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Within the framework of quantum field theory, we show that the photon system in a blackbody whose
interior is filled by a Kerr nonlinear crystal is in a condensation state. In the condensation state, bare photons
with opposite wave vectors and helicities are bound into pairs and unpaired bare photons are transformed into
a new kind of quasiparticle, the nonpolariton. The photon-pair system is a condensate and the nonpolariton
system is a boson gas. At zero temperature the condensate possesses a largest persistent energy density. The
persistent energy density of the condensate is a monotonically decreasing function of temperature and Kerr
nonlinear coefficient. The Q function of a Kerr nonlinear blackbody at any temperature is derived analytically.
In the transition from the normal to the condensation state, the phase symmetry of the photon system is
spontaneously broken.
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I. INTRODUCTION

Nowadays it is recognized that the Bose-Einstein conden-
sation is a common quantum property of the many-particle
systems in which the number of particles is conserved. These
many-particle systems include the systems of atoms, elec-
trons, and magnons in magnetic fields. The original Bose-
Einstein condensation is that an ideal gas of bosonic atoms
goes into a phase in which a macroscopic number of atoms
occupy the zero-momentum state. The superconducting state
of metals discovered by Kamerlingh Onnes in 1911 �1� is a
manifestation of the Bose-Einstein condensation of Cooper
pairs. A Cooper pair is an electron pair mediated by acoustic
phonons. The superfluid phase of liquid 4He discovered by
Kapitza in 1932 �2� can be viewed as a Bose-Einstein con-
densation among strongly interacting 4He atoms. In the year
1995, Cornell and Wieman observed Bose-Einstein conden-
sation in a vapor of rubidium-87 atoms at temperatures of
about 170 nanokelvins �3–5�. The magnetization of quantum
spin systems in magnetic fields is interpreted as a Bose-
Einstein condensation of repulsively interacting magnons
�6,7�.

The electromagnetic field is a quantum system of photons.
Since the number of photons is not conserved, the photon
system cannot undergo a Bose-Einstein condensation. In this
paper, we shall show that the photon system can undergo a
Bardeen-Cooper-Schrieffer �BCS� condensation. Now con-
sider a blackbody whose interior is filled by a Kerr nonlinear
crystal. The crystal constitutes a Kerr nonlinear medium for
the electromagnetic field. Further, the crystal is in thermal
equilibrium with the electromagnetic field. The crystal and
the thermal radiation constitute a system. We call this system
a Kerr nonlinear blackbody. Such a Kerr nonlinear black-
body can be regarded as a rectangular crystal that has per-
fectly conducting walls and is kept at a constant temperature
T. As shown in Fig. 1, there is a small hole in a wall through
which thermal radiation can pass. In a recent work �8,9�, we
have shown that a photon blackbody field in Kerr nonlinear
crystal is a squeezed thermal radiation state. In the present
paper, we shall show that the squeezed thermal radiation
state is a BCS condensation state. We shall investigate the
properties of the BCS condensation state in a Kerr nonlinear

blackbody. Inasmuch as such a condensation state was never
explored previously, features that are worthy of exploration
are pointed out here.

In an earlier work �10,11�, we showed that optical solitons
in nonlinear polar media can be in a photonic superguiding
state in which thermal scattering effects are suppressed, com-
pared to optical fibers for which thermal scattering is the
main source of soliton losses and noise. The electromagnetic
field in thermal equilibrium is called blackbody radiation or
thermal radiation. Within the framework of quantum field
theory, we show that the photon system in a Kerr nonlinear
blackbody is in a BCS condensation state. The bare photons
in blackbody radiation can sense an attractive effective inter-
action by exchange of virtual nonpolar phonons. Such an
interaction leads to a BCS condensation state, in which the
bare photons with opposite wave vectors and helicities are
bound into pairs and unpaired bare photons are transformed
into a new kind of quasiparticle, the nonpolariton. A nonpo-
lariton is the condensate of virtual nonpolar phonons in mo-
mentum space below a transition temperature through a non-
linear photon-phonon interaction, with a bare photon acting
as the nucleus of condensation. The vacuum for nonpolari-
tons is a condensate consisting of photon pairs and single
nonpolaritons are elementary excitations from such a con-
densate. The BCS condensation state of photons possesses
some peculiar properties. First, the photon-pair system is a
condensate and the condensate has a large persistent energy
density at zero temperature, compared with the normal black
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FIG. 1. A Kerr nonlinear blackbody: a rectangular Kerr nonlin-
ear crystal enclosed by perfectly conducting walls and kept at a
constant temperature; there is a very small hole in a wall.
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body whose energy density is zero at zero temperature. Sec-
ond, the nonpolariton system is a free boson gas and a single
nonpolariton is an elementary excitation from the conden-
sate. Third, in the transition from the normal state to the
condensation state, the phase symmetry of the photon system
is spontaneously broken. The predicted properties of the pho-
tonic condensation state will be verified in physics laborato-
ries for the not too distant future.

