basis
��1�1�1�2�	 , �1�1�0�2�	 , �0�1�1�2�	 , �0�1�0�2�	�, the atomic density
matrix can be written in the form �29�

DICKE MODEL AND ENVIRONMENT-INDUCED … PHYSICAL REVIEW A 80, 033841 �2009�

033841-3



�t� =�
0 0 0 0

0 �c10�2 c10c01
� 0

0 c10
� c01 �c01�2 0

0 0 0 1 − �c10�2 − �c01�2
� . �12�

The dynamics of the two qubits is therefore completely char-
acterized by the two amplitudes:

c10�t� = ��r�2��2 + �r�1��2E�t��c10�0� − r�1��r�2��1 − E�t��c01�0� ,

�13�

c01�t� = − r�1�r�2���1 − E�t��c10�0� + ��r�1��2 + �r�2��2E�t��c01�0� ,

�14�

with r�j�=
�j� / �
T�, where �
T�=��
�1��2+ �
�2��2, and

E�t� = e−��−i2��t/4cos��gt

2
� +

� − i2�

2�g
sin��gt

2
�� , �15�

where �g=�4�
T�2W2+�2+ i��−�2 /4 is the generalized
Rabi frequency. Note that Eqs. �13� and �14� have exactly the
same structure as Eqs. �2� and �3�, obtained for the single-
mode Dicke model without losses. Formally, the cavity
losses appear as an additional imaginary part of the detuning
���+ i� /2. Accordingly, the effect of the cavity losses is
described by the modification of the time-dependent coeffi-
cient E�t�, which is now damped at rate � /4, and by the
�-dependent shift of the Rabi frequency. For �→0, the
Lorentzian spectral density �10� tends to Dirac’s delta distri-
bution, J���→W2���−�C�, and Eq. �15� reduces to Eq. �4�,
with ��j�=
�j�W.

It is worth noticing that, as one sees directly from Eq. �9�,
the subradiant state ��−	, given by Eq. �5�, is still decoupled
from the vacuum cavity field. Hence, if the atomic system is
initially prepared in this state, no exchange of excitation with
the cavity field will take place.

III. EFFECTIVE MODEL OF ION-CAVITY INTERACTION

A. Physical setup

Ion-cavity QED experiments use calcium ions which are
trapped in a linear Paul microtrap and interact with a quan-

tized mode of a high-finesse optical cavity �8,9�. In Fig. 2 we
show the relevant energy-level structure, couplings, and de-
cay channels for the compound system of two 40Ca+ ions and
a single cavity mode. The atomic ground state 4 2S1/2 is
coupled to the electronically excited state 4 2P1/2 by a �clas-
sical� pump laser injected from the side of the cavity. On the
other hand, the excited state 4 2P1/2 is coupled to a meta-
stable state 3 2D3/2 by the quantized cavity mode. The ex-
cited state 4 2P1/2 decays spontaneously to the states 4 2S1/2
and 3 2D3/2 at rates �S and �D, respectively, and the cavity
photon is damped at rate �, as explained in the previous
section.

A realistic theoretical description of the dynamics of a
single 40Ca+ ion coupled to the cavity mode has been given
in Ref. �30�. The authors consider there also the effect of
cavity losses and spontaneous emission, taking into account
all the Zeeman sublevels of the three relevant electronic
states. The main consequence of the presence of the Zeeman
sublevels is a reduction in the coupling driven by the cavity
field by a factor of �3 with respect to the simpler three-level
model considered here. Therefore, we will use in the follow-
ing a three-level model scheme with such a reduced effective
coupling to account for the presence of the Zeeman sublev-
els. In the experiments, the ions sit at the bottom of the
trapping potential and are cooled down to the Lamb-Dicke
regime. Under these conditions one can assume that the ions
are kept at fixed positions and neglect recoil during the
emission-absorption process.

In the following we will consider as initial atomic states
those in which one of the two atoms is in its ground state and
the other one is in its metastable state, i.e., the states
�S�1�D�2�	 and �D�1�S�2�	. In order to prepare these states, if the
vibrational sidebands are not resolved, it is necessary to use
a selective laser addressing of the individual ions. This is
routinely done in trapped-ion experiments with 40Ca+ ions
�see, e.g., �31��.

The two identical ions interact with the quantized cavity
mode of frequency �C via laser-assisted two-photon pro-
cesses, as shown in Fig. 2. The ions are irradiated by a laser
beam of frequency �L+�L. The laser beams and the cavity
field are far detuned by � from the electronic level �P�j�	,
such that �P−�D=�C+� and �P−�S=�L+�. Therefore,

FIG. 2. �Color online� The relevant electronic states of two identical 40Ca+ ions and corresponding couplings provided by an external
pump laser and a quantized cavity mode. The excited electronic state decays spontaneously to the ground and to the metastable states, and
the cavity mode is damped as well.
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the setup provides each ion j=1,2 with a Raman coupling
between the levels �S�j�	 and �D�j�	.

The time evolution of the composite system of the two
ions and the cavity mode can be described by a master
equation

d�

dt
= − i�H�t�,�� −

�

2
�a†a� + �a†a − 2a�a†�

−
�S

2 �
j=1,2

�APP
�j� � + �APP

�j� − 2ASP
�j��APS

�j� �

−
�D

2 �
j=1,2

�APP
�j� � + �APP

�j� − 2ADP
�j� �APD

�j� � , �16�

where we have included the cavity field damping at rate �,
the spontaneous emission channels �two for each ion� at rates
�S and �D, and where the coherent dynamics is generated by
a Hamiltonian

H�t� = �C�a†a +
1

2
� + �

j=1,2
�

l=S,P,D
�lAll

�j�

+ �
j=1,2

�e−i��L+�L�tgL
�j�APS

�j� + gC
�j�aAPD

�j� + H.c.� . �17�

The atomic operators are defined as All�
�j�= �l�j�	
l��j��, with

l , l�=S , P ,D and j=1,2. Finally, the coherent couplings pro-
vided by the laser and the cavity mode are, respectively,

gL
�j� = �eikLx�j�

, �18�

gC
�j� = g sin�kCx�j�� , �19�

with kL and kC being the wave numbers of the laser and the
standing cavity mode.

