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I. INTRODUCTION

The short light pulse propagation in the medium com-
posed of two-level atoms has been a subject of intensive
research for many years. This phenomenon is usually de-
scribed theoretically by the Maxwell-Bloch equations �1�.
When the medium is inhomogeneously broadened and the
atomic damping is negligible, the well-known self-induced
transparency effect �SIT� can be observed �2�. The explana-
tion of the SIT effect is based on the area theorem which is
obtained in the framework of the rotating wave approxima-
tion �RWA� and the slowly varying envelope approximation.

If the inhomogeneous broadening, the atomic relaxation,
and the pulse phase are neglected, the resonant pulse propa-
gation is governed by the sine-Gordon equation �1,3,4�. Such
a model, called a sharp-line case �3�, a fixed atoms case �4�
or a soluble model �1� seemed to be far from experimental
reality. However, numerical calculations showed that effects
predicted on the basis of this model are still present when the
inhomogeneous broadening is involved �1,4�. Moreover a
sharp-line SIT, in which ratio of pulse width to linewidth is
much greater than one, was observed �5,6�. Quite recently
the development of laser cooling and trapping techniques
enabled preparation of a medium with negligible inhomoge-
neous width and density high enough for pulse propagation
experiments �7,8�.

When the propagation of nanosecond or longer pulses is
considered, the atomic relaxation due to spontaneous emis-
sion and collision processes have to be taken into account
and the relaxation rates should be included in Bloch equa-
tions �9�. In such a case the Maxwell-Bloch equations can be
solved analytically only in the weak-field limit or for small
area pulses �10,11�. The propagating light pulse induces a
dipole moment in the medium which decays due to perpen-
dicular relaxation and inhomogeneous dephasing. This effect
is called optical free-induction decay �FID� �12�. The in-
duced dipole moment causes the Burnham-Chio ringing �13�

�in the limit of infinite relaxation time and negligible pulse
attenuation� or optical ringing �14�.

Since the optical ringing decays in time much longer than
the ultrashort pulse duration, the propagation of such a pulse
and formation of the free-induction field are usually treated
independently. The combined approach was presented in
�15,16�. It was shown numerically that in the sharp-line limit
total resonant light field, the pulse and the ringing form the
optical transient with the area equal to 2n� during propaga-
tion in the two-level medium. This area is stable until the
losses due to the spontaneous emission cause its jump to the
lower value 2�n−1��. This process repeats until a 0� pulse
is formed. When the input pulses are short enough the optical
ringing is responsible for the field area stabilization at least
for small propagation distances. In other words the joined
area of the free-induction field and of the pulse is equal to
2n�.

In the standard treatment of the SIT problem the spatial
level degeneracy is rarely considered. When the light is po-
larized it should be taken into account. However, if the lin-
early polarized light is applied the system j1=1 /2− j2=1 /2
behaves like a two-level atom �15,16�. Obviously the linearly
polarized light can be understood as a superposition of two
components with orthogonal circular polarizations and equal
intensities. In general, these two components with unequal
intensities form elliptically polarized light. Recently the
propagation of two femtosecond pulses with perpendicular
linear polarizations in the j1=1 /2− j2=1 /2 medium was
studied experimentally and theoretically �17–20�. One of
these pulses was strong and the other weak. It was demon-
strated that the medium gain for the weak one can be effi-
ciently controlled. The obtained results were explained by
interference between the different absorption and stimulated
emission paths for weak pulse photons.

In this paper we study the propagation of elliptically po-
larized field in the j1=1 /2− j2=1 /2 medium, for example in
the alkali-metal atom vapor, using the approach presented in
�15,16�. More precisely, we consider the propagation of two
fields with orthogonal circular polarizations. They are
coupled only by the atomic relaxation, i.e., the spontaneous
decay and collisional damping of the orientation in the upper
state. Since the cross section for the spin flip in the ground
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state of the alkali-metal atom is very small �21�, we neglect
the orientation damping in the lower level. The dynamics of
the atomic system is described by the density matrix in the
irreducible spherical tensor representation �22�.

The systems j1=1 /2− j2=1 /2, j1=0− j2=1, and j1=1
− j2=0 are the simplest atomic systems with spatial level
degeneracy. The understanding of their interaction with light
is necessary for the construction of devices, allowing the
coherent storage of information �23,24�. The effects accom-
panying the propagation of light in the atomic medium are
important for quantum memory operation because the stor-
age of light is achieved by controlling the spatial distribution
of atomic states.

The paper is organized as follows. In Sec. II we present
theoretical description of the excitation of the j1=1 /2− j2
=1 /2 system by two near-resonant light fields with left and
right circular polarizations We neglect the hyperfine structure
and the motion of the atom, i.e., we neglect the redistribution
of the atomic transition frequencies due to the Doppler ef-
fect. In Sec. III we study the properties of the area of free-
induction field. In Sec. IV we present numerical results con-
cerning the propagation of circularly polarized pulses. The
redistribution of the energy between linearly polarized com-
ponents of elliptically polarized light is investigated in Sec.
V. We summarize the discussion in Sec VI.

