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We show that phase-coherent states of a single-mode quantized electromagnetic field are well approximated
by certain superpositions of the squeezed vacuum and one-photon states. We further show that the squeezed
vacuum and one-photon states can be understood, approximately, as superpositions of phase-coherent states.
Our approximate phase-coherent states may be generated by a degenerate parametric down-converter acting on
a prepared input state of the form �0�+��1�. The input superposition state itself can be prepared from a coherent
state ��� by a quantum scissors device.
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I. INTRODUCTION

The phase-coherent states �PCSs�, here denoted �z�, of a
single-mode quantized field �a harmonic oscillator� described
by the annihilation and creation operators â and â†, respec-
tively, are eigenstates of the Susskind-Glogower �SG� �1�
phase operator ê= �ââ†�−1/2â according to ê�z�=z�z� �2�,
where z is a complex number within the unit circle, 0� �z�
�1. In terms of the photon number states, the PSCs have the
form

�z� = �1 − �z�2�1/2�
n=0

�

zn�n� . �1�

These states are closely related to the so-called phase states
given by

��� = �
n=0

�

ein��n� , �2�

which are also eigenstates of the SG phase operator, i.e.,
ê���=ei����. These are identical to the unnormalized form of

the states of Eq. �1�, the states ��z��	 �
n=0

�

zn�n�, if we set z

=�ei� and take the limit that �→1 from below, such that

��� = lim
�→1−

���ei��� . �3�

The phase states are not normalizable and thus are not physi-
cal states. But the PCSs of Eq. �1� are normalizable and are
thus physical states that share some of the important proper-
ties of the unphysical phase states.

As far as we are aware, the PCSs were first introduced by
Lerner et al. �3�, who noticed that the photon number distri-
bution for the state resembles a thermal distribution in that

Pn
�PSC� = ��n�z��2 = �1 − �z�2��z�2n =

n̄n

�1 + n̄�n+1 , �4�

where n̄= �z�2 / �1− �z�2� is the average photon number. If we
set z=e−��	/2, we obtain exactly a thermal distribution,
though here we have a pure state. The distribution is pictured
in Fig. 1 for z=0.7, which gives an average photon number
n̄=0.96. The phase-coherent states, because they are eigen-

states of the SG phase operator, are “coherent” in the sense
that �2�

�z�ê†NêM�z� = z�NzM , �5�

just as the ordinary coherent states

��� = e−���2/2�
n=0

�
�n


n!
�n� �6�

are coherent states in the sense that

���â†NâM��� = ��N�M . �7�

Also, like the ordinary coherent states, the PCSs are not
orthogonal

�z��z� =
��1 − �z��2��1 − �z�2��1/2

1 − z��z
. �8�

The phase-coherent states have been studied by many au-
thors who have noted their connection to certain representa-
tions of the Lie algebra su�1,1� �3,4�. They were reintroduced
by Shapiro et al. �2� as optimum phase states for both the
Süssman and the reciprocal peak likelihood �2,5,6� measures
of the phase uncertainty. In a different context, they could
serve as seed states �7–9� in sampling canonical phase dis-
tributions through unconventional heterodyne detection as
described by D’Ariano and Sacchi �10�. Further, D’Ariano
and Macchiavello �11� showed that the PCS maintain phase
coherence under amplification and thus are privileged states
for phase-based communication channels �12�.

D’Ariano �13� and D’Ariano et al. �14� previously pre-
sented schemes for the generation of PCS. They noted that
the two-mode squeezed vacuum state �15�

�z�ab = �1 − �z�2�1/2�
n=0

�

zn�n�a�n�b �9�

has exactly the same set of expansion coefficients as do the
PCS. The state �z�ab is an eigenstate of the product of SG
phase operators of the two modes a and b �16�, i.e.,

�ââ†�−1/2�b̂b̂†�−1/2âb̂�z�a,b = z�z�a,b. �10�

Of course, the two-mode squeezed vacuum state is generated
by the interaction Hamiltonian
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ĤI = i�
�âb̂ − â†b̂†� , �11�

where 
 is proportional to a second-order nonlinear suscep-
tibility 
�2�. The scheme in Refs. �13,14� requires a device
that performs the photon number recombination

