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Dynamic self-similar solutions of the nonlinear Schrödinger equation are derived describing the propagation
of partially coherent solitons in media with saturable logarithmic nonlinearity. The analysis is based on both the
Wigner and the coherent density formalisms and it is shown that although the approaches involve different
analysis, the solutions for the evolution of the physically relevant intensity distributions are equivalent.
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I. INTRODUCTION

During recent years, a strong research effort has followed
the observation that soliton formation is not exclusively as-
sociated with coherent waves, but can occur also for partially
coherent waves �1,2�. In situations where the response time
of the medium is long compared to the characteristic time of
the statistical wave intensity fluctuations of the field, the me-
dium experiences only the statistical average of the wave
intensity and concomitantly the nonlinear change of the re-
fractive index also depends only on the statistical average of
the wave intensity rather than on the instantaneous intensity
as for the case of coherent waves.

Several theories have been developed for describing
propagation of partially incoherent waves in nonlinear opti-
cal media: the mutual coherence function approach �3�, the
self-consistent multimode theory �4�, the coherent density
method �5�, and the Wigner approach �6�. These methods can
be viewed as nonlinear generalizations of previous classical
methods for analyzing linear propagation of partially coher-
ent light and have been shown to be equivalent �7,8�, al-
though the choice of the most suitable approach may depend
on the nature of the physical problem to be investigated.

Most interest has been focused on soliton behavior in
nonlinear Kerr media. However, few analytical solutions
have been found of the corresponding nonlinear Schrödinger
�NLS� equation where the nonlinearity is determined by the
statistical average of the wave intensity, ����2�, with � denot-
ing the slowly varying wave envelope function. A more be-
nign type of nonlinearity from the point of view of analysis
is the logarithmic nonlinearity where the change in refractive
index is proportional to ln����2�. In this case, explicit soliton
solutions of Gaussian form have been found for the coherent
case �9� and later for partially coherent waves using the co-
herent density approach �10� and the coupled-mode theory
�11� �although in the latter cases, only for the stationary
case�, as well as by means of the mutual coherence approach
�12�. The purpose of the present work is to reconsider the
problem of propagation of partially coherent light solitons in
media with logarithmic nonlinearity with special emphasis
on the dynamic propagation of nonstationary solitons. A
comparative analysis is made by using two alternative ap-
proaches based on both the Wigner function and the coherent

density function where the stationary solution obtained in
�10� is generalized to the dynamic case. Although the differ-
ent approaches involve different analyses, the solutions for
the evolution of the physically relevant intensity distributions
of the solitons are shown to be the same. However, for the
present application, the Wigner approach seems to provide a
more direct solution procedure, similar to that of the mutual
coherence approach, and gives a clearer picture of the influ-
ence of the partial coherence on the soliton dynamics.

II. WIGNER APPROACH

Propagation of partially coherent light in a logarithmic
saturable nonlinear medium is determined �in normalized
variables� by the following nonlinear Schrödinger equation
�10–13�:

i
��

�z
+

1

2

�2�

�x2 + ln����2�� = 0. �1�

In the Wigner approach for describing propagation of par-
tially coherent waves, Eq. �1� is transformed to phase space
by means of the Wigner transform

��x,p,z� =
1

2�
�

−�

�

����x + �/2,z���x − �/2,z��eip�d� .