The remainder of this paper is organized as follows. Sec-
tion II describes some properties of a normal blackbody. In
Sec. III, we diagonalize the Hamiltonian of the photon sys-
tem in a Kerr nonlinear blackbody. Section IV describes
some properties of the photonic condensation state and gives
the numerical calculation of physical quantities concerned.
In Sec. V, we derive the Q function of a Kerr nonlinear
blackbody at any temperature. The comprehensive discus-
sion is given in Sec. VI.

II. NORMAL BLACKBODY

A. Quantization procedure

At the beginning of the 20th century the interpretation of
the blackbody radiation spectrum revealed the dual character
of electromagnetic radiation and became one of the origins
of quantum theory. By definition, a blackbody absorbs 100%
of all thermal radiation falling upon it. A close approxima-
tion to the blackbody is a small hole in a cavity in a solid that
is maintained at some steady absolute temperature T. We
shall call this system a normal blackbody. The electromag-
netic field is composed of mutually exciting electric and
magnetic fields E and B. The electromagnetic field is a trans-
verse field, propagates in vacuum with the speed c of light,
and satisfies the Maxwell equations. Since there are no free
charges in the blackbody, we can set the scalar potential of
the electromagnetic field to be zero. Hence, the electromag-
netic field can be characterized by a single vector potential
A, which satisfies the Coulomb gauge � ·A=0. Conse-
quently, the electric and magnetic fields are given by

E = −
�A

�t
, B = � � A . �1�

The Hamiltonian of the electromagnetic field reads as

Hem =� dr� �0

2
E2 +

1

2�0
B2� , �2�

where �0 and �0 are the permittivity and the permeability of
vacuum, respectively, with �0�0=c−2.

Now we need to quantize the electromagnetic field. Since
plane-wave modes constitute a complete orthonormal set,
they can be used for the expansion of the electromagnetic
field in any arbitrary geometry. The blackbody occupies a
volume V. In terms of the creation and annihilation operators
ak�

† and ak� of circularly polarized photons with wave vector
k and helicity �= �1, the vector potential of the electromag-
netic field is expanded as

A�r,t� = �
k�

� �

2V�0�k
�1/2

�ak��t�ek�eik·r + ak�
† �t�ek�

� e−ik·r� ,

�3�

where � is Planck’s constant reduced, �k=c	k	 is the angular
frequency of a photon, and ek,�1 are two orthonormal circu-
lar polarization vectors perpendicular to k. The photon op-
erators obey the Bose equal-time commutation relations,

�ak��t�,ak���
† �t��− = 	k,k�	���, �ak��t�,ak����t��− = 0.

�4�

They have the time dependence: ak��t�=ak��0�exp�−i�kt�
and ak�

† �t�=ak�
† �0�exp�i�kt�. On substituting Eqs. �1� and �3�

into Eq. �2�, the Hamiltonian of the electromagnetic field is
quantized as

Hem = �
k�

��kak�
† ak�, �5�

where the zero-point energy terms are dropped. Equation �5�
represents the Hamiltonian of the system of noninteracting
photons in a normal blackbody.

Nk�=ak�
† ak� are known as the number operators of pho-

tons. The number operators have the eigenvalues nk�

=0,1 ,2 , . . .. Since the number operators commute with Hem,
the number of photons in each mode k� is constant in time.
The number operators form a complete commuting set and
simultaneous eigenstates of this set are given by

	
nk��� = 

k�
� 1

�nk�!
�ak�

† �nk��	0� , �6�

where 	0� is the vacuum state of the electromagnetic field.
The state vector �6� is symmetric under the interchange of
any two creation operators, consistent with the Bose-Einstein
statistics. Because the number of photons is variable, the
chemical potential of the photon system is null. Conse-
quently, Hem is a grand canonical Hamiltonian.

B. Thermal radiation state

The state vector �6� signifies a multimode number state of
photons, which is a pure state and therefore far from thermal
equilibrium. However, the electromagnetic field within a
blackbody is in thermal equilibrium �12�. Such equilibrium is
established via the continual absorption and emission of pho-
tons by matter. The electromagnetic field in thermal equilib-
rium is called blackbody radiation and characterized by a
definite temperature T. The photons in blackbody radiation
are in a thermal radiation state, which is called a normal
state. In order to characterize the thermal radiation state, we
need to conceive a grand canonical ensemble of photons.
Some identical systems of the ensemble may be in an eigen-
state of the Hamiltonian Hem given by Eq. �5�, while the
distribution of the ensemble over the eigenstates is described
by the density operator of the thermal radiation state,
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 =
exp�− Hem/kBT�

Tr exp�− Hem/kBT�
, �7�

where kB is Boltzmann’s constant. The basis states used in
the trace are the eigenstates of the Hamiltonian Hem, which
are given by Eq. �6�. The main thermodynamic quantity in
normal blackbody radiation is the total energy En or the en-
ergy density un=En /V, which is the ensemble average of the
corresponding microscopic quantity,

En = �
k�

��k�Nk�� . �8�

Here we have utilized the average notation �Nk��
=Tr�
Nk��.