�n�a�n�b�0�c → �0�a�0�b�n�c. �12�

Up-conversion is required, but, in order not to alter the co-
efficients, an interaction with intensity-dependent couplings
of a form not realizable by any known optical device is nec-
essary. However, D’Ariano et al. �14� showed that it is pos-
sible to replace the intensity-dependent factors by their aver-
ages such that one could use the standard trilinear interaction
of the form

ĤI � 
�2��âb̂ĉ† + â†b†ĉ� , �13�

where the frequencies for the modes satisfy the relation 	c
=	a+	b. Acting on the initial state �z�ab�0�c, this interaction
approximately produces the state �0�ab�z�c, that is, that mode
c is approximately in a PCS. The approach just described
requires two 
�2� interactions where both signal and idler
modes �the down-converted modes� of the first interaction
are taken as inputs of the second interaction in such a way as
to perform twin- beam upconversion.

II. SUPERPOSITIONS OF SQUEEZED VACUUM AND
ONE-PHOTON STATES

In the present work, we take a rather different approach to
generating approximate PCS. A single-mode squeezed
vacuum state has a thermal-like photon number distribution
as does a squeezed one-photon state, though only with every
other photon number state populated; only the even for the
former and only the odd for the latter. We therefore consider
a superposition of the squeezed vacuum and one-photon
states as possible approximate realizations of the PCS. We
choose parameters of the states and for the superposition
based on the maximization of its fidelity with a desired PCS.

Generation of the superposition requires just one degenerate
down-conversion, a 
�2� interaction acting on an initial state
consisting of a superposition of the vacuum, and one-photon
states. We suggest that the initial superposition state can be
generated by a quantum scissors process, which does require
a single photon, which could be produced via a nondegener-
ate 
�2� process, though quantum scissoring itself can be per-
formed with linear optics. There would actually be an advan-
tage to this method in that one photon from the
nondegenerate down-conversion could be detected and thus
herald the production of its twin, which is used for the scis-
soring process.

We begin by considering the squeezed vacuum and
squeezed one-photon states given, respectively, by

��,0� = �1 − ���2�1/4�
m=0

� ���m + 1/2�
m ! ��1/2� 1/2

�m�2m� , �14�

FIG. 1. The photon number distribution for the PSC plotted
against photon number for z=0.7.

(b)

(a)

FIG. 2. Photon number distribution versus photon number for
�a� the squeezed vacuum state and �b� the squeezed one-photon
state, both for the choice �=0.5.
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and

��,1� = �1 − ���2�3/4�
m=0

� ���m + 3/2�
m ! ��3/2� 1/2

�m�2m + 1� . �15�

Note that �� ,1 �� ,0�=0 as the states �� ,0� and �� ,1� contain
only even and odd number states, respectively. The states are

generated by the action of the squeeze operator Ŝ���
=exp� 1

2 ���â2−�â†2��, where �=rei�, r being the squeeze pa-
rameter, on the vacuum and one-photon states, respectively.
The parameter �=−ei� tanh r and clearly ����1. In the
squeezed vacuum state, only the even number states are
populated while in the squeezed one-photon state only the
odd appears. The corresponding photon number distributions
are given by

Pn
�0� = ��n��,0��2 = �1 − ���2�1/2� ��m + 1/2�

�m� ! ��1/2����2mn,2m, �16�

and

Pn
�1� = ��n��,1��2 = �1 − ���2�3/2� ��m + 3/2�

�m� ! ��3/2����2m+1n,2m+1.

�17�

In Fig. 2, we plot these distributions against n for the same
value of �. They are both thermal-like �they are generated a
spontaneous process�; but every other photon number state,
the odd in the former, the even in the latter, is missing. This
suggests that a superposition of the squeezed vacuum and
squeezed one-photon states might be close to the to the
phase-coherent states. But note that when juxtaposed on the
same graph, as in Fig. 3, the distributions do not smoothly
match the distribution for the phase-coherent state of Fig. 1,
there being an oscillation in the distribution not present for
the phase-coherent states. Thus, a balanced superposition of
the form ��� ,0�+ei�� ,1�� /
2 cannot represent or approxi-
mate a phase-coherent state.