II. THEORETICAL MODEL

In the description of the interaction of polarized light with
a real atom, the spatial degeneracy of the atomic levels and
atomic relaxation processes have to be taken into account.
The most fruitful approach which includes them and allows
describing the evolution of a system composed of an atom
and electromagnetic field involves the density matrix and the
Liouville space formalisms �22,25–27�.

When an atom is immersed in a spherically symmetric
thermal bath, representing the collisions with the buffer gas
atoms, it is convenient to use as a basis of the Liouville space
the rotationally irreducible set of atomic states �25,27�. From
this set in some cases one can generate a reduced �minimal�
basis sufficient for the complete description of the atom in-
teracting with the polarized light �22�. The elements of such
a basis are contractions of spherical tensors, constructed
from the polarization vectors, and elements of the rotation-
ally irreducible atomic basis.

The reduced density matrix � is expanded in the minimal
basis �ei� according to

� = �
i

�iei, �1�

and its time evolution is described by the Liouville equation
�22�,

i
d

dt
� = L̂� = �H,�� + i�̂� = �− Ĥ + i�̂�� , �2�

where L̂ and H=HA+V denote the Liouvillian and the
Hamiltonian of the system, respectively �we put �=1�. The

operator HA stands for the atomic Hamiltonian and V repre-
sents the interaction of the atom with the light beam

V = − �D · E , �3�

where E denotes the electric field, whereas �D is the atomic
electric-dipole operator. In our approach the relaxation op-

erator �̂ is determined phenomenologically by spontaneous
damping rates and experimental collisional cross sections.

The dimension of the basis �ei� and the form of its ele-
ments depend on the level structure of the considered atom,
on its initial state, and on the polarization vectors of light
driving the atom. As a rule it is assumed that initially the
atom is in the ground state with equally populated Zeeman
sublevels. Since the dimension of the reduced basis for mul-
tilevel systems is usually large, it is practically impossible to
solve Eq. �2� analytically and obtain transparent results even

in the steady state �s, which obeys the equation L̂�s=0. The
incident classical electric field with frequency �0 and wave
number � propagating along z axis is given by

E�z,t� = ��z,t�e−i��0t−�z� + c . c . �4�

We split it into right ��+� and left ��−� circularly polarized
components according to

� = E+�+ + E−�−, �5�

where ��= �x̂+ iŷ� /�2 are the unit circular polarization vec-
tors. The minimal basis �ei� for the j1=1 /2− j2=1 /2 atom
consists of eight following elements:

ei = eii�00� =
1

�2ji + 1
�
mi

	jimi
�jimi	, i = 1,2,

e3 = �
m

�− 1�m�ẑ�−me11�1m� ,

e4 = �
m

�− 1�m�ẑ�−me22�1m� ,

e5 = e6
† = �

m

�− 1�m��+�−me12�1m� ,

e7 = e8
† = �

m

�− 1�m��−�−me12�1m� , �6�

where

eik�jm� = �
mimk

�− 1� ji−miC�jkjij ;mk,− mi,m�	jkmk
�jimi	 .

�7�

The details of the construction are given in �22�. The kets
	jimi
, i=1,2, denote the atomic states �1 refers to the ground
state, 2 to the upper one�. The symbol C�j�j�j ;m� ,m� ,m� is
a Clebsch-Gordan coefficient. The corresponding angular
momenta and their projections are denoted by jk and mk.

The reduced density matrix of the atomic system is de-
scribed by the components �i , i=1, . . . ,8 �cf. Eq. �1��,
which have well-defined physical meanings. The first two
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ones are related to the populations of the states labeled by 1
and 2 as follows: p1=�2�1, p2=�2�2. The orientation in the
ground and excited states are equal to �2�3 and �2�4, respec-
tively. Therefore the average value of the total angular-
momentum operator is given by

�J
 =
1
�2

��3 + �4�ẑ . �8�

The atomic coherences between the states 1 and 2 are repre-
sented by the rest of the components.

If we write the atomic dipole operator as

�D = d + d†, �9�

where d represents its rising part corresponding to the 1
→2 transition, we obtain �22�

�� · d =
1
�3

�2		d		1
�
m

�− 1�m����−me12�1m� . �10�

The reduced matrix element of the dipole moment opera-
tor is denoted by �2		d		1
.

We rewrite the interaction �3� using elements of the basis
�6�,

V = �v+e5 + v−e7�e−i��0t−�z� + h . c . , �11�

where v+ and v− denote the couplings between the atom and
the respective circularly polarized field components �the
Rabi frequencies are equal to �2v+ and �2v−�. When v+
=v− the light polarization is linear with the coupling vL
=�2v� �the Rabi frequency equals to �2vL�.