It is easily found that the ensemble average of the number
operator of photons in a mode k� satisfies the well-known
Bose-Einstein distribution,

�Nk�� =
1

e��k/kBT − 1
. �9�

Putting Eq. �9� into Eq. �8� and in the usual way altering the
summation to an integration, we obtain

En = V�
0

�


n��,T�d� , �10�


n��,T� =
�

�2c3

�3

e��/kBT − 1
. �11�

Equation �11� for the spectral energy density of blackbody
radiation is called Planck’s formula. The spectral energy den-
sity of blackbody radiation has a maximum at a frequency
�m defined by the equation

3 −
xex

ex − 1
= 0, �12�

where x=��m /kBT. The numerical solution of Eq. �12� gives

��m/kBT = 2.82144. �13�

With the new variable of integration x=�� /kBT, the re-
sulting integral in Eq. �10� is equal to �4 /15. Equation �10�
yields

En = 4�VT4/c , �14�

where �=�2kB
4 /60�3c2 is called the Stefan-Boltzmann con-

stant. Thus the total energy of blackbody radiation is propor-
tional to the fourth power of the temperature. This is the
Stefan-Boltzmann law. For future study, we need to write the
energy density of normal blackbody radiation,

un�T� = 4�T4/c . �15�

III. KERR NONLINEAR BLACKBODY

The model of a Kerr nonlinear blackbody was described
in Sec. I. The crystal under study is a covalent one. The
optical vibration modes of a covalent crystal are all the non-

polar modes that carry no electric-dipole moments, so they
are infrared inactive. For convenience the crystal is taken to
be of the cubic symmetry, so it is optically isotropic. A Kerr
nonlinear crystal must be centrosymmetric. By “nonlinear-
ity” we mean that the crystal is first-order Raman active.
Nonpolar modes in a centrosymmetric crystal have even par-
ity and are Raman active �13�. In the cubic system, the com-
mon covalent crystals that are both centrosymmetric and Ra-
man active have a diamond structure. At this point, the
crystal studied is determined as a specific crystal with a dia-
mond structure, such as C. In a diamond-structure crystal a
primitive cell contains two identical atoms that exhibit a tri-
ply degenerate nonpolar mode at zero wave vector, which is
Raman active. For the Raman-active mode the two atoms in
the primitive cell move in antiphase. Because the following
treatment has no relation to acoustic modes, the vibrational
modes of the crystal are limited to the Raman-active mode,
whose zero-wave-vector frequency is denoted by �R.

In Ref. �9� we have known that the interaction between
photons and phonons can lead to an attractive effective in-
teraction among the photons themselves. The attractive ef-
fective interaction leads to bound photon pairs. The physical
background for pairing is simple: A photon can emit or ab-
sorb a virtual nonpolar phonon. The emission of virtual non-
polar phonons by photons means that the photon is clothed
with a cloud of virtual nonpolar phonons. If a second photon
is near this cloud, it experiences a force of attraction. In the
standing-wave configuration a photon pair is stable only if
the two photons have opposite wave vectors and helicities.
The pair Hamiltonian of the photon system is

Hem� =
1

2�
k�

��k�ak�
† ak� + a−k,−�

† a−k,−��

+ �
k�,k���

Vk�,k���ak���
† a−k�,−��

† a−k,−�ak�, �16�

where the photons have the pair potential

Vk�,k��� = �− V0��k��k�, if �k and �k� 
 �R

0, otherwise,
�

�17�

where V0 is a positive constant. We shall assume that the
crystal has a dispersionfree refractive index n, so that the
photonic frequency is given by �k=c	k	 /n.

Unpaired bare photons in the photon system are trans-
formed into a new kind of quasiparticle, the nonpolariton. A
nonpolariton is the condensate of virtual nonpolar phonons
in momentum space, with a bare photon acting as the nucleus
of condensation. The diagonalization of the pair Hamiltonian
�16� can be performed by the Bogoliubov transformation,

ck� = Uak�U† = ak� cosh �k� − a−k,−�
† sinh �k�,

ck�
† = Uak�

† U† = ak�
† cosh �k� − a−k,−� sinh �k�, �18�

where the parameter �k� is assumed to be real and spheri-
cally symmetric: �−k,−�=�k�. ck�

† and ck� are the creation
and annihilation operators, respectively, of nonpolaritons in
the photon system; they also obey the Bose equal-time com-
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mutation relations like Eq. �4�. The transition from the op-
erators of bare photons to those of nonpolaritons can be ef-
fected by a unitary transformation,

U = exp�1

2�
k�

�k��ak�
† a−k,−�

† − a−k,−�ak��� . �19�

It is well known that the unitary transformation does not
change the energy spectrum of the photon system. The nor-
malized state vector of photon pairs in the photon system
may be constructed as 	G�=U	0�, such that ck�	G�=0.