B. Effective two-level model

When the detuning � is sufficiently large compared to the
couplings, ��gL

�j� ,gC
�j�, the excited electronic states �P�j�	 can

be adiabatically eliminated from the dynamics, as described
in detail in Appendix A. In this case the system can be ef-
fectively described as composed of two two-level atoms in-
teracting with a cavity mode. For this purpose, we denote the
ground and the metastable states of the jth atom as �1�j�	
��S�j�	 and �0�j�	��D�j�	 �N.B., the true atomic ground state
corresponds to the excited state of the effective two-level
system since it is able to emit a cavity photon through the
Raman transition�.

The adiabatic elimination of the excited levels ��P�j�	� is
not at all trivial due to the inclusion of the spontaneous emis-
sion processes �32�. We show in Appendix A that an effec-
tive Tavis-Cummings Hamiltonian can be derived, describing
an excitation exchange between the ions and the cavity.
However, one needs to include �i� two Stark shift terms per
ion �one, in particular, being dependent on the state of the
cavity mode� and �ii� an overall rescaling of both the free and
the interaction energies by a factor explicitly dependent on
the emission rates.

It turns out that, in the interaction picture with respect to
H0−�� jAPP

�j� , where H0 is given by the first two terms on the

right-hand side of Eq. �17�, the coherent part of the evolution
of the ion-cavity system is described by an effective Hamil-
tonian

Heff = − � �
j=1,2

�e−i�Lt�
�j�g��

�
a†A01

�j� + H.c.�
+

���j�g�2

�
a†aA00

�j� +
���2

�
A11

�j�� , �20�

where the position-dependent parameters ��j� are defined as

��j� = eikLx�j�
sin�kCx�j�� , �21�

and the dimensionless renormalizing prefactor is

� =
�2

�2 + ��S + �D�2/4
. �22�

This Hamiltonian resembles the Tavis-Cummings Hamil-
tonian �1�, except for the photon-dependent Stark shift term.
However, since the original microscopic model includes dis-
sipative processes, the unitary evolution generated by Heff
needs to be supplemented by decohering terms that have a
very peculiar structure. Indeed, the effective master equation
that describes the time evolution of the ions and the cavity
contains four �now both dissipative and nondissipative� pro-
cesses �described by jump operators� that take into account
the effects of the spontaneous emission as seen in the re-
stricted atomic subspaces spanned by ��0�j�	 , �1�j�	�. The cav-
ity damping appears in the restricted subspace in the same
form as in the original model.

The effective master equation reads

d�

dt
= − i�Heff,�� −

�

2
�a†a� + �a†a − 2a�a†�

− �
j=1,2

m=S,D

�m
�j�

2
�Cm

�j�†Cm
�j�� + �Cm

�j�†Cm
�j� − 2Cm

�j��Cm
�j�†� ,

�23�

where the jump operators for each ion j are given by

CS
�j� = e−i�Lt�A11

�j� + ��j��gaA10
�j�, �24�

CD
�j� = e−i�Lt�A01

�j� + ��j��gaA00
�j�, �25�

while the effective decay rates are �m
�j�=��m /�2, where m

=S ,D and the prefactor � is given by Eq. �22�. The structure
of these jump operators is easy to interpret once the full level
configurations of Fig. 2 are taken into account. Let us con-
sider, for example, the operator CS

�j� of Eq. �24�. It arises
from the spontaneous emission process 4 2P1/2→4 2S1/2 of
the jth atom, now being restricted to the two-dimensional
subspace ��0�j�	 , �1�j�	�. The jump operator CS

�j� has two con-
tributions, both of them describing nondissipative decoher-
ence by pure dephasing processes �as one understands from
the fact that they do not produce any excitation loss�. These
two contributions account for the interruption of the ion-
cavity excitation exchange �vacuum Rabi cycle� by the spon-
taneous emission. The first term is an unwanted repopulation
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of state �1�j�	 occurring after the laser has virtually brought
the system to the intermediate level �P�j�	 of the full Raman
cycle. The second term is also due to decay into state �1�j�	,
but this time the virtual excitation of level �P�j�	 is caused by
the cavity field. In conclusion, both processes interrupt the
vacuum Rabi cycle without the excitation being lost as, at the
end, the two-level system is found in its excited state �1�j�	.
This implies that the excitation exchange can restart, but
with a different phase. Thus, CS

�j� describes a phase error.
A similar interpretation scheme can be adopted for the

two terms constituting CD
�j� in Eq. �25�. However, this time

the involved process is the spontaneous emission 4 2P1/2
→3 2D3/2. Whether it occurs after the virtual excitation of
level �P�j�	 performed by the laser �first term� or by the cavity
field �second term�, the result is that at the end the two-level
system is found in its ground state �0�j�	 and that one excita-
tion has been lost either from the atom or from the cavity
mode. Therefore, this jump operator causes dissipative deco-
herence. We note that, at this stage, the four jump operators
of Eqs. �24� and �25� are both explicitly time dependent and
implicitly position dependent via the coefficients ��j� �see
Eq. �21��.