We calculate the matrix A=−i�ei , L̂ej�=−i Tr�ei
†L̂ej�,

which governs the evolution of the density matrix �cf. Eq.
�2�� in the framework of the RWA,

d�i

dt
= �

j

Aij� j , �12�

where

A =�
0 	 0 0 ṽ+

� ṽ+ ṽ−
� ṽ−

0 − 	 0 0 − ṽ+
� − ṽ+ − ṽ−

� − ṽ−

0 0 0 − 	/3 − ṽ+
� − ṽ+ ṽ−

� ṽ−

0 0 0 − 
2
�1� − ṽ+

� − ṽ+ ṽ−
� ṽ−

− ṽ+ ṽ+ ṽ+ ṽ+ − 
 + i� 0 0 0

− ṽ+
� ṽ+

� ṽ+
� ṽ+

� 0 − 
 − i� 0 0

− ṽ− ṽ− − ṽ− − ṽ− 0 0 − 
 + i� 0

− ṽ−
� ṽ−

� − ṽ−
� − ṽ−

� 0 0 0 − 
 − i�


 �13�

and ṽ�=v� /�2, �=�0−�21 ��21 is the energy gap between
the ground and excited level�. We have assumed implicitly
that both circular components have the same carrier fre-
quency. In general, a carrier frequencies difference, fre-
quency sweeping, or chirping can be described by phase fac-
tors of v�. The spontaneous decay rate of the excited state is
given by 	, the damping of the orientation in this state is
described by the rate 
2

�1�=	+	22coll, and the damping rate of
the atomic coherences is given by 
=	 /2+	12coll. The sub-
script coll labels the collisional damping rates. During evo-
lution the normalization condition

�2�1 + �2�2 = 1 �14�

is fulfilled.
In the model presented in �15,16� the propagation of the

circularly polarized light components in the medium with N
optically active atoms per unit volume is described by

�

�z
v+�z,�� = 
��5�z,�� , �15�

�

�z
v−�z,�� = 
��7�z,�� , �16�

where 
�=2�N�0�2		d		1
2 / �3c� and �= t−z /c is retarded
time. Since the Doppler effect is neglected we do not per-
form the average over the atomic velocity distribution on the
right-hand side of Eqs. �15� and �16�.

The system of Eqs. �15� and �16� separates, i.e., both cir-
cular components propagate independently, in two cases,

�i� when the relaxation rates can be omitted, which is
possible for very short pulses,

�ii� when the light field is so weak that the population of
the upper level is negligible ��2�z ,���1�.

In both cases analytical solutions can be obtained �1�. We
want to study the pulse and the free-induction field together;
therefore we analyzed analytically only the second case.

III. AREA OF THE RINGING FIELD

At first let us consider the propagation of the pulses in the
medium in which each atom is identically excited �like in the
model of Burnham and Chiao �13��. We denote �+=�5 and
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�−=�7. The evolution equations for these two coherences
when �2�z ,���1, i.e., in the weak filed limit, can be written
in the form

�

��
���z,�� = �− 
 + i�����z,�� −

v��z,��
2

. �17�

Since the upper-state population is negligible the orientations
�2�3=�2�4=0.

Let us assume that the pulses are switched on at �=0 and
that exist small initial coherences ���z ,�=0�=��0. We solve
Eq. �15�–�17� using the Laplace transform technique �11,28�
and obtain

v��z,�� = v��0,�� −
�2
�z

2
�

0

�

d��v��0,���e−�
+i����−���

�J1��2
��� − ���z�/�� − ��

+ �2
�z��0e−��
+i����J1��2
��z�/���, �18�

where J1 denotes the Bessel function of first order.
In order to calculate the ringing which is produced when a

resonant light pulse propagates through a medium, Burnham
i Chiao �13� assumed that each atom of the medium is ex-
cited by a Dirac �-function incident pulse. It means that an
initial coherence �in our case ��0� and population difference
in all medium atoms was prepared. Using method described
in �13� we can evaluate a weak ringing field produced by a
small area or area close to 2� input �-function pulses. This
field is given by the third term on the right-hand side of Eq.
�18�.

It is well known that the Bloch equations for the two-level
atom without relaxation terms can be solved analytically for
any resonant pulse envelope �9�. System �12� can be also
solved analytically under such assumptions. If we assume
that �2�z ,0�=0, the final upper-level population and atomic
coherence after passage of the pulse is given by

�2�2�z,� → �� =
1

2
�sin2�+

2
+ sin2�−

2
� ,

���z,� → �� = −
1

2�2
sin ��, �19�

where ��=�2�0
�v����d� is the pulse area. Moreover if

�3�z ,0�=0, the final orientations are

�2�3�z,� → �� = �2�4�z,� → �� = −
1

4
�cos �+ − cos �−� .