�2�

The Wigner distribution function ��x , p ,z� is a quasiprob-
ability distribution function that in the present problem can
be shown to satisfy the following Wigner-Moyal evolution
equation:

��

�z
+ p

��

�x
+ 2 ln����2�sin	1

2

��

�x

��

�p

� = 0, �3�

where the arrows in the sine operator indicate the direction of
the respective operations. This equation is to be solved to-
gether with the following relation between the averaged
wave field intensity and the Wigner function:

����2� = �
−�

�

��x,p,z�dp . �4�

The analytically simplifying property of the logarithmic non-
linearity is that it allows Gaussian-shaped solutions �cf. Refs.
�9–13��. Thus, in order to solve Eq. �3�, we look for a self-
similar Gaussian solution of the form*tobhan@chalmers.se
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��x,p,z� = A�z�exp�− a�z�x2 − b�z�p2 + c�z�xp� , �5�

which has the corresponding intensity distribution

����2� =��

b
A exp�−

4ab − c2

4b
x2
 . �6�

Inserting this ansatz into Eq. �3�, we note that the sine op-
erator truncates after its first term and after identifying coef-
ficients for x and p, we find the following evolution equa-
tions for the parameter functions:

A��z� = 0, �7�

a��z� = −
c

2b
�4ab − c2� , �8�

b��z� = c , �9�

c��z� = 2a − �4ab − c2� . �10�

The first evolution equation immediately gives
A�z�=A0=const, i.e., the amplitude of the Wigner distribu-
tion is a constant. The remaining nonlinear equations for the
parameters a ,b, and c are easily rewritten in the form of two
invariants and a single equation for the parameter b,

4ab − c2 = C1 = const; a +
C1

2
ln b = C2 = const, �11�

�b��z��2 = 4C2b − 2C1b ln b − C1. �12�

Equation �12� describes the evolution of the dynamic
intensity width parameter b�z� �cf. Eq. �6� and note that
4ab−c2=C1=const� and is equivalent to that obtained in
�12� using the mutual coherence function approach.

The constants of motion found above are closely related
to the properties of the moments of the Wigner function,
which generally can be defined as, cf. �15�,

xipj � �
−�

� �
−�

�

xipj��x,p,z�dxdp . �13�

For the zeroth-order moment, one finds

�
−�

�

����2�dx � N = const �14�

and the second-order moments give

d

dz
x2 = 2xp , �15�

d

dz
xp = p2 − N , �16�

p2 − 2�
−�

�

����2�ln����2�dx � H = const. �17�

The constants N and H correspond to conservations of the
energy and of the Hamiltonian of the system, respectively.

Using these moments, it is straightforward to show that the
combination 4ab−c2=C1 is a constant directly related to the
energy whereas the other combination, a+ �C1 /2�ln b=C2, is
associated with the Hamiltonian.

The argument of the exponential in Eq. �5� can be written
in a form which gives some further insight to the interpreta-
tion of the parameters

ax2 + bp2 − cxp =
4ab − c2

4b
x2 + b	p −

c

2b
x
2

. �18�

The factor c
2bx in the combination p− c

2bx may be interpreted
as a “chirp” function since it implies a shift of the variable p
in the Wigner function such that one can write �cf. �14��

�C�x,p,z� = �UC	x,p −
c

2b
x,z
 . �19�

where the subscripts C and UC denote chirped and unchirped
Wigner distributions, respectively. A complementary result is
obtained if the Wigner function is subjected to a translation
transformation

�T�x,p,z� = �UT�x − ��z�,p − ��z�,z� , �20�

where indices T and UT denote translated and untranslated
Wigner functions, respectively. If ��z�=�0z+�0 and
��z�=�0=const, Eq. �5� remains a solution and is given by
the form

��x,p,z� = A�z�exp�− a�z��x − ��z��2 − b�z��p − ��z��2

+ c�z��x − ��z���p − ��z��� , �21�

with the corresponding intensity distribution

����2� =��

b
A exp�−

4ab − c2

4b
�x − ��2
 . �22�

Since the combination 4ab−c2 is a constant of motion,
the parameter b characterizes the width of the intensity
distribution. A solution of the equation for the evolution of
this parameter in the nonstationary case, Eq. �12�, has not
been found in explicit analytical form. However, the
stationary case is easily analyzed since the stationary
widths of the Wigner distribution in x and p are determined
directly from Eqs. �8�–�10� using the conditions
a��z�=b��z�=c��z�=0, which directly imply that c=0 and
b=1 /2. Assuming that the stochastic variation of the
partially coherent wave has a Gaussian spectral distribution,
J�	�= �1 /�2�	0

