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We study the description of the Bloch theorem in the cylindrically periodic structure and we show that it is
valid in a good approximation except for the neighborhood of the origin. The cylindrical Bloch theorem is
applied to the analysis of a Bragg fiber, a kind of photonic bandgap fibers. It is confirmed that the above
exception does not prevent us from using the theorem for a practical use. We show a procedure to obtain the
propagation constant and electromagnetic fields of the TE mode in the Bragg fiber. In the present scheme,
electromagnetic fields are genuinely treated as cylindrical waves, namely, Bessel functions without the
asymptotic expansion. Then we can obtain a clear mathematical description of the Bragg fiber and investigate
its physical properties. The present theory gives a criterion to design generalized Bragg fibers.
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I. INTRODUCTION

In a periodic structure, a wave is subject to the Bragg
diffraction, which is a fundamental physical process. To ana-
lyze the wave function in such a stratified material, the Bloch
theorem �1,2� has been applied. This theorem is originally
intended to use in the Cartesian coordinates and the Bloch
wave number is determined from the periodic boundary con-
dition with adequately long periodicity. As an application in
fiber optics, a Bragg fiber has been proposed �3�, which has a
hollow core and a periodically alternating cladding of high
and low refractive indices.

Since the first proposal of photonic bandgap in 1987 �4�,
the photonic crystal has been under intense study. It is well
known that the electromagnetic field of specific wavelength
is forbidden in suitably designed photonic crystals. This
property is effective to confine the electromagnetic fields to a
specific region. In 1995, the photonic crystal fiber was pro-
posed �5�, in which the refractive index is controlled by the
periodicity of its inner structure, such as arrangement of air
holes �6�. In particular, photonic crystal fibers where light is
confined to the core due to the photonic bandgap are referred
to as the photonic band-gap fibers.

The photonic bandgap fiber has a lot of preferable prop-
erties to the conventional optical fibers based on the total
internal reflection at the core-cladding interface. Since
extremely low-loss propagation is expected in photonic
bandgap fibers with a hollow core, wavelength region other
than telecommunication wavelength can be used. Further-
more, small nonlinear effects are remarkable features for
various applications.

Recently, research on Bragg fiber has revived as a kind of
photonic bandgap fibers. It has been studied analytically
�7–10�, semianalytically �11�, and numerically �12,13� and
mutually consistent results have been obtained to a certain
degree. In addition, Bragg fibers were demonstrated and it
was reported that they reveal the tolerance for bending loss

�14,15�. In analytical approaches, the Bloch theorem was ap-
plied to the radially stratified cladding layers. In the cylindri-
cal coordinates, however, the original Bloch theorem does
not apply strictly. In previous works, instead, an asymptotic
expansion approximation was employed �7–10�. In this ap-
proximation, cylindrical waves are described as the
asymptotic expansion of cylindrical functions in the lowest
order and are treated as nearly plane waves. In those studies,
results are absolutely affected by the approximation accuracy
in the Bloch theorem, therefore, the application range of the
theory is restricted to the asymptotic region. For more accu-
rate results, we need to apply the Bloch theorem in a better
approximation.

In this paper, we study the description of the Bloch theo-
rem in the cylindrical coordinates. In the present scheme, an
approximation, though it has higher precision than previous
one, is still used. However, the electromagnetic fields are
genuinely treated as cylindrical waves, namely, the Bessel
functions, instead of the asymptotic expansion. Then, we ap-
ply it to the Bragg fiber, and we show a method to obtain the
propagation constant and electromagnetic fields of the TE
mode which has the lower propagation loss among all the
mode groups �16�. Although the accuracy of the present
scheme remains restricted by the accuracy of the Bloch theo-
rem, the mathematical structure of the Bragg fiber becomes
much clearer than previous works. The present scheme gives
us various physical aspects of Bragg fibers to understand
them.

This paper is organized as follows. In Sec. II, the Bloch
theorem in the cylindrical coordinates is studied. In Sec. III,
we show the fundamental equations of the TE mode in the
Bragg fiber. Then, we apply the Bloch theorem in cylindrical
coordinates to the TE mode and the eigenvalue equations are
derived in Secs. IV and V, respectively. In Sec. VI, we dis-
cuss the present scheme from various viewpoints, and Sec.
VII is devoted to the conclusion.