�20�

For small area the coherence �Eq. �19�� is proportional to
the pulse area ����z ,�→���− 1

2�2
���. Following Burnham i

Chiao �13� we calculate an area ��R of the weak ringing field
by integration of the third term on the right-hand side of Eq.
�18� over time. When the � pulse has a small area we obtain

��R�z� = − ���1 − e−
�/�2
�z� . �21�

When the �-pulse area is close to 2� the coherence prepared
in the medium is proportional to the difference between 2�

and pulse area ����z ,�→��� 1
2�2

�2�−���� and the area of
the ringing field is given by

��R�z� = �2� − ����1 − e−
�/�2
�z� . �22�

The area ��R�z� can be also estimated when the medium is
prepared by the linearly polarized �v+=v−� � pulse with the
area close to �. In such a case the medium is inverted
��2�2�z ,���1�. Repeating the procedure presented in �13�
we get the formula for the ringing field area for very small
propagation distances �
�z / �2
��1�,

��R�z� = ��� − ��

�

2

z . �23�

Analyzing Eqs. �21�–�23� and the results presented in �15,16�
we expect that the ringing field area should add to the
�-function pulse area to give for large enough propagation
distances total 2n� value and that in the vicinity of � the
area ��R�z� abruptly changes sign. We have verified this hy-
pothesis solving numerically Eqs. �12�, �15�, and �16� for the
linearly polarized light �v+=v−� described by vL=�2v�. We
use the integration procedure proposed in �4�. We have cho-
sen as a time unit �0=1 /	 and as a unit of distance z0
=2
 /
�. The �-function pulse produces initial state of the
medium atoms according to Eq. �19�. We have assumed that
only spontaneous relaxation is present. The results support-
ing our hypothesis are showed in Fig. 1�a�. The smaller is the

FIG. 1. The ringing field area and integral of the upper-level
population as a function of the incident linearly polarized �v+=v−�
�-function pulse area for several propagation distances.
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�-function pulse area, the faster its correlation with the ring-
ing field area is achieved. This correlation process is accom-
panied by the reduction in the losses due to spontaneous
emission, which are proportional to the integral of the upper-
level population,

I2�z� = 	�2�
0

�

�2�z,��d� �24�

�see Fig. 1�b��. When the medium is prepared by the � pulse,
the ringing is absent and the losses are highest. Whole energy
transferred to the medium is spontaneously re-emitted
�I2�z�=1�. For other �-function pulse areas the energy of the
ringing increases during propagation.

It was observed that FID decays faster than 1 /
 and that
its lifetime is sensitively dependent on the propagation dis-
tance �8�. Formula �18� is valid only for weak �-function
pulses. For stronger pulses the analytical dependence on time
of the ringing is unknown. Since it is difficult to define its
lifetime we adopt the concept of the equivalent pulse �16�.
We are looking for a rectangular pulse having the same ab-
solute area and energy as the ringing field. The duration of
such pulse is given by

T0 = �� 	v����	dt�2

/� 	v����	2dt . �25�

We have calculated the FID lifetime for the situation pre-
sented in Fig. 1. Since 
=	 /2 we have expected that T0
should be close to 2 /	 at least for small area �-function input
pulses and small propagation distances. It was found that the
ringing duration is nearly 2.5 /	 for weak pulses and z=z0
�Fig. 2�. It grows monotonically and achieves value slightly
larger then 3 /	 for �� tending to �. Obviously for ��=� the
lifetime T0 is undefined. The ringing duration decreases dur-
ing propagation with the rate depending on the incident pulse
area �see Fig. 2�.

IV. PROPAGATION OF CIRCULARLY
POLARIZED PULSES

When circularly polarized cw-laser field excites the j1
=1 /2− j2=1 /2 atom, the orientation in the ground state
�Og=�2�3� appears due to the optical pumping effect. Since
the damping of this orientation is negligible the medium
composed of such atoms becomes transparent. Obviously the
orientation produced by a propagating pulse should depend
on pulse parameters, properties of the medium, and propaga-
tion distance. Weak pulses or short pulses �compare to the
lifetime� with area close to 2n� generate a negligible orien-
tation. It is expected that the effect of optical pumping with
long pulses or short pulses inverting the medium
��2n+1��-pulse� should be significant. The orientation in the
ground level depends on the integrated upper-level popula-
tion. Therefore all processes which diminish the integral I2
decrease the final orientation. The pulse plus ringing area
stabilization is one of such processes. In general, the genera-
tion of the orientation diminishes the number of optically
active atoms, which influences the propagation of the pulse
and ringing.

We have solved numerically the propagation �Eqs. �15�
and �16�� assuming that the input pulse envelope is given by
the quadratically switched on Gaussian function �QG�,

v��0,�� =
64

27
�2�v0�� �

T
�2

exp�−
8

9
�� �

T
�2� , �26�

where the parameters v0� and T can be understood as mean
pulse coupling and duration

v0� = �
0

�

v��0,��2d�/�
0

�

v��0,��d� , �27�

T = ��
0

�

v��0,��d��2

/�
0

�

v��0,��2d� . �28�

The obtained results �Fig. 3�a�� show that the optical pump-
ing weakly influences the short pulse area stabilization ef-
fect. The circularly polarized pulse ��+�0 and �−=0� area
achieves 2� or 0� slightly earlier than linearly polarized one
��+=�−�. For small distances one can treat the propagation of
such a short pulse and the ringing field as nearly indepen-
dent. The pulse propagates practically unchanged and the
area of ringing increases or decreases forming together with
the pulse the 2n� pulse �15�. Due to the optical pumping the
density of atoms which can be excited decreases in time
when they are driven by circularly polarized light. Therefore
the leading edge of the pulse propagates in more dense op-
tically active medium than the ringing which results in ear-
lier stabilization of the circularly polarized field in compari-
son with the linearly polarized one.