2�exp�−	2 / �2	0
2��, where the parameter 	0

characterizes the width of the spectrum, i.e., the degree of
partial incoherence, the parameter b can easily be expressed
in terms of a and 	0, viz. b= �a+2	0

2�−1 �cf. �15��, and the
squared inverse width of the stationary intensity distribution
is found to be determined by a=2�1−	0

2� in agreement with
the corresponding results of �10,12�.

III. COHERENT DENSITY APPROACH

It is instructive to carry out the corresponding analysis in
terms of the coherent density formalism. Such an analysis
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was reported in �10�, but only for the stationary case. In the
present work, we will generalize this by considering the dy-
namic situation. The evolution equation for the coherent den-
sity function F�x ,	 ,z� corresponding to the NLS equation,
Eq. �1�, is

i	 �F

�z
+ 	

�F

�x

 +

1

2

�2F

�x2 + ln�IN�x,z��F = 0, �23�

together with the �separable� initial condition F�x ,	 ,0�
=�J�	�
�x�, where J�	� will be taken as the normalized
Gaussian spectrum used above and 
�x� is the initial spatial
profile �also to be assumed Gaussian�.

The intensity is coupled to the coherent density function
through the relation

IN�x,z� = �
−�

�

�F�x,	,z��2d	 . �24�

By means of a simple transformation F�x ,	 ,z�
= f�x ,	 ,z�exp�−i	x+ i	2z /2�, Eq. �23� may be put in the
same form as the NLS equation, Eq. �1�,

i
� f

�z
+

1

2

�2f

�x2 + ln�I�x,z��f = 0, �25�

with

I�x,z� = �
−�

�

�f�x,	,z��2d	 . �26�

Equation �23� has previously been solved under the as-
sumption of a nonmoving solution with a stationary intensity
profile �10�. Generalizing this solution, a nonstationary and
moving solution of Eq. �25� would need an ansatz of the
following form:

f�x,	,z� = A�z��J�	�exp�−
�x − ��z� − 	��z��2

2a�z�2 + i���z�

+ 	��z� + ��z�x + 	��z�x + 	2
�z� + ��z�x2�� .

�27�

The corresponding intensity distribution is

I�x,z� =
aA2

�a2 + 2	0
2�2

exp�−
�x − ��2

a2 + 2	0
2�2
 . �28�

The parameters in this ansatz can be given the following
interpretation. A�z� is an amplitude function and a�z� is the
width in the coherent limit. The parameter ��z� may be con-
sidered as a coherent translation while ��z� is a partially co-
herent translation that is proportional to 	. Correspondingly,
��z� is a coherent and ��z� a partially coherent frequency
and translation velocity respectively. Finally, ��z� determines
the chirp variation and ��z� is a 	 independent phase while
��z� and 
�z� are phase parameters involving the 	 depen-
dence.

Inserting this ansatz into Eqs. �25� and �26�, separating
real and imaginary parts, and collecting powers of x and 	
yield a complicated system of ten coupled nonlinear param-

eter equations. By a careful inspection of these equations, it
is found that this system can be significantly simplified by
using a more convenient ansatz for the phase. Thus, instead
of the ansatz given by Eq. �27�, we write

f�x,	,z� = A�z��J�	�exp�−
�x − ��z� − 	b�z�/�2	0

2�2

2a2�z�

+ i���z� + 	��z� + ��z��x − ��z�/2�

+ 	
��z�
�2	0

2
�x − ��z� − 	b�z�/�2�2	0

2�� + 	2
�z�

+
��z�

2a�z�
�x − ��z� − 	b�z�/�2	0

2�2�� . �29�

The intensity distribution remains the same as before except
for the rescaling of ���→b /�2	0