II. BLOCH THEOREM IN THE CYLINDRICAL
COORDINATES

Let us begin with the description of the Bloch theorem in
the cylindrical coordinates. We consider the electromagnetic
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field propagating to the z direction in a material, with the
angular frequency �. Here, � is the propagation constant, a
characteristic parameter of the optical fibers. With a spa-
tiotemporal factor Utz=exp�i��t−�z��, the field component
parallel to the z direction is separated into

�z = UtzF�r�exp�i��� , �1�

where � is the azimuthal mode number. We restrict ourselves
to a case where � is not so large, that is, 0���3, which is
sufficient for a practical use. The function F�r� satisfies the
Bessel differential equation, namely, the Maxwell equation
in the cylindrical coordinates

d2F�r�
dr2 +

1

r

dF�r�
dr

+ ��2�r� −
�2

r2�F�r� = 0, �2�

with the lateral propagation constant ��r�. Introducing a
function 	�r���rF�r� and disregarding minute terms equal
to and smaller than r−2 under ��r�2
1, we find that the
above equation is formally reduced to the equation of har-
monic oscillator

d2	�r�
dr2 + �2�r�	�r� = 0. �3�

We assume that the material has a periodic structure along
the r direction such as ��r+��=��r�, with the period �. In
such a medium, 	�r� and 	�r+�� satisfies the same Eq. �3�,
that is

	�r + �� = C���	�r� , �4�

where C��� is a coefficient dependent on the period �. Re-
peating use of Eq. �4� results in a relationship C�N��
= �C����N for an arbitrary integer N. This relationship allows
us to express as C���=exp�−iK�� with a complex number
K. If a system possesses the periodic boundary condition
with adequately long periodicity as is the case of one-
dimensional system, then C�N��=1 is added �2�, imposing
that K must be real.

In the present cylindrical system that is bounded at the
origin, one obtains

	�r + �� = exp�− iK��	�r� , �5�

with the Bloch wave number K that is a complex number.
The relationship strongly implies that 	�r� should be repre-
sented by

	�r� = exp�− iKr�u�r� , �6�

where u�r� is a periodic function with the period �, namely,
u�r+��=u�r�. For the cylindrical electromagnetic field
propagating in a periodic medium, the Bloch theorem is ex-
pressed as

�r + �F�r + �� = exp�− iK���rF�r� , �7�

F�r� = exp�− iKr�
u�r�
�r

, �8�

corresponding to Eqs. �5� and �6�, respectively. Note that
F�r� has a singular point at r=0 due to the factor 1 /�r. It

comes from the fact that the periodic structure is bounded at
the origin in the cylindrical representation, whereas a bound-
less periodic structure is supposed in the original Bloch theo-
rem. However, the neighborhood of the origin is out of the
cladding region to apply the Bloch theorem, which is guar-
anteed by the fact that a certain core radius is necessary for
the propagation mode due to the guiding limit. This point
will be discussed in Sec. VI A again.

In Sec. IV, this cylindrical representation of Bloch theo-
rem is applied to the TE mode in the Bragg fiber. Before that,
we describe the fundamental equations of the TE mode in the
following section.

III. FUNDAMENTAL EQUATIONS OF THE
TE MODE IN THE BRAGG FIBER

The schematic of the Bragg fiber is shown in Fig. 1. The
Bragg fiber has a hollow core and periodic cladding layers a
and b with high and low refractive indices alternately. Now,
we consider a situation that the TE mode of wavelength �0
propagates to the z direction inside the Bragg fiber. For the
TE mode, the azimuthal mode number �=0. Then, the TE
mode is characterized by Hz and E�,

	Hz

iE�

 = UtzDi�r�	Ai

Bi

 , �9�

where Ai and Bi are complex amplitude coefficients and

Di�r� = � H0
�2���ir� H0

�1���ir�

−
�
0

�i
H0

�2����ir� −
�
0

�i
H0

�1����ir� � �10�

is the representation matrix for the ith layer. The index i is
set to c for the core, a and b for the cladding layers a and b,
respectively. Hankel functions H�

�1�=J�+ iY� and H�
�2�=J�

− iY� stand for the waves propagating inward and outward on
a cross section, respectively. The prime indicates the differ-
entiation with respect to the argument �ir. The lateral propa-
gation constant for the ith layer is represented by

C o r e

C l a d d i n g

r

0

rr
r

n

0

c

b

a
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Λ
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FIG. 1. The schematic of a Bragg fiber with a hollow core and
alternate cladding layers a and b �left� and its refractive index dis-
tribution �right�. a �b� is the thickness of the layer a �b� and �=a
+b is the period of the cladding layer. rc is the core radius, rmA

=rc+ �m−1��+a and rmB=rc+m� are the positions of interface at
the mth layers a-b and the mth layer b-�m+1�th layer a, respec-
tively. Am ,Bm �Am� ,Bm� � are the amplitude coefficients in the clad-
ding layer a �b�.
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�i = ��nik0�2 − �2�1/2. �11�

In addition, k0=� /c, c, and 
0 are the wave number, the
light velocity, and the absolute permeability, respectively, in
the vacuum.