It is apparent that there exists a relation between the pulse
area and pulse energy. In our model the pulse energy is dis-
sipated due to the spontaneous emission of medium atoms
only. Therefore the nonzero pulse area cannot be constant
during propagation. So it is not strange that the circularly or
linearly polarized 2� pulse transforms into 0� pulse �Fig.
3�a��. Since the optical pumping decreases the optically ac-

FIG. 2. The ringing field mean duration �Eq. �25�� as a function
of the incident linearly polarized �v+=v−� �-function pulse area for
several propagation distances.
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tive atoms density, the circularly polarized 2� pulse loses
energy slower and is transformed later than the linearly po-
larized one. The behavior of the relative pulse energy �Fig.
3�b�� confirms this statement.

The energy of the pulses transforming themselves into the
0� pulses behaves smoothly and practically does not depend
on pulse polarization. The behavior of the 2� pulses is more
dramatic. The acceleration of the losses in the transformation
region can be observed. However, generated 0� pulses lose
their energy much slower �cf. Fig. 3�b��.

Since the ground-state final orientation is related to the
pulse energy dissipation �Og�z ,��= 2

3 I2�z��, the large increase
in the losses in the transformation region should be accom-
panied by an increase in this orientation. In Fig. 4 we present
the distribution of the orientation along the propagation dis-
tance of the circularly polarized pulses transforming into 2�
and 0� pulses. As it is expected the orientation decreases
with propagation distance but grows rapidly when the 2�
pulse is destroyed. Its maximal value achieves nearly 0.4
which is larger than the value of the orientation produced by
any pulse with the same duration and envelope for z=0
�compare Fig. 5�b��. It is also more than the value 1/3 created
by the circularly polarized �-function pulse emptying one of
the Zeeman sublevels of the ground state.

It seems that at least for short pulses �of the order of
0.01 /	�, the total pulse area stabilization process does not

depend strongly on the light polarization. The decrease in the
number of optically active atoms due to the optical pumping
does not change qualitatively the relation between the input
and output pulse areas �compare Fig. 5�a��. The results are
similar to obtained for linearly polarized light �15�. One can
observe formation of the steps characteristic for the area
theorem �2�.

FIG. 3. �a� The pulse area �+ and �b� relative energy vs propa-
gation distance for different input QG pulse area and polarization.

FIG. 4. The ground-state orientation vs propagation distance for
two input circularly polarized QG pulse areas.

FIG. 5. �a� The output area of the circularly polarized light and
�b� final ground-state orientation vs the input short QG pulse area
for different values of the propagation distance.

ALHASAN, CZUB, AND MIKLASZEWSKI PHYSICAL REVIEW A 80, 033809 �2009�

033809-6



The final lower-state orientation changes periodically with
incoming pulse area and decreases with propagation distance
�Fig. 5�b��. However one can expect large increase in the
orientation in the transition region, where 2n� pulse be-
comes 2�n−1��.

Obviously, the ground-state orientation Og�z� equals 1 for
the cw-laser field. Therefore the longer the pulse is, the
larger orientation should be produced. A long linearly polar-
ized pulse is strongly influenced by the propagation but still
one can observe the pulse area stabilization �15�. Only the
symmetry between input and output areas is removed. The
similar asymmetry is observed for circularly polarized pulses
�see Fig. 6�a��. The long pulses need more input area than
short ones to stabilize their areas on the 2n� level. A signifi-
cant difference between the propagation of the linearly and
circularly polarized pulse appears for pulses with duration in
the order of 1 /	. The stable circularly polarized 2� pulse is
generated for the smaller input areas than for the linearly
polarized one.

The relation between final ground-state orientation and
input pulse area loses its symmetry when the pulse duration
grows up. The peaks of the maximal orientation are not only
shifted in direction of the large input areas but they become
asymmetric. As it is expected, long pulses in general produce
larger orientation.

V. REDISTRIBUTION OF ENERGY BETWEEN
COMPONENTS OF ELLIPTICALLY POLARIZED LIGHT

A. Steady state propagation

Two circularly polarized pulses with orthogonal polariza-
tions and with the same carrier frequency compose in general
elliptically polarized one. During propagation in the j1
=1 /2− j2=1 /2 medium, they are coupled only by the spon-
taneous decay process and there is no exchange of energy
between them. Delagnes and Bouchene �17� presented differ-
ent approach to this problem. They studied the propagation
of two linearly polarized pulses with orthogonal polariza-
tions �say along x and y axes, respectively�. They assumed
that there exists a relative phase ��z=0� between the pulses
at the entrance of the medium.