A phase rotation within the restricted Hilbert space,
spanned by the states with at maximum one excitation, al-
lows transforming the effective Hamiltonian �20� into the
Tavis-Cummings Hamiltonian �1� as well as removing simul-
taneously the time dependence from the jump operators �24�
and �25�. This is described in Appendix B. Therefore, in a
suitable rotating frame, the following effective Tavis-
Cummings Hamiltonian is obtained:

HD
eff = �C

eff�a†a +
1

2
� + �

j=1,2
�A

eff�+
�j��−

�j�

+ �
j=1,2

��eff
�j�a†�−

�j� + �eff
�j��a�+

�j�� , �26�

where we have introduced again the spin inversion operators
used in Sec. II. The effective Dicke model parameters are

�C
eff = − �

2��Tg�2

3�
, �27�

�A
eff = �L − �� ���2

�
−

��Tg�2

3�
� , �28�

�eff
�j� = − �

��j�g��

�
� ��j�geff, �29�

where ��T�=����1��2+ ���2��2. The effective detuning is given
by

�eff = �A
eff − �C

eff = �L − �
���2 − ��Tg�2

�
, �30�

and the relative effective coupling strengths r�j� �cf. Eqs. �2�
and �3�� are directly given by the position-dependent param-
eters ��j� since now r�j�=�eff

�j� / ��eff,T�=��j� / ��T�. Comparing
Eqs. �26� and �23� with Eqs. �1� and �11�, respectively, we
see that, when the effective atomic spontaneous emissions

are negligible, this system allows us to realize the Dicke
model in the nonideal cavity case.

C. Effective spontaneous emission processes

As mentioned before, we restrict our study to the case in
which only one or zero quanta are present in the composite
system of the two ions and the cavity mode. Therefore, the
compound state of the two atoms and the cavity photon can
be expressed in the basis ��0�1�0�2�0�C�	 , �0�1�0�2�1�C�	 ,
�0�1�1�2�0�C�	 , �1�1�0�2�0�C�	� �see Appendix B�. Consequently,
the jump operators �24� and �25� can be normalized with
respect to the operator norm �A�=sup���=1�A��	�, where ��	
belongs to the Hilbert space spanned by the basis defined
above. The introduction of the normalized jump operators
allows us to define the effective spontaneous emission decay
rates �m

�j� unambiguously.
The normalized jump operators are

CS
�1� = �1�1�0�2�0�C�	
�1� , �31�

CS
�2� = �0�1�1�2�0�C�	
�2� , �32�

CD
�1� = �0�1�0�2�0�C�	
�1� , �33�

CD
�2� = �0�1�0�2�0�C�	
�2� , �34�

where the decaying states are

��1	 =
���1�1�0�2�0�C�	 + ��1�g��0�1�0�2�1�C�	

����2 + ���1�g�2
, �35�

��2	 =
���0�1�1�2�0�C�	 + ��2�g��0�1�0�2�1�C�	

����2 + ���2�g�2
. �36�

The corresponding rescaled decay rates are given by

�S
�j� = �����2 + ���j�g�2�

�S

�2 , �37�

�D
�j� = �����2 + ���j�g�2�

�D

�2 . �38�

The cavity photon annihilation operator a
= �0�1�0�2�0�C�	
0�1�0�2�1�C�� is already normalized in our re-
stricted basis.

The spontaneous emission decay rates for the considered
states of a calcium atom are �S /2�=22.3 MHz and �D /2�
=1.7 MHz. Therefore, �S

�j���D
�j� and the dominant effective

spontaneous emission jump processes are described by the
operators CS

�j�. Consequently, according to the discussion
above, the main decoherence sources are the nondissipative
dephasing processes that conserve the energy of the ion-
cavity system.

The character of the decaying state, and hence the corre-
sponding jump operator, is defined by the balance between
the strengths of the laser pumping � and the cavity coupling
��j�g. In the strong laser pumping case ����� ���j�g�� the
nonunitary dynamics of the atomic reduced system is domi-
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nated by phase diffusion processes described by the opera-
tors A11

�j�. In the weak laser pumping case ����	 ���j�g��, on
the contrary, the processes described by the operators aA10

�j�

dominate. Moreover, as one can see from Eqs. �35� and �36�,
one can further modify the character of the specific atomic
jump operators by changing the relative position of the ions
with respect to the cavity field through the ��j� parameters.

The significance of the spontaneous emissions can be es-
timated by the ratio

��S
�j�

�eff
�j� � =

1 + ���j�g/��2

���j�g/��
�S

�
. �39�

For a fixed detuning � this ratio has its minimum value
2�S /� when ���j�g /��=1, i.e., when the couplings provided
by the laser and the cavity field are equally strong. On the
other hand, for fixed coupling strengths, the ratio is inversely
proportional to the detuning �. This can be exploited in order
to minimize the role of the effective spontaneous decay. The
cavity damping � is neither affected by the detuning nor the
couplings.

Finally, we note that for large detunings, ���S ,�D, the
dimensionless prefactor ��1 and the effective decay rates
as well as the effective coupling terms have simplified ex-
pressions. The effective couplings are then given by �eff

�j�

�−��j�g�� /�, while in the limit of strong and weak laser
pumpings the dominating decay rates are �S

�j�����2�S /�2

and �S
�j�����j�g�2�S /�2, respectively.

IV. ENVIRONMENT-INDUCED ENTANGLEMENT:
RESONANT REGIME

In this section we study, analytically and numerically, the
dynamics of the entanglement between the electronic degrees
of freedom of the two atoms. The generation of entanglement
between the ions and its persistence at long times are, in-
deed, a clear manifestation of the collective �subradiant� be-
havior. In particular, entanglement generation is mediated by
the interaction with the quantized cavity field, which is ini-
tially prepared in the vacuum state. If the atomic spontane-
ous emission processes are negligible and we face the bare
Dicke model, the dynamics can be described exactly. We
compare these exact analytical results to numerical simula-
tions including the spontaneous emission effects. The simu-
lations were implemented by using the Monte Carlo wave
function �MCWF� method �33,34�. We begin by considering
the resonant case, where the effective detuning �eff=0, with
�eff given by Eq. �30�.

A. Analytical solution neglecting spontaneous emission

The effective model describing the dynamics when spon-
taneous emissions are negligible is given by the master equa-
tion �11� with the effective Tavis-Cummings Hamiltonian
�26�, as described in Sec. II B. The analytical solution for the
atomic density matrix is given by Eqs. �12�–�15�, with

�j�W=�eff

�j� =��j�geff.
We are interested in the collective dynamics when ini-

tially one excitation is present in the atomic system and the
cavity is in its vacuum state. Any initial atomic state contain-

ing one excitation can be written in terms of the superradiant
and subradiant states �5� and �6� as

���0�	 = �+��+	 + �−��−	 . �40�

As time passes, the collective atomic state decays via the
evolution of the superradiant component,


�+���t�	 = E�t��+, �41�

with E�t� given by Eq. �15�. The subradiant component

�− ���t�	=�−, however, remains unchanged. Consequently,
for times, such that �t�1, the atomic state will be in general
a statistical mixture of the collective ground state �0�1�0�2�	
and the subradiant state ��−	 with weights dependent on �−,
which in turn depends on the relative coupling strengths r�j�.