2�,

I�x,z� =
aA2

�a2 + b2
exp�−

�x − ��2

a2 + b2 
 . �30�

Inserting the new ansatz into Eqs. �25� and �26�, separating
real and imaginary parts, and matching powers of x and 	,
the following system of ten coupled nonlinear equations for
the parameters is obtained:

A��z� = −
A�

2a
, �31�

���z� = −
1

2a2 + ln	 aA2

�a2 + b2
 , �32�

���z� = � , �33�

���z� = 0, �34�

���z� = 0, �35�


��z� = 0, �36�

a��z� = � , �37�

b��z� = � , �38�

���z� =
1

a3 −
2a

a2 + b2 , �39�

���z� = −
2b

a2 + b2 . �40�

It is immediately seen that ��z�=�0, ��z�=�0z+�0, ��z�
=�0, and 
�z�=
0. Furthermore, Eq. �32� for the phase con-
tribution ��z� is unimportant in the present context since it
does not affect the dynamics of the intensity distribution, Eq.
�30�. However, the remaining system of coupled parameter
equations contains important information about the dynamics
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of the solution. From Eqs. �31� and �37�, we directly infer
that aA2=const. Thus, the main features of the soliton dy-
namics is contained in the last four equations which can be
written as the following second-order system of coupled dif-
ferential equations for the two parameters a and b that deter-
mine the dynamics of the intensity distribution:

a��z� =
1

a3 −
2a

a2 + b2 , �41�

b��z� = −
2b

a2 + b2 . �42�

The Hamiltonian of this system is easily identified as

H �
1

2
�a��2 +

1

2
�b��2 +

1

2a2 + ln�a2 + b2� = const. �43�

This relation could alternatively have been derived by noting
that the constants of motion, Eqs. �14� and �17� of the
Wigner formalism, generalize to

�
−�

�

I�x,z�dx � Ñ = const �44�

and

�
−�

� 	�
−�

� � � f�x,	,z�
�x

�2

d	 − 2I�x,z�ln I�x,z�
dx � H̃ = const

�45�

in terms of the coherent density function.
The physically important quantity characterizing the

width of the intensity profile is W�z��a2�z�+b2�z� �cf. Eq.
�30��. Using Eqs. �37�–�43�, it is possible to derive the fol-
lowing evolution equation for the parameter W:

�W��z��2 = 8HW − 8W ln W − C , �46�

where C is a constant of integration. Comparing to the cor-
responding result in the Wigner case �Eq. �12��, it is clear
that the dynamic behaviors of the intensity widths in the two
representations are identical.

The result in the stationary case can be obtained as fol-
lows. The ansatz function must be matched to the �nonsepa-
rable� initial condition

f�x,	,0� = A�J�	�exp	−
x2

2a0
2 + i	x
 . �47�

This requires

��0� = ��0� = ��0� = ��0� = 
�0� = ��0� ,

b�0� = 0, a�0� = a0, ��0�/�2	0
2 = 1. �48�

The condition W=a2+b2=const implies W=a0
2 and requires

W�=H−ln W−1=0. The value of the Hamiltonian is ob-
tained by noting that a��0�=��0�=0 and b��0�=��0�=�2	0

2,
which implies

1 = H − ln W =
1

2
�b��0��2 +

1

2a0
2 = 	0

2 +
1

2a0
2 = 	0

2 +
1

2W

�49�

and the stationary width �squared� is given by
W=1 / �2�1−	0

2��, in agreement with the result obtained by
the Wigner analysis.

In order to analyze the nonstationary case, the integration
constant C in Eq. �46� can be replaced by a new more con-

venient invariant, C̃, defined as

C̃2 �
C

4
− 1 =

b2

a2 + �a� − b��2. �50�

The invariance of this quantity can also be proved by using

the Poisson bracket �H , C̃� corresponding to the Hamiltonian
given by Eq. �43�.