In order to describe their experimental setup in the frame-
work of our formalism, we put vx�y�= 	vx�y�	ei�x�y� and �=�x
−�y, then using Eqs. �15� and �16� and relations

v+ =
1
�2

�vx − ivy� , �29�

v− =
1
�2

�vx + ivy� , �30�

we can derive equations describing the steady-state propaga-
tion of the components vx and vy,

d	vx	2

dz
= �2
� Re�vx

���+ + �−�� , �31�

d	vy	2

dz
= − �2
� Im�vy

���+ − �−�� , �32�

d�

dz
=


�
�2
�Im� 1

vx
��+ + �−�� − Re� 1

vy
��+ − �−��� . �33�

Solving the set of Eq. �13� for the steady state we obtain
from Eqs. �31�–�33�,

d	vx	2

dz
=


�		vx	2

D
�− 
�	vx	2 + 	vy	2cos 2�� − �	vy	2sin 2�� ,

�34�

d	vy	2

dz
=


�		vy	2

D
�− 
�	vy	2 + 	vx	2cos 2�� + �	vx	2sin 2�� ,

�35�

d�

dz
=


�	

D
�


2
�	vx	2 + 	vy	2�sin 2� − �	vx	2 − 	vy	2�� sin2 �� ,

�36�

where

D = 2
�	vx	4 + 2	vx	2	vy	2cos 2� + vy
4�

+ 	�
2 + �2��	vx	2 + 	vy	2� � 0.

Treating the field described by vx as a probe and vy
as a pump one, we can find the steady-state probe field

FIG. 6. �a� The output area of the circularly polarized light and
�b� final ground-state orientation vs the input QG pulse area for
different pulse durations and polarizations.
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amplification/absorption rate gx defined by d	vx	2 /dz
=gx	vx	2+ . . .,

gx = −

	

2
	vy	2 + 	�
2 + �2�
�
 cos 2� + � sin 2�� .

�37�

As it is expected this rate exhibits 2� periodicity due to the
interference effect described in �17� if only the phase change
during propagation is negligible. In the resonance regime
��=0� the probe field amplification is possible when
cos 2��0 and is most efficient for �=� /2. Moreover if we
assume that the pump field is relatively weak, i.e., 	vy	
��	
, coherent control of the medium susceptibility is pos-
sible �29�.

Obviously the increase in the vx component intensity is
due to the energy transfer from the vy one. If we assume that
�=0 it is immediately seen from Eqs. �34�–�36� that during
the steady-state propagation, the phase � initially not equal
to k� /2 tends monotonically to k� /2 and 	vx	2→ 	vy	2 �com-
pare Fig. 7�. The final value of 	vx	2 and 	vy	2 is given by the
steady-state propagation constant,

	vx�z�	2	vy�z�	2sin2 ��z� = 	vx�0�	2	vy�0�	2sin2 ��0� ,

�38�

obtained from Eqs. �34�–�36�. In other words initially ellip-
tically polarized light transforms into circularly polarized
one propagating without losses. If ��0�=k� /2, i.e., when the
light is polarized linearly, both components are absorbed �see
Fig. 7�a��. When the driving light is detuned from the reso-
nance, ��0, the intensities of both components and the rela-
tive phase oscillate before stabilization if only ��0��k� /2
�see Fig. 8�.

If instead of the vx and vy components we consider the
v+= 	v+	ei�+ and v−= 	v−	ei�− ones, we obtain much simpler
propagation equations

d	v�	2

dz
= −

2
�	

d

	v+	2	v−	2, �39�

d��

dz
=

2
�	

d
�	v�	2, �40�

where

d = 8
	v+	2	v−	2 + 	�
2 + �2��	v+	2 + 	v−	2� � 0.

Now

FIG. 7. �a� The equalization of the intensities of the resonant vx

and vy components and �b� growth of the initial relative phase due
to the stationary propagation. 	vy�0�	2=10	vx�0�	2=	2.

FIG. 8. �a� The equalization of the intensities of the detuned vx

and vy components and �b� the change of the initial relative phase
due to the stationary propagation. 	vy�0�	2=10	vx�0�	2=	2.
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	v+	2 − 	v−	2 = const �41�

is conserved during propagation. Analysis of Eq. �39� shows
that the intensities of circular components forming ellipti-
cally polarized light decrease monotonically. The intensity of
the weaker one tends to zero and of the stronger one achieves
the value given by Eq. �41�. Using Eq. �40� one can calculate
self-rotation angle �SR= ��−−�+� /2 of the detuned ellipti-
cally polarized light �30�.

B. Resonant pulse propagation

Delagnes and Bouchene �17� investigated the propagation
of femtosecond probe and pump pulses experimentally and
numerically. They showed that the probe pulse amplification
process depends essentially on the relative phase between
linearly polarized pump and probe pulses but also periodi-
cally on the pump pulse area at the cell entrance. This peri-
odicity was attributed to the Rabi oscillations.