In the following we focus on the dynamics of entangle-
ment between the atoms. In order to quantify the stationary
asymptotic entanglement of the final state, we use Wootters’s
concurrence �35� which, for a density matrix of the form of
Eq. �12�, is given by

C�t� = 2�c10�t�c01
� �t�� , �42�

with c10�t� and c01�t� given by Eqs. �13� and �14�. In general,
the concurrence is zero for factorized states and unity for
maximally entangled states. For �t�1 we obtain a stationary
concurrence value

Cstat = 2�r�1�r�2����−�2. �43�

As expected, the value of the stationary concurrence is di-
rectly related to the subradiant component of the initial state.
If both atoms are coupled to the EM field, the stationary
value of the concurrence, for any initial state with �−�0,
will be nonzero. When the atoms are initially prepared in the
superradiant state, i.e., �−=0, the system approaches asymp-
totically the pure factorized state �0�1�0�2�	.

For the initially factorized states �1�1�0�2�	 and �0�1�1�2�	,
the interaction with the environment generates entanglement
in the atomic system. For these initial states the stationary
concurrence takes the values Cstat=2�r�1���1− �r�1��2�3/2 and
Cstat=2�r�1��3�1− �r�1��2, respectively. As we have noticed in
Ref. �29�, the factorized states are those that maximize the
stationary concurrence for certain values of r�1�. The maxi-
mum value of stationary concurrence, for both the two
factorized initial states considered here, is Cstat

max

=max�r�1����0,1�Cstat�0.65. This value is obtained with �r�1��
=0.5 and �r�1���0.87 �i.e., �r�2��=0.5� for initial states
�1�1�0�2�	 and �0�1�1�2�	, respectively.

We note in passing that when only one of the two atoms is
coupled to the EM field, i.e., r�1�=0 or r�2�=0, the stationary
concurrence is zero. In this case, indeed, the subradiant and
the superradiant states coincide with states �1�1�0�2�	 and
�0�1�1�2�	 as one can see from definitions �5� and �6�.

From the definition of the generalized Rabi frequency
given by Eq. �15�, which in the resonant case reads as �g

=�4��Tgeff�2−�2 /4, two extreme regimes can be defined. In
the weak ion-cavity coupling regime, defined by 4��Tgeff�
	�, the generalized Rabi frequency is purely imaginary.
Therefore, according to Eq. �15�, the Dicke model predicts a
solution given by monotonic hyperbolic sine and cosine
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functions. The opposite limit is the strong ion-cavity cou-
pling regime, defined by 4��Tgeff���. In this case the gener-
alized Rabi frequency is real and the Dicke model predicts
damped oscillatory dynamics.

B. MCWF simulations in the presence of spontaneous
emission

In this section, we focus on the effect of the spontaneous
emissions on the subradiant-state-based entanglement gen-
eration described in the previous section. We consider again
as initial atomic state ���0�	= �1�1�0�2�	 with the cavity in the
vacuum state �0�C�	. For a given value of r�1�� �0,1�, we
choose ��1� and ��2� to be positive real numbers such that the
larger of the two is always unity and the smaller one is
min�r�1� /�1−r�1�2 ,�1−r�1�2 /r�1�� �cf. definition �21��. Now,
��T�2= ���1��2+ ���2��2=min�1 /r�1�2 ,1 / �1−r�1�2��� �1,2�. The
physical parameters have been chosen in accordance to the
experiments of Ref. �8� and are summarized in Table I. The
size of the ensemble in the MCWF simulations is N=1000.
We are using the variant of MCWF method described in
�34�.

The value of the cavity coupling constant g in Table I
refers to the new miniature trap recently realized at the Uni-
versity of Sussex �36�. The reference value �0 for the cavity
damping can nowadays be improved by at least one order of
magnitude. Finally, the detuning � can be easily increased in
the experiments, with respect to the reference value �0.

With the experimental parameters of Table I, the coupling
strengths � and g are of the same order. Therefore, neither
the strong nor the weak laser pumping regimes, introduced in
Sec. III C, are reached and, consequently, all the effective
decay processes caused by the spontaneous emission are
combinations of two different physical operations, as inter-
preted in Sec. III B.

Let us denote the atomic density-matrix components as
ab,cd�
a�1�b�2���c�1�d�2�	, where a ,b ,c ,d=0,1. The density
matrix remains still in the same block form of Eq. �12� even
in the presence of spontaneous emissions. The concurrence is
therefore given by C�t�=2�01,10�t��.

In the following we will examine the effect of the spon-
taneous emissions by comparing the concurrence as a func-
tion of time for fixed values of 4��Tgeff� /�=4��T�g� /���.
We study large detunings ����S ,�D�, so the prefactor �

�1. In the examples we change � and �, such that � /�0
=0.1,0.01 and � /�0=10,100,1000, while keeping the prod-
uct �� constant. Physically, this corresponds to using differ-
ent cavity qualities and detunings which, furthermore, influ-
ences the effective dynamical parameters. Larger detunings,
indeed, suppress the effective spontaneous emissions in favor
of the coherent dynamics, as explained in Sec. III C. The
situation is clarified in Fig. 3 which shows the scaling of the
effective coupling strength geff and the dominant spontane-
ous emission decay rate �S

�j� �cf. Eqs. �29�, �37�, and �38�� as
functions of detuning �. The cavity damping rate � is not
affected by the detuning. The relative values of the three key
parameters geff, �S

�j�, and � characterize the dynamical re-
gime: �i� the ratio �geff� /� defines the strong and the weak
ion-cavity coupling regimes and �ii� the magnitude of �S

�j�

compared to �geff� and �, in turn, describes the significance of
the spontaneous emission processes and tells us whether the
dynamics is well described by the Dicke model or not.