For the sake of convenience, we introduce Am, Bm
�Am� ,Bm� � for the complex amplitude coefficients in the mth
cladding layer a �b� instead of Aa, Ba �Ab ,Bb�. From the
boundary condition at r=rc+ �m−1��+a�rmA,

Db�rmA�	Am�

Bm�

 = Da�rmA�	Am

Bm

 , �12�

and we obtain a sequence between amplitude coefficients of
the mth layers a and b,

	Am�

Bm�

 = Db

−1�rmA�Da�rmA�	Am

Bm



= 	 fab�rmA� gab�rmA�
gab

� �rmA� fab
� �rmA� 
	Am

Bm

 , �13�

where

f ij�r� =
i�� jr

4
�� j

�i
H0

�1��� jr�H0
�2����ir� − H0

�1���� jr�H0
�2���ir�� ,

�14�

gij�r� =
i�� jr

4
�� j

�i
H0

�1��� jr�H0
�1����ir� − H0

�1���� jr�H0
�1���ir�� .

�15�

Here, we used Lommel’s formula H�
�1��z�H�

�2���z�
−H�

�1���z�H�
�2��z�=−4i /�z �17� to calculate Db

−1�rmA�. For the
exchange of indices i and j in Eqs. �14� and �15�, one obtains
f ji�r�= ��i /� j�2f ij

� �r� and gji�r�=−��i /� j�2gij�r�, respectively.
Using Lommel’s formula again produces


Dj
−1�rmA�Di�rmA�
 = 
f ij�r�
2 − 
gij�r�
2 = 	� j

�i

2

. �16�

At r=rc+m��rmB, similarly, we have

	Am+1

Bm+1

 = Da

−1�rmB�Db�rmB�	Am�

Bm�



= 	 fba�rmB� gba�rmB�
gba

� �rmB� fba
� �rmB� 
	Am�

Bm�

 . �17�

The combination of Eqs. �13� and �17� leads to a relation-
ship between adjacent cladding layers a,

	Am+1

Bm+1

 = 	Xm Ym

Ym
� Xm

� 
	Am

Bm

 , �18�

where

Xm = fba�rmB�fab�rmA� + gba�rmB�gab
� �rmA� , �19�

Ym = fba�rmB�gab�rmA� + gba�rmB�fab
� �rmA� . �20�

Since the coefficient matrix in Eq. �18� is the product of
Da

−1�rmB�Db�rmB� and Db
−1�rmA�Da�rmA�, we can find that it is

a unimodular matrix, that is,


Xm
2 − 
Ym
2 = �
fba�rmB�
2 − 
gba�rmB�
2��
fab�rmA�
2

− 
gab�rmA�
2� = 1, �21�

where we used Eq. �16�. This point will be discussed in Sec.
VI B

IV. APPLICATION OF THE BLOCH THEOREM IN
CYLINDRICAL COORDINATES TO THE TE

MODE IN THE BRAGG FIBER

For the TE mode, the z component of the magnetic field in
the mth cladding layer a is reduced to

Hz
�m��r� = Utz�AmH0

�2���ar� + BmH0
�1���ar�� , �22�

where we used the superscript m to specify the magnetic
field in the mth layer. Substituting Eq. �22� into Eq. �7� at the
most inner part of mth layer a, that is, r=r�m−1�B,

�rmBHz
�m+1��rmB� = exp�− iK̃���r�m−1�BHz

�m��r�m−1�B� ,

�23�

where K̃ is the Bloch wave number. An introduction of in-
vertible matrices Mm leads the above relationship to the fol-
lowing equation:

�rmB„H0
�2���armB�,H0

�1���armB�…Mm+1Mm+1
−1 	Am+1

Bm+1



= exp�− iK̃���r�m−1�B„H0
�2���ar�m−1�B�,H0

�1���ar�m−1…B��

�MmMm
−1	Am

Bm

 . �24�

The matrices Mm are introduced to associate the mth with
�m+1�th amplitude coefficients.