Taking into account the results obtained for ultrashort
pulses �17� and our steady-state results, one can expect that
the amplification of the total pulse, i.e., the pulse plus the
free-induction field, should exhibit features characteristic for
short and long-time behavior. This supposition is, to some
extent, justified by our numerical results which we present in
Fig. 9. We have considered the most favorable relative phase

between pulses entering the medium, i.e., ��0,��=� /2 and
we studied the resonant ��=0� propagation of the QG probe
pulse polarized along the y axis and having at z=0 area
�y�0�=�2�0

�vy�0,��d�=0.1� �compare �17��. This pulse
propagates in the presence of the resonant pump pulse with
the same envelope, duration, and onset but polarized along x
axes. We have studied how the relative probe pulse energy
Ey�z� /Ey�0� depends on the pump pulse input area �x�0�
=�2�0

�vx�0,��d� �Fig. 9�.
When both pulses are short with T=0.01 /	 �Fig. 9�a�� the

probe pulse energy as a function of �x�0� exhibits periodicity.
The amplification is maximal for the pump pulse input area
in the vicinity of n�. Since we put ��0�=� /2 the relative
phase is not changed during propagation, i.e., ��z ,��=� /2,
and from Eqs. �29� and �30� we get

���z� = �x�z� � �y�z� . �42�

Therefore we can treat the propagation of the linearly polar-
ized probe and pump pulses as a propagation of two circu-
larly polarized ones whose initial areas differ by 2�y�0� and
we can expect that their total areas will be stabilized and
destabilized as described in Sec. IV. In the case presented in
Fig. 9�a� �+�0�−�−�0�=0.2� and in the vicinity of the maxi-
mums �+�0�� �2n+1�� whereas �−�0�� �2n+1��. It means
that �+�0�→2n� and �−�0�→2�n−1�� in the course of the
propagation and for a sufficiently large z the area difference
�+−�−�2�. Since relation �42� has to be fulfilled the area �y
increases to � and �x decreases to �2n−1�� in the transition
region. In this way the amplification maximums showed in
Fig. 9�a� appear. The subtle structures seen in Fig. 9�a� are
due to the complex overlapping of the entering pulse and the
ringing, and are not present when one studies the amplifica-
tion of the pulse only, i.e., without ringing �17�.

The amplification periodicity observed for the short
pulses also exists when propagation of long pulses with T
=1 /	 is investigated �Fig. 9�b��. Since the stabilization of the
long circularly polarized pulse area on 2n� level appears for
relatively large input pulse areas �see Fig. 6�, the onset of
periodic pattern shifts to larger values of �x�0� when propa-
gation distance increases. For the pulses with the input areas
in the vicinity of the amplification maximums, there exist
propagation distances at which these pulses have the same
stabilized �� and a little further one of them transforms into
a pulse with a lower stabilized area, i.e., �+−�−�2�. Ac-
cording to Eq. �42� this change in the areas is accompanied
by the increase in �y to �, and therefore the energy of the
probe pulse grows up.

We have showed in previous subsection that the steady-
state amplification of the probe field is very efficient. When
�=� /2 the intensities of the probe and pump fields equalize
quite quickly �see Eq. �35� and Fig. 7�a��. Also the amplifi-
cation of the long probe pulse with T=1 /	, which propa-
gates in close to steady-state conditions, is more efficient
than of the short one with T=0.01 /	 �compare Figs. 9�a� and
9�b��.

The probe pulse amplification mechanism related to the
stabilization and destabilization of pulse area limits the en-
ergy which can be transferred from the pump pulse to the
probe one ��y should be smaller than ��. One can expect

FIG. 9. The amplification of the resonant probe QG pulse po-
larized linearly along y axis as a function of the resonant QG pump
pulse area. The pump pulse is polarized linearly in the x direction.
�a� The short pulse and �b� long pulse amplification for several
values of the propagation distance.
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equalization of the energy of pulses only when the pump
pulse is weak enough. In order to demonstrate this effect we
have studied numerically the propagation of the pump pulses
with �x�0�=0.85�, 1.05�, and 1.25� �Fig. 10�. We put
�y�0�=0.1� and ��0�=� /2. These three cases illustrate three
simplest situations: in the first one, both circularly polarized
pulses are stabilized as 0� pulses, in the second one becomes
the 2� and the other 0� pulse and in the third case we get
two 2� pulses.

In all three cases the probe pulse contribution Ey�z� /E�z�
to the total energy E�z�=Ex�z�+Ey�z� increases monotoni-
cally and pump pulse contribution Ex�z� /E�z� decreases
monotonically for small propagation distances �z�500z0�
�see Fig. 10�a��. Further their behavior is qualitatively corre-
lated with the input circular pulses areas. When these pulses
are stabilized as 0� pulses ��x�0�=0.85��, the probe pulse
energy contribution achieves the level close to 0.13E�z� and
then decreases very slowly. Obviously the total relative en-
ergy of these pulses decays monotonically �compare Fig.
10�b��.

When one of the pulses becomes a 0� pulse and the sec-
ond 2� pulse ��x�0�=1.05�, Fig. 10�a��, one can observe
damped oscillations of the contributions of pump and probe

pulses to the total energy until the 2� pulse transforms into
0� one. The oscillations frequency and amplitude depends,
in general, on the probe pulse area �y�0�. The periodic ex-
change of the roles between pump and probe fields occurs
when both pulses are stabilized as 2� pulse, where ��x�0�
=1.25�, Fig. 10�a��. The acceleration of the total-energy dis-
sipation when circularly polarized 2n� pulses are destabi-
lized is clearly seen �Fig. 10�b��. It should be noted that the
oscillations of the pulse energies are due to the ringing and
are not present when one collects light for times of the order
of several T.