As we know, the pair Hamiltonian �16� can be solved only
when the pair potential Vk�,k��� is negative. Under the mean-
field approximation �9�, the pair Hamiltonian of the photon
system is diagonalized into

Hem� = Ep + �
k�

��̃k�T�ck�
† ck�. �20�

The idea of a mean-field approximation was introduced by
the Weiss theory of ferromagnetism to deal with phase tran-
sitions �14�. Here the idea is that individual nonpolaritons
move independently in a mean field caused by all other pho-
tons, which includes parts of the photon-photon interaction.
The frequency of nonpolaritons is acquired as �̃k�T�
=v�T�	k	, where v�T� is the velocity of nonpolaritons deter-
mined by the equation

v�T� = 2�c/n�V0�
k

���k coth
�v�T�	k	

2kBT
, �21�

where the prefactor 2 arises from the summation over helici-
ties and the prime on the summation symbol means that �k

�R. Ep is the energy of the system of photon pairs, as
given by

Ep = �
k�
���k sinh2 �k�

+
1

4
sinh 2�k� �

k���

Vk�,k��� sinh 2�k���� , �22�

where the parameter �k� is determined by the relations

tanh 2�k� = ��T�, v�T� = �c/n��1 − �2�T� . �23�

��T� is the order parameter for pairing of photons.
The velocity v�T� determined by Eq. �21� is a monotoni-

cally increasing function of temperature T, which is equal to
c /n at the transition temperature Tc. In other words, the order
parameter ��T� is a monotonically decreasing function of
temperature T, which vanishes at the transition temperature
Tc. In Ref. �8� we have shown that below Tc the photon
system is in a squeezed thermal radiation state, in which the
photons with opposite wave vectors and helicities are bound
into pairs and unpaired photons are transformed into nonpo-
laritons. At Tc, both photon pairs and nonpolaritons become
single bare photons. Above Tc, a Kerr nonlinear blackbody
behaves like a normal blackbody.

IV. BCS CONDENSATION STATE OF PHOTONS

A. Formulas

For future study it will be convenient to define the number
operators Nk�=ck�

† ck� for nonpolaritons. The number opera-
tors have the eigenvalues nk�=0,1 ,2 ,¯. The eigenstates of
number operators Nk� are given by

	
nk��� = 

k�
� 1

�nk�!
�ck�

† �nk��	G� . �24�

The Hilbert space of the photon system is spanned by the
complete orthonormal basis vectors 	
nk���. We first point out
that the squeezed thermal radiation state of a Kerr nonlinear
blackbody is just the BCS condensation state of photons. In
order to characterize the photonic condensation state, we
need to conceive a grand canonical ensemble of nonpolari-
tons. Some identical systems of the ensemble may be in an
eigenstate of the Hamiltonian Hem� given by Eq. �20�, while
the distribution of the ensemble over the eigenstates is de-
scribed by the density operator of the photonic condensation
state,


 =
exp�− Hem� /kBT�

Tr exp�− Hem� /kBT�
, �25�

where the basis states used in the trace are the eigenstates of
the Hamiltonian Hem� , which are given by Eq. �24�.

We next point out that the system of photon pairs is the
condensate in a Kerr nonlinear blackbody. The energy of the
condensate is given by Ep, which is one main thermody-
namic quantity in a Kerr nonlinear blackbody. The gas of
free nonpolaritons constitutes the thermal radiation in a Kerr
nonlinear blackbody. Another main thermodynamic quantity
in a Kerr nonlinear blackbody is the energy Er of the thermal
radiation, as given by

Er = �
k�

��̃k�T��Nk�� . �26�

Therefore the photon system in a Kerr nonlinear blackbody
consists of the condensate and the thermal radiation.