We therefore consider a more general superposition of the
form

��SS� =
1


1 + ���2
���,0� + ���,1�� , �18�

which in terms of the number states can be expanded as
���=�n=0

� Cn�n�, where

Cn =�
1


1 + ���2
�1 − ���2�1/4� ��n + 1

2
�

�n

2
� ! ��1

2
��

1/2

�n/2, n even

�


1 + ���2
�1 − ���2�3/4� ��n + 2

2
�

�n − 1

2
� ! ��3

2
��

1/2

��n−1�/2, n odd.� �19�

We then search for parameters � and � such that ��� is a
close as possible to a target phase-coherent state �z�. To this
end, we calculate the fidelity

F = ��z��SS��2 = �1 − �z�2���
n=0

�

z�nCn�2

�20�

and numerically maximize it with respect to � and � for a
given value of z. We assume all these parameters to be real.

In Table I, we list for a series of values of z the corre-
sponding values of � and � obtained through maximizing F,
along with the corresponding value of F itself. We see that

the fidelity remains high, F�0.9, over the entire range con-
sidered. In Fig. 4, we plot together the photon number dis-
tributions of the corresponding phase-coherent states Pn

�PSC�

and that of the superposition state Pn
�SS�= ��n ��SS��2= �Cn�2 for

select values of the parameters from Table I. For low values
of z �0.1, 0.3, and 0.5�, we see that the photon number dis-
tributions are very closely matched. But as z increases to 0.7
and 0.9, the matching is not so good even though we still
have F�0.9. Thus, there appears to be smearing in the fi-
delity for these higher values of z. As a further comparison,
we plot the quasiprobability distribution known at the func-
tion Q function, given, for as an arbitrary pure state ���
=�n=0

� dn�n� are
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Q�x,y� = �������2 = e−���2��
n=0

�
����ndn

n!
�2

, �21�

where we have set �=x+ iy. In Figs. 5�a� and 5�b�, we plot to
corresponding Q functions for the PCS and the superposition
state, respectively, for z=0.3, and in Figs. 6�a� and 6�b� we
repeat for z=0.9. For the former value of z, the Q functions
are indistinguishable. For the latter, there is only a slight
difference. Both are elongated along the y direction and com-
pressed along the x direction, indicating the presence of
quadrature squeezing. The similarities of the Q functions of
the exact and approximate phase states is an independent
measure of the closeness of the two states. The squeezing
properties of the PCS were discussed by Kuang and Chen
�17�. The Wigner function, determined from

W�x,y� =
2

�
�D̂����− 1�â†âD̂�− ��� , �22�

we also calculate for our states and are shown in Figs. 7 and
8. Again, we find close resemblances of the Wigner functions
between the exact and approximate phase states. Note also
regions of phase space where the Wigner function is nega-
tive, an indication of the nonclassicality of the phase-
coherent states.

We notice from Table I that the values of � that we obtain
numerically are very close to the corresponding assigned val-
ues of z. This suggests that the PCS can be approximated by

�z� �
1


1 + �z�2
���,0� + z��,1�� . �23�

Evidently, we can then write

�− z� �
1


1 + �z�2
���,0� − z��,1�� �24�

and thus it follows that

��,0� �
1

2
�1 + �z�2�1/2��z� + �− z�� , �25�

exactly the result on the right-hand side obtained by Gerry et
al. �18� for normalized eigenstates of the square of the SG
phase operator, i.e.,

ê2��z� + �− z�� = z2��z� + �− z�� , �26�

where

ê2 = � 1


ââ†
â�2

. �27�

On the other hand, as shown by Agarwal �16�, the exact
squeezed vacuum state satisfies the eigenvalue problem

1

ââ† â2��,0� = ���,0� , �28�

where the operator on the left-hand side is the approximate
square of ê obtained by ignoring the commutation relation

�â , â†�= Î in Eq. �27�. Comparing Eqs. �26� and �28�, we
conclude that we should have ��z2, a relation that appears
to be born out in our results in Table I. Obviously, we can
write the approximate squeezed one-photon state as

��,1� �
1

2z
�1 + �z�2�1/2��z� − �− z�� , �29�

the right-hand side of which is also an eigenstate of ê2,
whereas the left-hand side is an eigenstate of the approxi-
mate form of this operator as given on the left-hand side of
Eq. �28� again leading to ��z2. Thus, we can write our
approximate phase state as

�z� �
1


1 + �z�2
��z2,0� + z�z2,1�� , �30�

where the squeezed vacuum and one-photon states are ap-
proximately

TABLE I. We list the values of �, �, and the fidelity F of Eq.
�20� obtained by numerically maximizing F for the given values of
z.