Let us choose matrices Mm so as to satisfy

„H0
�2���armB�,H0

�1���armB�…Mm+1

= „H0
�2���ar�m−1�B�,H0

�1���ar�m−1�B�…Mm

= �C1,C2� , �25�

where C1 and C2 are complex numbers independent of m.
Now, we set

C1 = C2 = �2/��a �26�

so that �r�m−1�BMm
−1 is equal to the transformation matrix

Ũm, introduced to relate the absolute coordinates with the
relative coordinates discussed in Appendix A. Then we can
see that a solution satisfying Eq. �25� is
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Mm =� 2

��a�
1

H0
�2���ar�m−1�B�

0

0
1

H0
�1���ar�m−1�B�

� .

�27�

Employing Eq. �27�, we obtain a relationship between the
mth and �m+1�th amplitude coefficients

	Am+1

Bm+1

 = exp�− iK̃����m+1�,m	Am

Bm

 , �28�

where

�m�,m =� r�m−1�B

r�m�−1�B
Mm�Mm

−1 = 	�11 0

0 �22

 �29�

and

�11 =� r�m−1�B

r�m�−1�B

H0
�2���ar�m−1�B�

H0
�2���ar�m�−1�B�

,

�22 =� r�m−1�B

r�m�−1�B

H0
�1���ar�m−1�B�

H0
�1���ar�m�−1�B�

. �30�

From this representation, we can derive a reduction formula
on �m�,m,

�m�,m��m�,m = �m�,m. �31�

For m�=m, in particular, we obtain �m,m�=�m�,m
−1 . We can

say that the transformation �m�,m forms a group. The trans-
formation �m�,m for adjacent cladding layers reduces to the
unit matrix in the previous picture �9�, as will be discussed in
Appendix A.

V. EIGENVALUE EQUATIONS FOR THE
CYLINDRICALLY PERIODIC

STRUCTURE

In this section, we connect two sequences of amplitude
coefficients. One is obtained by the consideration of electro-
magnetic treatment in Sec. III and the other by the Bloch
theorem in cylindrical coordinates in the preceding section.
Equating right-hand sides of Eqs. �18� and �28� yields

	Xm Ym

Ym
� Xm

� 
	Am

Bm

 = exp�− iK̃����m+1�,m	Am

Bm

 . �32�

Premultiplication of ��m+1�,m
−1 on both sides of Eq. �32� gives

eigenvalues

exp�− iK̃j�� = Re�X̃m� � ��Re�X̃m��2 − 
X̃m
2 + 
Ỹm
2�1/2,

�33�

where

X̃m =� rmB

r�m−1�B

H0
�2���armB�

H0
�2���ar�m−1�B�

Xm, �34�

Ỹm =� rmB

r�m−1�B

H0
�2���armB�

H0
�2���ar�m−1�B�

Ym, �35�

and j=1,2 corresponds to the plus and minus signs, respec-
tively, in the right-hand side of Eq. �33�, the first eigenvalue
equation. It depends upon the situation which eigenvalue
�j=1,2� should be used, as shown in Appendix B. Note that


X̃m
2− 
Ỹm
2�1, although it is not exactly equal to unity.
From Eq. �33�, the Bloch wave number is dependent on the
cladding ordering m in a strict sense. However, its depen-

dence on m is so slight that we can treat K̃j as a constant, as

will be clarified in Sec.VI A. Henceforth, we adopt K̃j at m
=1 as the Bloch wave number.

The eigenvector corresponding to eigenvalues

exp�−iK̃j�� is

	Am

Bm

 = �̃m	 Ỹm

exp�− iK̃j�� − X̃m


 , �36�

where �̃m is an adjustment parameter and �̃1 will be deter-
mined from the boundary condition at r=rc later. Using Eq.
�28� repeatedly, we obtain the amplitude coefficients in the
mth layer with those of the innermost cladding layer

	Am

Bm

 = �̃1 exp�− i�m − 1�K̃j���m,1	 Ỹ1

exp�− iK̃j�� − X̃1


 ,

�37�

where Eq. �31� is also considered.
To determine the amplitude coefficients in the innermost

cladding layer, we consider the boundary condition at the
core-cladding interface, r=rc. An equality Bc=Ac is neces-
sary for securing that the electromagnetic wave must be fi-
nite at r=0. Therefore Eq. �9� for the core is reduced to

	Hz

iE�



r=rc

= Utz� 2AcJ0��crc�

− 2
�
0

�c
AcJ0���crc� � , �38�

where Ac is an arbitrary constant. Use of the above represen-
tation results in

� 2AcJ0��crc�

− 2
�
0

�c
AcJ0���crc� � = Da�rc��̃1	 Ỹ1

exp�− iK̃j�� − X̃1


 .