1. Weak ion-cavity coupling regime

In this regime, the oscillatory dynamics stemming from
the coherent coupling between the atoms and the cavity is
heavily damped. In Fig. 4 we plot the concurrence as a func-
tion of both time and the relative coupling strength r�1� for
� /�0=100 and � /�0=0.1, giving �geff� /2�=�g� /2��
=17 kHz. All the other parameters are chosen as in Table I.
We recall that initially the atomic state ���0�	= �1�1�0�2�	 is
factorized. The initial dynamics of the concurrence shows a
monotonic increase, as the superradiant component �see Eq.
�40�� rapidly fades away while the subradiant component re-
mains intact. However, because of the presence of spontane-
ous emission, the subradiant state is not anymore perfectly
decoupled from the dynamics and, consequently, the concur-
rence will not reach a steady-state value.

TABLE I. Values of physical quantities used in the simulations.
Note that the cavity coupling is here explicitly scaled by the
Clebsch-Gordan factor 1 /�3 and, in the text, also by the position-
dependent parameters ��j�.

Quantity Symbol Value �2� MHz�

Laser coupling � 9.0

Cavity coupling g 6.5 /�3

Decay rate 4 2P1/2→4 2S1/2 �S 22.3

Decay rate 4 2P1/2→3 2D3/2 �D 1.7

Detuning �0 20.0

Cavity damping �0 1.2

FIG. 3. �Color online� Scaling of the effective ion-cavity cou-
pling �geff� �middle line for large �� and effective spontaneous emis-
sion decay rates �S

�j� �lowest line for large �; with ��j�=1� as a
function of the detuning �. The isocurves 4��Tgeff� /�=const �thin
lines� are parallel to the �geff� curve, so that the weak ion-cavity
coupling regime is in the upper right corner and the strong ion-
cavity coupling regime in the lower left one. The cavity decay rate
� �horizontal line� does not depend on the detuning. The effective
spontaneous emission events are suppressed for large detunings.
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We note that the best peak value of the concurrence C
�0.6 is achieved for r�1��0.55, i.e., as expected, for an
asymmetric configuration �r�1��1 /�2� of the ions with re-
spect to the cavity field. However, this value of r�1� is now
slightly different than the one obtained in Sec. IV A where
spontaneous emissions were neglected �r�1�=0.5�. We will
further discuss this point when considering the position de-
pendence of the jumps statistics at the end of this subsection.

In Fig. 5 we further study the effect of the spontaneous
emissions in the weak ion-cavity coupling case. In this fig-
ure, we compare the predictions of the Dicke model, de-
scribed in Sec. II B, with the dynamics of the ion-cavity
system in the presence of the spontaneous emissions for
� /�0=100, � /�0=0.1 and � /�0=1000, � /�0=0.01. The

dynamics of the concurrence clearly shows that, in the first
case �� /�0=0.1�, the system approximates the Dicke model
well while ��g�t /2��2.5, where the generalized Rabi fre-
quency ��g� is given by Eq. �15�. For a better cavity �� /�0
=0.01�, the concurrence approaches its quasistationary value
and the system approximates the ideal Dicke dynamics for
longer times, ��g�t /2��20.

We finally look at the statistics of the quantum jumps,
described by the jump operators Cm

�j� in Eqs. �31�–�34�. First
of all, we note that the source states �� j	 �see Eqs. �35� and
�36�� of the jump operators CS

�j� and CD
�j� are identical for a

given atom j=1,2. Therefore, the jump statistics of the two
corresponding decay channels will also be the same with a
branching ratio given by �S

�j� /�D
�j�=�S /�D�13. Our MCWF

simulations confirm that the dominant jump processes are
those corresponding to the effective spontaneous emission
operators CS

�j� and the cavity photon annihilation operator a.
In Fig. 6 we plot the average cumulative number of quantum
jumps per ensemble member for the jump operators CS

�1�,
CS

�2�, and a.
Looking at the statistics helps us to understand how the

reservoir-mediated entanglement generation process depends
on r�1�. We notice that the jump statistics of processes origi-
nating from the spontaneous emissions of atoms 1 and 2 are
different. This is of course due to the asymmetry in the initial
condition. Since initially the excitation is present in atom 1,
the average cumulative number of jumps per ensemble mem-
ber is typically greater for CS

�1� than for CS
�2�. The peak in the

cumulative number of jumps, for the three different jump
operators considered in Fig. 6, moreover, is reached in cor-
respondence of different values of r�1�. This indicates that the
value r�1��0.55, which optimizes the concurrence genera-
tion �see Fig. 4�, corresponds to a compromise between the
different r�1�-dependent jump statistics. In particular, the de-
viation from the optimal value in the absence of spontaneous
emission �r�1�=0.5� might be due to the fact that the number
of CS

�1� jumps increases for decreasing values of r�1�.
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FIG. 4. �Color online� Concurrence as a function of time and the
relative coupling strength r�1� in the weak ion-cavity coupling re-
gime. The dynamics is initially monotonic since the existing super-
radiant component decays rapidly compared to other dynamical
time scales. The subradiant state component decays eventually be-
cause of the atomic spontaneous emissions. The best entanglement
production occurs with asymmetric couplings �r�1��1 /�2�. Param-
eters: � /�0=100, � /�0=0.1
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FIG. 5. �Color online� Dynamics of the concurrence in the weak
ion-cavity coupling regime for r�1�=0.55. In the Dicke model with
cavity losses �highest line� a stationary value of the concurrence is
reached as the superradiant component is overdamped. Parameters:
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2. Strong ion-cavity coupling regime

In the strong ion-cavity coupling regime, the cavity damp-
ing is slow compared to the coherent dynamics. Therefore, a
slowly damped oscillatory behavior of the concurrence is
expected. In Fig. 7 we plot the concurrence as a function of
both time and the relative coupling strength r�1� for � /�0
=10 and � /�0=0.1, giving �geff� /2�=�g� /2��=170 kHz.
All the other parameters are chosen as in Table I. Note that
the ratio �geff� /� is now one order of magnitude bigger than
in Sec. IV B 1. The dynamics has an oscillatory character
since the superradiant component survives much longer than
in the weak ion-cavity coupling regime. However, due to the
presence of the spontaneous emissions the concurrence does
not reach a steady-state value in this regime either.