Our first task is to calculate the energy Ep of the conden-
sate defined by Eq. �22�. From Eq. �23�, the hyperbolic sine
functions in Eq. �22� obtain the expressions in terms of the
velocity v�T� of nonpolaritons,

sinh2 �k� =
1

2
� c

nv�T�
− 1�,

sinh 2�k� = �� c

nv�T��2

− 1�1/2
. �27�

Further, the pair potential in Eq. �22� is given by Eq. �17�.
The insertion of Eqs. �17� and �27� into Eq. �22� leads to
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Ep = � c

nv�T�
− 1��1 − � c

nv�T�
+ 1�V0�

k
���k��

k
���k,

�28�

where the prime on the summation symbol means that �k

�R. It is useful to note that the Eq. �21� at zero temperature
reduces to

v�0� = 2�c/n�V0�
k

���k. �29�

On the other hand, the zero-temperature velocity of nonpo-
laritons can be written as v�0�=�c /n where � is a dimen-
sionless constant. The constant � is meaningful only if �

1 and is directly proportional to the Kerr nonlinear coeffi-
cient. Thereby Eq. �29� is simplified as

V0�
k

���k = �/2. �30�

Further, in the usual way it can be found that

�
k

���k = V��n�R

2�c
�3

��R. �31�

The substitution of Eqs. �30� and �31� into Eq. �28� yields the
final result: Ep�T�=Vup�T� and

up�T� = ��n�R

2�c
�3� c

nv�T�
− 1��1 −

�

2
� c

nv�T�
+ 1����R,

�32�

where up�T� is the persistent energy density of the conden-
sate. up�T� is a monotonically decreasing function of tem-
perature T. At zero temperature it attains a maximal value

up�0� =
�

2�
�n�R

2�c
�3

�1 − ��2��R, �33�

and at transition temperature Tc it is equal to zero.
Our second task is to calculate the energy Er of the ther-

mal radiation defined by Eq. �26�. It is easily found that the
ensemble average of the number operator of nonpolaritons in
a mode k� satisfies the well-known Bose-Einstein distribu-
tion,

�Nk�� =
1

e��̃k�T�/kBT − 1
. �34�

Putting Eq. �34� into Eq. �26� and in the usual way altering
the summation to an integration, we obtain

Er = V�
0

�


r��̃,T�d�̃ , �35�


r��̃,T� =
�

�2v3�T�
�̃3�T�

e��̃�T�/kBT − 1
, �36�

where �̃�T�=v�T�	k	. With the new variable of integration
x=��̃ /kBT, the resulting integral in Eq. �35� is equal to
�4 /15. Then Eq. �35� yields the result: Er�T�=Vur�T� and

ur�T� = 4��T�T4/v�T� , �37�

where ur�T� is the energy density of the thermal radiation
and ��T�=�2kB

4 /60�3v2�T� is the temperature-dependent
Stefan-Boltzmann constant. ur�T� is a monotonically increas-
ing function of temperature T and at zero temperature it is
equal to zero.

The photon-pair system is also a superfluid in a Kerr non-
linear blackbody. In the standing-wave configuration the
propagation velocity of the superfluid is zero. Hence the su-
perfluid has no contribution to the radiation pressure. The gas
of free nonpolaritons constitutes the normal fluid in a Kerr
nonlinear blackbody. In the standing-wave configuration the
normal fluid has a definite propagation velocity. Therefore
the normal fluid makes a contribution to the radiation pres-
sure. The photon system in a Kerr nonlinear blackbody con-
sists of the superfluid and normal fluid. The analogy has the
following advantage: in a traveling-wave configuration, the
propagation of the photon-pair system gets rid of thermal
scattering effects but nonpolaritons suffer thermal scattering.
The analogy has the following significance: when propagat-
ing in an optical fiber the photon-pair system carries a per-
sistent light intensity and hence we can realize repeaterless
optical communications.

B. Numerical calculation

To make a numerical calculation, we take the diamond
crystal as a Kerr nonlinear crystal. The zero-wave-vector fre-
quency of the Raman-active mode of the diamond crystal is
�R=2.51�1014 s−1 �13�. For convenience, we set the refrac-
tive index n=1, such that the Kerr nonlinear blackbody can
be compared with the normal blackbody. As known, transi-
tion temperature Tc depends on dimensionless parameter �.
Tc=464.9 K at �=0.9. The energy density ur�T� of the ther-
mal radiation in a Kerr nonlinear blackbody depends on di-
mensionless parameter � and thus we set �=0.9. The varia-
tion in ur�T� with relative temperature x=kBT /��R is shown
in Fig. 2 using the dotted-dashed line, where temperature T
varies from zero to transition temperature Tc. Figure 2 also
shows the energy density up�T� of the condensate and the
energy density un�T� of the normal blackbody, using the
dashed and solid lines, respectively. There are the three fea-
tures: �1� ur�T� and un�T� are monotonically increasing func-
tions of T while up�T� is a monotonically decreasing func-
tions of T; �2� at zero temperature up�0�=1.093 �J m−3 but
ur�0�=un�0�=0 and at transition temperature Tcup�Tc�=0 but
ur�Tc�=un�Tc�=35.273 �J m−3; �3� as 0
T
Tc, un�T�

ur�T�.