This nice picture changes when we consider the propaga-
tion of long pulses with T=1 /	. We have chosen a relatively
large pump pulse area �x�0�=9� and the same as before
probe pulse one �y�0�=0.1� �Fig. 11�. In such a case the
circularly polarized pulses contributing to elliptically polar-
ized field pass several levels of the stabilization: 8�, 6�, 4�,
and 2� to finish as weak 0� pulses. This process can be
observed in the behavior of the probe and pump pulses con-
tributions to the total energy �see Fig. 11�. The probe pulse
contribution slowly increases when its area is stabilized and
quickly decreases in the transition region. It equalizes with
the pump pulse contribution when one of the circularly po-
larized pulses transforms from 2� pulse into 0� pulse,
whereas the other is still 2� one. Obviously the relative total
energy decreases monotonically but the influence of the area
stabilization is apparent.

Finally we have calculated how the pump pulse relative
energy depends on the relative phase ��0� at the entrance to
the cell �Fig. 12�. As it is expected �see �17� and �35�� the
2��0� periodicity is clearly seen. The probe field is practi-
cally always amplified except a small region around ��0�
=0 and �.

The results presented in �Fig. 12�a�� show once more that
the amplification of short pulses with T=0.01 /	 strongly de-
pends on the input pump pulse area. The local maximums
noticeable for z=100z0 are due to the free-induction field. In

FIG. 10. The redistribution of the energy of the short elliptically
polarized QG pulse between x and y components during propaga-
tion. �a� The relative energy of the components and �b� relative total
energy vs propagation distance for different areas �x�0� of the input
linearly polarized pump pulse.

FIG. 11. The redistribution of the energy of the long elliptically
polarized QG pulse between x and y components during
propagation—the relative energy of the components and relative
total energy vs propagation distance.
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general, the long pulse amplification is more efficient than
short ones �compare Fig. 12�b� for z=100z0 and Fig. 12�a��.

VI. SUMMARY

The propagation of short, in comparison with the atomic
lifetime, light pulses is always accompanied by the free-
induction field. The sharp-line model is most suitable for the
study of the ringing properties. Due to the progress of the
experimental techniques �7,8�, the theoretical results ob-
tained in the framework of this model can be now verified
experimentally.

We have analyzed mainly numerically the propagation of
two resonant light pulses with orthogonal circular polariza-
tions in the medium composed of j1=1 /2− j2=1 /2 atoms. In
general the superposition of these pulses gives elliptically

polarized light. Since they couple two different pairs of Zee-
man sublevels of the ground and excited states, this approach
seems to be the most suitable for the description of the
propagation of elliptically polarized light in such a medium.
Obviously one can register different components of the
propagating light, e.g., polarized linearly as in �17�, but their
properties are determined by their relation to the circularly
polarized components.

Since the ringing decays in the time scale determined by
the perpendicular relaxation the equations describing the
atomic evolution should include relaxation rates and even in
the case of very short pulses entering the medium the de-
scription unifying the pulse and free-induction field is neces-
sary. Using such an approach in the framework of the fixed
atoms approximation we have demonstrated the stabilization
of the areas of circularly polarized components of the propa-
gating pulse on the level 2n�. Due to the spontaneous radia-
tion losses this stabilization is not permanent. The area jumps
down on the level 2�n−1�1� and finally achieves the value
0�. When the area is destabilized the radiation losses in-
creases and the efficiency of the optical pumping by the
propagating field increases.

When the pulse is very short and strong and the propaga-
tion distances small, the pulse and the ringing can be treated
independently. In such a case the envelope of the pulse
changes slightly during propagation but the ringing with the
area adjusting total field area to the value 2n� arises. For
long pulses and/or large propagation distances the pulse and
the ringing cannot be distinguished but still the area stabili-
zation occurs.

The elliptically polarized light was treated in �17� as a
superposition of two linearly polarized fields with different
phases. In this context the amplification of probe pulse in the
presence of the pump one in the j1=1 /2− j2=1 /2 medium
was considered. We have regarded this problem in more gen-
eral manner studying redistribution of the energy between
these components. We have derived the steady-state propa-
gation equations for both field intensities and the relative
phase. We have shown that the resonant elliptically polarized
cw field transforms into circularly polarized one for which
the medium is transparent.

Finally we have analyzed how the energy transfer be-
tween the pump and probe pulses. For the small propagation
distances the simple probe pulse amplification occurs. When
the energy of the probe pulse becomes comparable with the
energy of the pump one complex process of energy exchange
has been observed. The probe pulse amplification and energy
transfer between pulses is strongly influenced by the area
stabilization effect.
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FIG. 12. The amplification of the probe QG pulse polarized
linearly along y axis as a function of the relative phase ��0�. The
pump QG pulse is polarized linearly in the x direction. �a� The short
pulse amplification for three values of the pulse pump area and �b�
the long pulse amplification for three values of the propagation
distance.
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