Equation �50� can be viewed as expressing a trigonomet-
ric identity by making the following substitutions:

b

a
= C̃ sin	�

0

z 1

a2dz� + D
 , �51�

a� − b� = C̃ cos	�
0

z 1

a2dz� + D
 , �52�

where D is a constant determined by initial conditions. Equa-
tion �51� directly expresses b as a function of a and can be
used to decouple the system �41� and �42� to obtain a single
�integrodifferential� equation for the parameter a�z�,

a��z� =
1

a3 −
2

a�1 + C̃2 sin2	�0
z 1

a2dz� + D

 . �53�

This equation implies a qualitatively new feature for the par-
tially coherent dynamics in the sense that the dynamics de-
pends, not only on the instantaneous state of the system in
terms of the coherent width a and the displacement b asso-
ciated with the partial coherence, but also on the history of
the dynamics through the integral of 1 /a2. Equation �53�
may be further rewritten as an ordinary differential
equation of third order by introducing a new variable q�z�
��0

z 1
a2 dz�+D, which implies

a =
1

�q�
, b =

C̃
�q�

sin q . �54�

Substituting these relations into the Hamiltonian given by
Eq. �43�, a complicated second-order equation is obtained for
q�z�,

H =
1

8

q�2

q�3 +
C̃2

2
�q�1/2 cos q −

q�

2q�3/2 sin q
2

+
q�

2

+ ln� 1

q�
�1 + C̃2 sin2 q�
 . �55�

Equation �55� can in general not be integrated further ana-
lytically. In fact, an explicit solution describing the dynamic
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variation of q�z� is not even known for the coherent case

when C̃=0 �cf. �9��. However, as discussed above, an excep-
tion is the stationary case when W�W0=const and q is de-
termined by the separable first-order equation

W0q��z� = 1 + C̃2 sin2 q�z� , �56�

which has the solution

q�z� = arctan� 1

�1 + C̃2
tan��1 + C̃2	 1

W0
z + q0

� ,

�57�

where q0 is an integration constant. The variation of all pa-
rameters may then be obtained using this solution, in particu-
lar,

a2�z� =
W0

2�1 + C̃2�
�2 + C̃2 + C̃2 cos�2�1 + C̃2	 1

W0
z + q0

� ,

b2�z� =
W0

1 + C̃2
C̃2 sin2��1 + C̃2	 1

W0
z + q0

 , �58�

which agrees with the results obtained in �10�. The parameter

C̃ characterizes the degree of coherence. In fact, C̃=a0
�2	0

2

and W0 may be determined by C̃ through Eq. �46�

4�1 + C̃2� = C = 8W0�H − ln W0� = 8W0. �59�

Thus, the previous stationary result W0=a0
2=1 / �2�1−	0

2�� is
recovered.

IV. EQUIVALENCE OF SOLUTIONS

The equivalence of the solutions given by Eqs. �21� and
�29� can be demonstrated explicitly by transforming the co-
herent density solution Eq. �29� into the Wigner domain. In a
first step, the correlation function K�x1 ,x2 ,z� can by obtained
from Eq. �29� using the definition �16�

K�x1,x2,z� = �
−�

�

f��x1,	,z�f�x2,	,z�d	 , �60�

where the asterisk denotes complex conjugation. Changing
to sum-difference coordinates x= �x1+x2� /2 and �=x1−x2,

respectively, the mutual coherence function can be expressed
as K�x ,� ,z� �cf. �12�� from which a Fourier transform in the
difference variable � gives the Wigner transform, according
to Eq. �2�. The result is

��x,p,z� = Ã exp�− ã�x − ��2 − b̃�p − ��2 + c̃�x − ���p − ��� ,

�61�

where

Ã =
1

�1 + C̃2
aA2, ã =

1

1 + C̃2
	�2 + �2 +

1

a2
 ,

b̃ =
1

1 + C̃2
�a2 + b2�, c̃ =

2

1 + C̃2
�a� + b�� , �62�

i.e., the solutions Eqs. �21� and �61� are identical.