At this point, we must point out that the value �=0.9 used
in the above figure is proper. In order to give reasons, we
select the persistent energy density for example. As known,
transition temperature Tc depends on dimensionless param-
eter �, i.e., Tc=Tc���. Now we need to introduce a new rela-
tive temperature T /Tc���. For varying relative temperature
T /Tc���, Fig. 3 shows variation in the persistent energy den-
sity up with the parameter �. The persistent energy density is
a monotonically decreasing function of the parameter � at a
fixed relative temperature. The reason for this is as follows.
The parameter � signifies the coupling strength between a
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bare photon and virtual nonpolar phonons. The larger the
parameter � is, the smaller the coupling strength is. A photon
pair consists of two bare photons and virtual nonpolar
phonons. When the parameter � is increased, the nonpolar
phonon weight in a photon pair is decreased, so that the
energy of the photon-pair system becomes smaller. In the
strong-coupling limit 0
��1, the energy of the photon-pair
system is largest. We have made a rude approximation that
the refractive index of the crystal is taken to be n=1. In
quality this approximation does not affect our conclusions. In
fact the refractive index n of the crystal is larger than one. If
the refractive index n of the crystal takes its real value, in
quantity the spectral energy density, energy density, and ra-
diation pressure of a Kerr nonlinear blackbody become larger
correspondingly. The numerical calculation shows that the
BCS condensation state of photons exists indeed.

V. Q FUNCTION

The quasiprobability functions such as the Glauber-
Sudarshan P, Wigner W, and Q functions are widely used to
describe quantum states of the electromagnetic field �15,16�.
However, when compared with other quasiprobability func-
tions, the Q function has many advantages, such as non-
negative, well behaved, and simply expressed, which bring
the Q function into a subject of increasing interest in quan-
tum optics. The quasiprobability distribution of Q function
was first introduced by Cahill and Glauber to reflect the dis-
tribution of the density operator in the phase space �16�. If
we want to expound the statistical properties of a Kerr non-
linear blackbody, we need to calculate the expression of the
Q function of a Kerr nonlinear blackbody at any temperature.

In order to complete the task, we first discuss the BCS
condensation state of the photon system below the transition
temperature Tc. Photon pairs and nonpolaritons coexist in the
BCS condensation state. The subsystem of photon pairs is in
a many-mode squeezed vacuum state 	G�=U	0�, where the
many-mode squeeze operator U is given by Eq. �19�. The
subsystem of nonpolaritons is in the squeezed thermal radia-
tion state. With a single-mode index �=k�, we concentrate
on a single-mode squeezed vacuum state 	r��=S�r��	0�,
where the single-mode squeeze operator S�r�� is given by

S�r�� = exp� 1
2r��a�

2 − a�
†2�� , �38�

with r�=−�� being a real number. The single-mode
squeezed number state of nonpolaritons is defined by

	n�,r�� =
1

�n�!
�c�

† �n�	r�� , �39�

where n�=0,1 ,2 , . . .. One can also introduce the single-
mode squeezed coherent state of nonpolaritons: 	�� ,r��
=D����	r��, where D���� is the so-called displacement op-
erator

D���� = exp���c�
† − ��

� c�� , �40�

with �� being a complex number. Further one can introduce
the density operator of the squeezed thermal radiation state
of the �th mode,


� =
exp�− ��̃��T�N�/kBT�

Tr exp�− ��̃��T�N�/kBT�
, �41�

where N�=c�
† c� is the number operator of nonpolaritons.

Note that the operators c�
† and c� of nonpolaritons are related

to the operators a�
† and a� of photons through Eq. �18�.

In terms of the squeezed number states, the density opera-
tor of the squeezed thermal radiation state can be expressed
as


� = �
n�=0

�
�N��n�

�1 + �N���n�+1 	n�,r���n�,r�	 , �42�

where the mean number �N�� of nonpolaritons of the �th
mode is given by Eq. �9�. Alternatively, in terms of the
squeezed coherent states, the density operator of the
squeezed thermal radiation state can be expressed as
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� =� d2�����N���−1exp�−
	��	2

�N��
�	��,r�����,r�	

=� d2�����N���−1exp�−
	��	2

�N��
�D����S�r��	0�

��0	S†�r��D†���� . �43�

Now we need to introduce the single-mode coherent state of
photons: 	���=D����	0�, where

D���� = exp���a�
† − ��

� a�� , �44�

In quantum optics, it is well known that the probability of
finding the �th mode in the state 	��� is defined by the Q
representation

Q���� =
1

�
���	
�	��� . �45�

From this definition, we obtain the Q representation for the
squeezed thermal radiation state,

Q���� =� d2�����N���−1exp�−
	��	2

�N��
�QSC���,��� ,

�46�

where QSC��� ,��� is the Q representation for the squeezed
coherent state and is given by

QSC���,��� =
1

�
	���	D����S�r��	0�	2. �47�

It is convenient to write down ��=�x+ i�y, where �x and
�y are the real and imaginary parts of ��, respectively. Em-
ploying Eq. �18�, we can rewrite the displacement operator
D���� as

D���� = D���� � = exp����a�
† − ���

�a�� , �48�

where ��� is given by

��� = �� cosh r� − ��
� sinh r� = �x exp�− r�� + i�y exp�r�� .