The best peak value of the concurrence, C�0.6, is now
obtained for r�1��0.46. In Fig. 8 we choose this value of r�1�

and we compare the dynamics of the single-mode Dicke
model with cavity losses to the dynamics of the ion-cavity
system in the presence of effective spontaneous emissions
for the cases of � /�0=10 with � /�0=0.1, and � /�0=100
with � /�0=0.01. In the second case, i.e., for a better quality
factor, the system approximates the Dicke model for longer
time scales, as one would expect. In this case one can clearly
observe the damped Rabi oscillation at the generalized Rabi
frequency given by Eq. �15�.

It is worth noticing that, in the strong ion-cavity coupling
regime, the laser-mediated interaction with the cavity
vacuum allows us to generate a highly entangled state of the
two ions, as one can see in Fig. 8. In particular, for � /�0
=100 with � /�0=0.01, using a laser pulse of duration t
�2� / ��g�, the generated state is close to a maximally en-
tangled Bell state.

V. ENVIRONMENT-INDUCED ENTANGLEMENT:
DISPERSIVE REGIME

In the previous section we have seen that by placing the
ions properly, i.e., by adjusting the relative coupling strength

r�1�, it is possible to optimize the reservoir-mediated en-
tanglement generation. The examples discussed above deal
with the resonant effective model, which is defined by the
condition �eff=0, which in turn corresponds to a physical
detuning �L=���2− ��Tg�2� /� �cf. Eq. �30��. We have seen
that the highest value of the concurrence is obtained in the
strong ion-cavity coupling regime.

In Ref. �37�, however, the single-mode Dicke model with
cavity losses is studied in the dispersive regime, showing
that a high degree of entanglement can be obtained also in
the weak ion-cavity coupling regime. For this reason we now
look at the off-resonant entanglement generation process in
the ion-cavity QED, i.e., we consider the case in which �eff
�0. In the dispersive regime, the relative position of the ions
does not play an essential role and in fact one shows that the
optimal value of r�1� is obtained for equal coupling of the two
ions, i.e., r�1�=r�2�=1 /�2 �37�.

We consider once more the initial atomic state ���0�	
= �1�1�0�2�	 combined with the cavity in the vacuum state
�0�C�	. We set r�1�=r�2�=1 /�2 �by choosing maximally strong
cavity-driven couplings ��1�=��2�=1�, � /�0=10, and � /�0
=0.1, corresponding to the weak ion-cavity coupling regime
of Sec. IV B 1. We now look at the time evolution of the
concurrence for different values of the laser detuning �L.
Figure 9 shows the concurrence as a function of both time
and detuning �L. One can see clearly that the Stark shift
terms appearing in the effective Hamiltonian of Eq. �20� re-
locate the resonance condition from the origin to �L /2�
=���2− ��Tg�2� /2��=120 kHz. Figure 9 also shows that
selecting the detuning �L further away from the resonance
produces higher values of concurrence. In particular, with the
chosen parameters the maximum value of concurrence C
�0.62 is obtained with �L /2��600 kHz.

As demonstrated in Ref. �37�, increasing the detuning
��eff� correspondingly increases the time it takes for the con-
currence to reach its peak value. The longer is the entangle-
ment generation time, however, the stronger is the effect of
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the spontaneous emissions. In other words, the achieved gain
in the entanglement generation obtained by increasing the
effective detuning is quickly suppressed due to the spontane-
ous decay, as the overall time of the entanglement generation
process increases. The maximum value of entanglement
achievable in the dispersive regime is therefore determined
by the interplay between these two effects.

It is worth noticing that going from the resonant into the
dispersive regime changes the character of the generated en-
tangled state as well. To illustrate this point, we plot in Figs.
10 and 11 the populations and coherences, respectively, of
the reduced atomic density matrix versus time and detuning
�L. These plots confirm the increase in the entanglement gen-
eration time when going deeper and deeper into the disper-
sive regime ���eff��0�. If we then focus on the dynamics of
the coherences and, in particular, on the real and imaginary

parts of the only nonzero off-diagonal element 01,10, we see
that on resonance the imaginary part vanishes in accordance
with the predictions of Sec. IV. Therefore, in the resonant
regime the generated entangled state approximates the sub-
radiant state. On the other hand, in the dispersive regime
Re�01,10��0 and Im�01,10��0. Indeed, in the absence of
the spontaneous emissions, the generated state in the disper-
sive regime would be ��1�1�0�2�	� i�0�1�1�2�	� /�2 �positive
sign for negative �eff and vice versa�.

VI. SUMMARY AND CONCLUSIONS

In this paper we have investigated how the single-mode
Dicke model can be realized under experimentally feasible
conditions using two trapped 40Ca+ ions inside a high-finesse
optical cavity. We have taken into account the spontaneous
emissions of the ions as well as the damping of the electro-
magnetic field inside the cavity. In particular, we have de-
rived an effective two-level description of the three-level
ions interacting with the cavity mode.

We have shown that under suitable conditions the two
ions indeed behave collectively, with a coherent dynamical
evolution well described by the Dicke model: two effective
two-level systems exchanging an excitation with an effective
one-dimensional cavity mode. The presence of decohering
processes, such as the atomic spontaneous emission or the
cavity field damping, modifies this ideal picture. However, in
the effective model, the spontaneous emission decay rates
are proportional to 1 /�2 whereas the ion-cavity couplings
scale as 1 /�, where � is the detuning of the physical cavity
frequency from the electronic transition that it is driving.
This difference in the scaling can be exploited in order to
partly suppress the destructive effect of the atomic spontane-
ous emissions.