V. CONCLUSIONS

The present analysis has reconsidered the problem of the
dynamics of partially coherent solitons in media with loga-
rithmic nonlinearity by using both the Wigner and coherent
density function formalisms. Although the final results re-
garding the evolution of the intensity distribution of the soli-
tons are equivalent, the Wigner approach �as well as the ap-
proach based on the mutual coherence function �12��
involves a more direct analysis than the coherent density
approach in the sense that the Wigner approach is based on a
smaller set of “natural” variables than the coherent density
approach. In particular, the coherent density function ap-
proach requires a more comprehensive modeling of the am-
plitude and phase characteristics of the coherent density
function, which plays the role of an auxiliary function for
which not all parameters have a physical interpretation. An
illustration of this is the fact that even in the case of a sta-
tionary intensity profile, the coherent density function in-
volves significant parameter dynamics, although the physi-
cally relevant parameter combinations of amplitude and
width of the intensity profile remain constant. On the other
hand, it can be anticipated that the coherent density function
approach should provide a more convenient frame work for
studying other problems, e.g., the interaction between soli-
tons in logarithmic nonlinear media �cf. �16��.

�1� M. Mitchell, Z. Chen, M.-F. Shih, and M. Segev, Phys. Rev.
Lett. 77, 490 �1996�.

�2� M. Mitchell and M. Segev, Nature �London� 387, 880 �1997�.
�3� G. A. Pasmanik, Sov. Phys. JETP 39, 234 �1974�.
�4� M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoul-

ides, Phys. Rev. Lett. 79, 4990 �1997�.
�5� D. N. Christodoulides, T. H. Coskun, M. Mitchell, and M.

Segev, Phys. Rev. Lett. 78, 646 �1997�.
�6� L. Helczynski, D. Anderson, R. Fedele, B. Hall, and M. Lisak,

IEEE J. Sel. Top. Quantum Electron. 8, 408 �2002�.
�7� D. N. Christodoulides, E. D. Eugenieva, T. H. Coskun, M.

Segev, and M. Mitchell, Phys. Rev. E 63, 035601�R� �2001�.
�8� M. Lisak, L. Helzcynski, and D. Anderson, Opt. Commun.

220, 321 �2003�.
�9� A. W. Snyder and J. D. Mitchell, Opt. Lett. 22, 16 �1997�.

�10� D. N. Christodoulides, T. H. Coskun, and R. I. Joseph, Opt.
Lett. 22, 1080 �1997�.

�11� D. N. Christodoulides, T. H. Coskun, M. Mitchell, and M.
Segev, Phys. Rev. Lett. 80, 2310 �1998�.

�12� W. Krolikowski, D. Edmundson, and O. Bang, Phys. Rev. E
61, 3122 �2000�.

�13� H. Buljan, A. Siber, M. Soljacic, T. Schwartz, M. Segev, and

PROPAGATION OF PARTIALLY COHERENT SOLITONS IN… PHYSICAL REVIEW A 80, 033819 �2009�

033819-5



D. N. Christodoulides, Phys. Rev. E 68, 036607 �2003�.
�14� J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenom-

ena: Fundamentals, Techniques, and Applications on a Fem-
tosecond Time Scale, 2nd ed. �Elsevier, New York, 2006�.

�15� T. Hansson, D. Anderson, M. Lisak, V. E. Semenov, and U.

Österberg, J. Opt. Soc. Am. B 25, 1780 �2008�.
�16� V. Semenov, M. Lisak, D. Anderson, T. Hansson, L.

Helczynski-Wolf, and U. Österberg, J. Phys. A 41, 335207
�2008�.

HANSSON, ANDERSON, AND LISAK PHYSICAL REVIEW A 80, 033819 �2009�

033819-6