�49�

It is easily shown that

QSC���,��� =
1

�
	��� − ��� 	S�r��	0�	2. �50�

We now factorize the squeeze operator into a product of
exponentials following Schumaker and Caves �17�,

S�r�� =
1

�cosh r�

exp�−
1

2
�tanh r��a�

†2�
��cosh r��−a�

† a�exp�1

2
�tanh r��a�

2� . �51�

Substituting Eq. �51� into Eq. �50� we find immediately that

QSC���,��� =
1

� cosh r�

exp�− 2��y − �ye
r��2/�1 + e2r��

− 2��x − �xe
−r��2/�1 + e−2r��� . �52�

Substituting Eq. �52� into Eq. �46� and after straightforward
algebra �18�, we find the Q representation for the squeezed
thermal radiation state,

Q���� =
1

��N��cosh r�

1
��1 + 1/�N���2 − tanh2 r�

�exp�−
1

2
tanh r����

2 + ��
�2� − 	��	2

+
1/cosh2 r�

�1 + 1/�N���2 − tanh2 r�
��1 + 1/�N���	��	2

+
1

2
tanh r����

2 + ��
�2��� . �53�

At this point, we examine the two limiting cases of Q����
given by Eq. �53�. In the case of T�Tc, the photon system in
a Kerr nonlinear blackbody goes into a normal thermal ra-
diation state and so r�=0. The Q representation of the nor-
mal thermal radiation state is given by a Gaussian distribu-
tion,

Q���� =
1

��1 + �N���
exp�−

	��	2

1 + �N��
� . �54�

The real and imaginary parts of �� represent two quadrature
phase variables, hence there is an equipartition of Q���� in
the phase space. Therefore, the Q representation of the nor-
mal thermal radiation state has phase symmetry. In the case
of T=0 K, the photon system in a Kerr nonlinear blackbody
goes into a squeezed vacuum state 	G�=U	0� and so �N��
=0. The Q representation of the squeezed vacuum state is
given by

Q���� =
sech r�

�
exp�− ��x

2 + �y
2� − ��x

2 − �y
2�tanh r�� .

�55�

Hence there is an unequal partition of Q���� in the phase
space. Therefore, the Q representation of the squeezed
vacuum state apparently lacks phase symmetry. We conclude
that in the transition from the normal to the BCS condensa-
tion state, the phase symmetry is spontaneously broken.

In Eq. �53�, the distribution of Q���� function depends
strongly on temperature T, Kerr nonlinear coefficient �, and
frequency �k. One will display the distribution graph of
Q���� function on the �� plane. To this end, we fix fre-
quency �k=�R and parameter �=0.6. At �=0.6 the transi-
tion temperature is Tc=1026.8 K. We first let temperature
T=1200 K. In this case the Kerr nonlinear blackbody is in a
normal thermal radiation state, whose Q function is given by
Eq. �54�. Figure 4 shows the three-dimensional contour plots
of Eq. �54� on the �� plane. It is apparent that the Q����
distribution in the normal thermal radiation state is a circle
distribution where a peak appears at the center ��= �0,0�.
We then let temperature T=0 K. In this case the Kerr non-

CONDENSATION STATE OF PHOTONS IN A KERR… PHYSICAL REVIEW A 80, 033826 �2009�

033826-7



linear blackbody is in a BCS condensation state, whose Q
function is given by Eq. �55�. Figure 5 shows the three-
dimensional contour plots of Eq. �55� on the �� plane. One
can observe that the Q���� distribution in the BCS conden-
sation state is an ellipse distribution where the rings are more
prolate with decreasing of parameter �. The ellipse distribu-
tion becomes the circle distribution as temperature increases
from zero to Tc.

VI. DISCUSSION

The principal point of discussion in this paper is that the
photon system in a Kerr nonlinear blackbody below transi-
tion temperature is in the BCS condensation state. The pho-
ton system in the BCS condensation state possesses the
squeezing property. The photon system in the BCS conden-
sation state consists of two parts: the superfluid consisting of
photon pairs and the normal fluid consisting of individual
nonpolaritons. The superfluid acts as a vacuum for the nor-

mal fluid. At zero temperature the superfluid possesses a
largest persistent energy density. The energy density up�T� of
the superfluid is a monotonically decreasing function of tem-
perature T, whereas the energy density of the normal fluid is
a monotonically increasing function of temperature T. It is
easy to understand why the energy density up�T� decreases
with increasing of temperature. The superfluid is a conden-
sate of photon pairs. The energy density up�T� measures the
number of photon pairs in the superfluid. As the temperature
is increased, some photon pairs evaporate out of the conden-
sate into individual bare photons, so the energy density of the
condensate becomes small. As the temperature approaches
transition temperature Tc, all photon pairs evaporate, so the
superfluid vanishes.