We have identified the generation of entanglement as a
fingerprint of the cooperative atomic behavior and analyzed
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this process in detail. In particular, we have proven that it is
possible to enhance the entanglement generation process by
positioning the ions appropriately at different locations with
respect to the standing mode of the electromagnetic field
inside the cavity. In the resonant case, where the two-level
systems and the cavity mode have the same frequency, we
have shown that asymmetric coupling with the cavity mode
produces the highest degree of entanglement, even in pres-
ence of spontaneous emissions. We have studied both the
weak and the strong ion-cavity coupling regimes, defined by
the strength of the ion-cavity excitation exchange compared
to the cavity field damping rate, and found out the optimal
conditions for entanglement generation in both cases.

Another possibility to optimize the entanglement genera-
tion is to go to the dispersive regime in the ion-cavity cou-
pling by using an off-resonant Raman transition. The maxi-
mum degree of entanglement in the dispersive and in the
resonant regimes, for realistic values of the parameters, is
similar. Our results indicate, however, that the character of
the generated entangled state in the dispersive regime
changes compared to the resonant case.

Our experimental proposal is based on the existing tech-
nology used in the context of ion-cavity QED experiments
�8,9,30�. In order to detect the generated entanglement, the
state tomography of the atomic systems is needed. In recent
years, this has been routinely performed in similar trapped-
ion systems, e.g., in the context of quantum computation and
measuring the quality of quantum gates �31�. Therefore, we
expect our proposal to be within the reach of the experimen-
tal community.
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APPENDIX A

In this appendix we show how the master equation �16�
for �-coupled three-level atoms and a cavity photon is trans-
formed into an effective two-level master equation �23� by
adiabatic elimination of the excited atomic states ��P�j�	�. Es-
pecially, the elimination transforms the jump operators re-
lated to the spontaneous emissions into the form given by
Eqs. �24� and �25�. For the sake of generality, our treatment
here is valid for N atoms and we allow each ion j to be
irradiated by a separate pump laser with frequency �L+�L

�j�

and coupling strength gL
�j�.

Passing into interaction picture �� �̃=eiKt�e−iKt with re-
spect to

K = �C�a†a +
1

2
� + �

j
�

l=S,P,D
�lAll

�j� − ��
j

APP
�j� �A1�

transforms the operators as

a � ã = e−i�Cta , �A2�

APS
�j� � ÃPS

�j� = e+i�LtAPS
�j� , �A3�

APD
�j� � ÃPD

�j� = e+i�CtAPD
�j� , �A4�

ADS
�j� � ÃDS

�j� = e+i��L+�C�tADS
�j� , �A5�

All
�j� � Ãll

�j� = All
�j�, l = S,P,D , �A6�

for all atoms j, and the Hamiltonian �17� becomes

H̃ = ��
j

APP
�j� + �

j

�gL
�j�e−i�L

�j�tAPS
�j� + gC

�j�aAPD
�j� + H.c.� .

�A7�

The dissipator part of the master equation �16� is invariant
under this transformation.

Let us define a projection P to a subspace spanned by the
to-be-eliminated atomic states ��P�j�	�, and another projection
Q to the complementary subspace by

P � �
j

APP
�j�

� 1cav, �A8�

Q � 1 − P = �
j

�ASS
�j� + ADD

�j� � � 1cav. �A9�

Correspondingly, the density matrix divides into four sec-
tions:

�̃ = Q�̃Q + Q�̃P + P�̃Q + P�̃P � �QQ + �QP + �PQ + �PP.

�A10�

The Hamiltonian is similarly divided in parts

HPP � PH̃P = ��
j

APP
�j� , �A11�

HPQ = HQP
† � PH̃Q = �

j

�gL
�j�e−i�L

�j�tAPS
�j� + gC

�j�aAPD
�j� � ,

�A12�

HQQ � QH̃Q = 0. �A13�

We proceed to deriving an effective master equation for �QQ,
which describes the dynamics of a collection of effective
two-level atoms and a cavity mode. Applying Eqs.
�A10�–�A13� to master equation �16� gives

�̇QQ = − iHQP�PQ + i�QPHPQ −
�

2
��a†a,�QQ� − 2a�QQa†�

+ �S�
j

ASP
�j��PPAPS

�j� + �D�
j

ADP
�j� �PPAPD

�j� , �A14�
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�̇QP = �̇PQ
† = − ��S + �D

2
− i���QP + i�QQHQP − iHQP�PP

−
�

2
��a†a,�QP� − 2a�QPa†� , �A15�

�̇PP = − ��S + �D��PP − iHPQ�QP + i�PQHQP

−
�

2
��a†a,�PP� − 2a�PPa†� . �A16�

Setting �̇QP= �̇PQ=0, assuming �QQ��PP, and neglecting
the cavity damping in Eq. �A15� gives an approximation

�QP = �PQ
† �

− � + i��S + �D�/2
�2 + ��S + �D�2/4

�QQHQP. �A17�

Similarly, setting �̇PP=0 in Eq. �A16� and using the above
approximations for �QP and �PQ gives

�PP � −
i

�S + �D
�HPQ�QP − �PQHQP�

�
1

�2 + ��S + �D�2/4
HPQ�QQHQP. �A18�

Finally, by inserting Eqs. �A17� and �A18� into Eq. �A14�,
we arrive at an approximated master equation

�̇QQ � − i − �

�2 + ��S + �D�2/4
HQPHPQ,�QQ� −

�

2
��a†a,�QQ� − 2a�QQa†�

− �
j

1

2

�S

�2 + ��S + �D�2/4
���HQPAPS

�j� ��ASP
�j�HPQ�,�QQ� − 2�ASP

�j�HPQ��QQ�HQPAPS
�j� ��

− �
j

1

2

�D

�2 + ��S + �D�2/4
���HQPAPD

�j� ��ADP
�j� HPQ�,�QQ� − 2�ADP

�j� HPQ��QQ�HQPAPD
�j� ��

� − i�Heff,�QQ� −
�

2
��a†a,�QQ� − 2a�QQa†� − �

j
�

m=S,D

�m
�j�

2
��Cm

�j�†Cm
�j�,�QQ� − 2Cm

�j��QQCm
�j�†� , �A19�

which has the form of the master equation �23�. We can now
recognize the effective Hamiltonian �cf. Eq. �20�� as