z � � F

0.1 0.0139671 0.0999974 0.999999

0.2 0.0539696 0.199931 0.99997

0.3 0.115547 0.299606 0.999716

0.4 0.19417 0.398845 0.998709

0.5 0.286957 0.497774 0.996107

0.6 0.393056 0.597011 0.990875

0.7 0.513417 0.697778 0.981808

0.8 0.650852 0.802258 0.9672

0.9 0.810526 0.914413 0.943402

FIG. 3. A composite of Figs. 2�a� and 2�b� for the purpose of
comparison.
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�z2,0� �
1

2
�1 + �z�2�1/2��z� + �− z�� , �31�

and

�z2,1� �
1

2z
�1 + �z�2�1/2��z� − �− z�� , �32�

respectively. The point of these last two equations, with �
�z2, is that to a good approximation the squeezed vacuum
and one-photon states form Schrödinger cat states, the even
and odd phase cats, respectively, analogous to the forms of

cat states given in terms of the ordinary coherent states of
Eq. �6�, i.e., the even and odd cat states ���� �−�� �19,20�.
Interestingly, a one-photon squeezed state well approximates
the odd cat state ���− �−�� for low ���. The even and odd cat
states are being considered as a basis for some optical quan-
tum computer schemes �21�.

III. GENERATION OF THE SUPERPOSITION STATES

We now discuss a method for producing our states. They
may be generated by the action of a degenerate parametric
down-converter on a prepared superposition state of the form

(b)

(a) (c)

(d)

(e)

FIG. 4. Plots of wherein the bars on the left �black� are from the photon number distributions of the PCS and those on the right �grey�
are from the superposition state whose parameters are determined by the numerical maximization of the fidelity as given in Table I, for �a�
z=0.3, �b� z=0.4, �c� z=0.5, �d� z=0.7, and �e� z=0.9.
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��0� =
1


1 + ���2
��0� + ��1�� . �33�

The interaction Hamiltonian for a degenerate parametric
down-converter can be written as

ĤI = i�
�2��â2b̂† − â†2b̂� , �34�

where the operators b̂ and b̂† describe pump field and where

�2� is the second-order nonlinear susceptibility of the crys-
tal. We shall the assume that the pump field is in a strong
coherent state ���b and we shall assume � is real so that we

may make the parametric approximation �PA� of replacing b̂

and b̂† by � to obtain

ĤI
PA = i���â2 − â†2� , �35�

where we have set �=
�2��. It then follows that exp�
−iĤIt /��= Ŝ�2�t� and thus that ��SS�= Ŝ�2�t���0�.

Lastly, we address the issue of the preparation of the ini-
tial state ��0� in Eq. �33�. Perhaps the best way of preparing
the state is through the technique of optical state truncation,
the device performing the truncation being known as a
“quantum scissors,” as developed by Pegg et al. �22�. The
method, which involves a nonlocal effect, truncates any pure
state of the form

��� = �0�0� + �1�1� + �2�2� + . . . = �
n=0

�

�n�n� �36�

to a superposition of the vacuum and one-photon states of
the form

���� =
1


��0�2 + ��1�2
��0�0� + �1�1�� . �37�

The quantum scissors device has been realized experimen-
tally �23�. Of course, as we said earlier, one does need to use
a single-photon source to perform the quantum scissor op-
eration and that would typically come from a nondegenerate
down-conversion process so that another 
�2� nonlinear inter-
action is required, but that this could be of some advantage
as the other twin photon can be used to herald the photon
needed to perform that quantum scissoring process and, thus,
signaling the generating of the initial state of the form of Eq.
�37�. There is also a dependence on outcomes of a measure-
ment involving only linear optics. Obviously, truncating the
coherent state of Eq. �6� in this fashion leads to the state of
Eq. �33�

IV. CONCLUSIONS

In summary, we have shown that a superposition of
squeezed vacuum and one-photon states can, to a good ap-
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and y for z=0.3 for �a� the PCS state and �b� the superposition state.
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FIG. 6. �Color online� Same as Fig. 5 but for z=0.9.
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proximation, represent phase-coherent states. We have fur-
ther shown that the states can be generated by the action of a
degenerate down-converter on a superposition of the vacuum
and one one-photon states and that latter state prepared from
a coherent state of the appropriate amplitude by the quantum
scissors method of quantum state truncation. To verify the
generation of our approximate phase states, it should be pos-
sible to perform quantum state tomography �24� to recon-

struct the Wigner function and thus compare it with the
Wigner function of the corresponding exact phase state.
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