In a normal blackbody, the energy of the vacuum state of
the electromagnetic field is the zero-point energy of the bare
photon system, which is an infinite quantity. The vacuum
energy is unobservable but can produce many observable
effects. Among them are the spontaneous emission of an
atom, the Lamb shift, and the Casimir effect. However, in a
Kerr nonlinear blackbody below transition temperature, the
vacuum state of the electromagnetic field is a squeezed
vacuum state, which is called an effective vacuum state. The
energy of the effective vacuum state is the zero-point energy
of the nonpolariton system plus the energy Ep of the photon-
pair system. Therefore, the zero-point fluctuation of the elec-
tromagnetic field in a Kerr nonlinear blackbody below tran-
sition temperature is larger than that in a normal blackbody.
We conclude that atomic spontaneous emission in a Kerr
nonlinear blackbody is enhanced. A key physical function in
quantum optics is the density of states of photons. In a nor-
mal blackbody, the density of states of photons is given by


��k� = V�k
2/�2�c/n�3. �56�

However, in a Kerr nonlinear blackbody, single photons are
replaced by nonpolaritons. The density of states of nonpo-
laritons takes the following form:


��̃k�T�� = V�̃k
2�T�/�2v3�T� . �57�

It is interesting to note that the velocity v�T� of nonpolaritons
is smaller than the velocity c /n of photons. Thus, the density
of states in a Kerr nonlinear blackbody can be much larger
than that in a normal blackbody. The slow velocity of non-
polaritons can also produce many observable effects.

In this paper, we have investigated the Q function distri-
bution of the photon field in a Kerr nonlinear blackbody. As
known to all, in a normal blackbody, the distribution of Q
function depends only on the average photon number and is
a Gaussian distribution. However, in the Kerr nonlinear
blackbody below transition temperature Tc, we have found
that the Q function is strongly dependent on temperature T,
Kerr nonlinear coefficient �, and frequency �k. We have also
found that the distribution of Q function is an ellipse distri-
bution. The ellipse distribution becomes the circle distribu-
tion as temperature increases from zero to Tc. The distribu-
tion of Q function in a Kerr nonlinear blackbody presents a
richer structure than that in a normal blackbody.

Now we examine the probable candidates of a Kerr non-
linear blackbody in which the BCS condensation state of

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
0

0.05

0.1

0.15

0.2

0.25

α
x

α
y

Q
(α

)

FIG. 4. �Color online� The three-dimensional contour plots of Q
function of a normal blackbody at temperature T=1200 K.
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photons exists. In the following, we enumerate the three can-
didates. The first candidate is the universe. As is known to
all, the universe erupted in a Big Bang about 20 billion years
ago and the universe is a blackbody. In the present universe,
the vacuum speed of light is 300 000 km per second. How-
ever, in the early universe, the vacuum speed of light is much
larger than this value. In the early universe, there is a con-
siderable amount of light neutral spin-zero bosons, which are
called axions. Here it is accentuated that axions are specu-
lated to exist. The interaction between photons and axions
can lead to an attractive effective interaction among the pho-
tons themselves. The attractive effective interaction leads to
bound photon pairs. Therefore, the universe is a big Kerr
nonlinear blackbody. The system of photon pairs is a dark
matter in the cosmology. The dark matter possesses the mass
M =Ep�T� /c2 and thus can produce gravitation to bright mat-
ters in the universe. In 1965, Penzias and Wilson discovered
the cosmic microwave radiation background and here we
point out that one can observe a squeezing effect in the cos-
mic microwave radiation background. The second candidate
is a blackbody whose interior is filled by a liquid neon. In
such a Kerr nonlinear blackbody, one can observe an unusual
Casimir effect. The third candidate has been investigated in
the present paper. From the above description, one has many

means to detect a BCS condensation state of photons.
To sum up, we have proposed a BCS condensation state

of photons in a blackbody whose interior is filled by a Kerr
nonlinear crystal. The photon system in the BCS condensa-
tion state consists of photon pairs and individual nonpolari-
tons. The system of photon pairs is a superfluid and the sys-
tem of individual nonpolaritons is a normal fluid. At zero
temperature the superfluid possesses a largest persistent en-
ergy density. The persistent energy density of the superfluid
is a monotonically decreasing function of temperature and
Kerr nonlinear coefficient. The energy density of the normal
fluid can be much larger than that of a normal blackbody.
The Q function of a Kerr nonlinear blackbody at any tem-
perature is derived analytically. In the transition from the
normal to the condensation state, the phase symmetry of the
photon system is spontaneously broken. The predicted prop-
erties of photonic condensation state are hopeful to be veri-
fied in physics laboratories for the not too distant future.
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