Heff � −
�

�2 + ��S + �D

2
�2HQPHPQ

= − ��
j
�e−i�L

�j�tgC
�j��gL

�j�

�
a†ADS

�j� + H.c.� +
�gL

�j��2

�
ASS

�j�

+
�gC

�j��2

�
a†aADD

�j� � , �A20�

the effective spontaneous emission jump operators �cf. Eqs.
�24� and �25�� as

CS
�j� = ASP

�j�HPQ = gL
�j�e−i�L

�j�tASS
�j� + gC

�j�aASD
�j� , �A21�

CD
�j� = ADP

�j� HPQ = gL
�j�e−i�L

�j�tADS
�j� + gC

�j�aADD
�j� , �A22�

�N.B., the operators are unique up to a global phase factor

ei�m
�j�

, where �m
�j��R�, and the corresponding decay rates as

�S
�j� =

�S

�2 + ��S + �D�2/4
= �

�S

�2 , �A23�

�D
�j� =

�D

�2 + ��S + �D�2/4
= �

�D

�2 . �A24�

In the above equations the dimensionless prefactor � is as
defined in Eq. �22�.

APPENDIX B

In this appendix, we review how the effective two-level
Hamiltonian �20� with Stark shifts is matched exactly with
the Tavis-Cummings Hamiltonian �1� by passing into a rotat-
ing frame. Moreover, we show how to exploit the same
phase transformation in order to simplify the propagator for
the numerical simulations. As in Appendix A, we assume
each atom j=1, . . . ,N to be addressed by its own pump laser
with independent detunings �L

�j� and couplings gL
�j�.

We will restrict ourselves to the subspace with at most
one excitation. We introduce the following notation for the
atomic states:

��0	 = �0�1�
¯ 0�N�	 , �B1�

��1
�j�	 = �0�1�

¯ 1�j�
¯ 0�N�	 , �B2�

so that the Hamiltonian �20� reads
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H = �
j

��e−i�L
�j�t��j���01�C�	
�1

�j�0�C�� + H.c.�

+ S�j���1
�j�0�C�	
�1

�j�0�C��� + S�C���01�C�	
�01�C�� ,
�B3�

with Stark shifts S�C�=−�� j�gC
�j��2 /� and S�j�=−��gL

�j��2 /� and
effective ion-cavity couplings ��j�=−�gC

�j��gL
�j� /�. The time

dependence of the coupling terms will be eliminated by a
phase rotation of the basis vectors

��00�C�	 � ei�t��00�C�	 , �B4�

��01�C�	 � ei�t��01�C�	 , �B5�

��1
�j�0�C�	 � ei��L

�j�+��t��1
�j�0�C�	 , �B6�

where � ,��R are up to now free parameters. The Hamil-
tonian transforms accordingly into

H � H� = �
j

����j���01�C�	
�1
�j�0�C�� + H.c.�

+ �S�j� + �L
�j� + ����1

�j�0�C�	
�1
�j�0�C���

+ �S�C� + ����01�C�	
�01�C�� + ���00�C�	
�00�C�� .
�B7�

The requirement of a full compatibility with the Tavis-
Cummings Hamiltonian �1� within our restricted Hilbert
space demands that �=����= �S�C�+�� /3. Consequently, the
effective Dicke model parameters are identified as �cf. Eqs.
�27�–�29��

�C
eff = 2

3S�C� + 2
3� , �B8�

�A
eff�j� = �L

�j� + S�j� − 1
3S�C� + 2

3� , �B9�

�eff
�j� = ��j�. �B10�

Moreover, the detunings are �cf. Eq. �30��

�eff
�j� = �A

eff�j� − �C
eff = �L

�j� + S�j� − S�C�. �B11�

This means that the resonance condition of the Dicke model
�cf. Sec. IV� is achieved with laser detunings �L

�j�=S�C�−S�j�,
while in the dispersive regime �cf. Sec. V� �L

�j��S�C�−S�j�. As
a conclusion, having each �identical� atom driven by their
own pump laser allows us to simulate the inhomogeneous
Dicke model �1� with independent two-level transition fre-
quencies �A

�j� and couplings ��j�. On the other hand, if one
has only a single laser driving all of the atoms, the transition
frequencies are the same for every atom j, but the coupling
constants ��j� remain independent because of the position-
dependent cavity couplings gC

�j�.
Another aspect of the performed phase transformation is

provided by how they affect the dissipator part of the master
equation �23�. Within our restricted Hilbert space, the jump
operators transform now as

CS
�j� � e−i��L

�j�+��t��1
�j�0�C�	
� j� , �B12�

CD
�j� � e−i��L

�j�+��t��00�C�	
� j� , �B13�

a � e−i�����−��t��00�C�	
�01�C�� �B14�

�global phase factors can be discarded immediately�, where
the decaying �un-normalized� states are

�� j	 = e−i�tgL
�j����1

�j�0�C�	 + gC
�j����01�C�	 . �B15�

In the numerical MCWF simulations, the dynamics is gener-
ated by a non-Hermitian Monte Carlo Hamiltonian HMC=H
− i

2�m�mJm
† Jm, where H is the Hermitian Hamiltonian of the

master equation and Jm and �m are all the jump operators and
the corresponding decay rates picked up from the dissipator
part of the master equation. From the practical point of view,
it is advantageous to have a time-independent HMC since
then the Dyson series of the propagator simplifies into expo-
nential form U�t , t0�=exp�−iHMC�t− t0��. This is now
achieved simply by choosing �=0, and hence the phase
transformation is unique.
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