�39�

The above equation becomes

	�11 �12

�21 �22

	Ac

�̃1

 = 0 �40�

in a matrix form, where

�11 = 2J0��crc� ,

�12 = − �H0
�1���arc��exp�− iK̃j�� − X̃1� + H0

�2���arc�Ỹ1� ,
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�21 =
2

�c
J0���crc� ,

�22 = −
1

�a
�H0

�1����arc��exp�− iK̃j�� − X̃1� + H0
�2����arc�Ỹ1� .

�41�

In order that Eq. �40� may have nontrivial solutions, it is
necessary and sufficient that the determinant of the coeffi-
cient matrix vanishes and the second eigenvalue equation of
the TE mode is obtained as

J0���crc�
J0��crc�

+
�c

i�a
�̃ j = 0. �42�

Here,

�̃ j = − i
� j���arc�
� j��arc�

�43�

and

� j�z� = H0
�1��z��exp�− iK̃j�� − X̃1� + H0

�2��z�Ỹ1. �44�

The prime indicates the differential with respect to the argu-
ment. From Eq. �40�, the ratio of amplitudes for the core and
cladding is

�̃1

2Ac
=

J0��crc�

H0
�1���arc��exp�− iK̃j�� − X̃1� + H0

�2���arc�Ỹ1

.

�45�

Eigenvalue equations consist of Eqs. �33� and �42� which
are analytically expressed in terms of the Bessel and Hankel
functions unlike the previous works �7–10�. Solving these
two equations simultaneously, we can calculate the propaga-
tion constant �, from which we can evaluate various proper-
ties. Reduction of the eigenvalue Eqs. �33� and �42� to the
prior results �9� will be shown in Appendix A.

VI. DISCUSSION

In this section, we discuss some properties in the present
scheme.

A. Consideration on the cylindrical Bloch theorem
near the origin

It is described in Sec. II that the cylindrical Bloch theo-
rem is guaranteed except for the vicinity of the origin. It will
be shown here that this restriction does not prevent us from
the application to the Bragg fiber. For the sake of easy un-
derstanding, we consider the quarter-wave stack �QWS� con-
dition ��aa=�bb=� /2�, where the Bragg diffraction occurs
effectively in the cladding. This condition yields a simplified
eigenvalue equation for an infinite number of the periodic
cladding �10�

�crc = 2�
rc

�0
�nc

2 − 	 �

k0

2�1/2

= UQWS, �46�

with UQWS= j1,
 for the TE0
 mode and j�,
 indicating the

th zeros of J�. Parameters such as the core radius rc and
thickness of cladding layers a and b should be decided in
accordance with the QWS condition. Under the QWS condi-
tion, the TE mode is guided for rc /�0�UQWS / �2�nc�. The
minimum value of the lower guiding limit is 0.6098 given by
the TE01 mode.

The Bloch wave number K̃j necessary for calculating the
eigenvalue depends on the cladding ordering in a strict sense,

as shown in Eq. �33�. Since 
X̃m
2− 
Ỹm
2�1, the K̃j is sub-

stantially a function of Re�X̃m�. The K̃j can be calculated by
insertion of �, which is obtained from Eq. �46�, into Eq. �33�
which implicitly includes �. Figure 2 shows the m depen-

dence of relative deviation of Re�X̃m� from its asymptotic
value for several rc /�0, including the lower guiding limit

because the Re�X̃m� is inclined to converge to a certain value
with increasing the m. Here, the refractive index of cladding
layer a is set to be na=2.5 and 4.5, the latter of which is
close to a practically used value �11,14�. Indices of the clad-
ding layer b and core are fixed at nb=1.5 and nc=1.0, respec-
tively. As the na increases under fixed values of nb and nc, the
relative difference between m=1 and 100 increases and con-
verges to a finite value. It is natural that the difference at
m=1 is reduced with the increase in rc /�0. For example, at
rc /�0=0.61, the relative difference for na=2.5 and 4.5 is less
than 0.24% and 0.55%, respectively. The relative difference
is negligibly small even for the worst case where na is infi-
nite and rc /�0=0.61 because it is 0.89% at m=1.

In summary, the Bloch wave number K̃j can be regarded
as a constant independent of m even in the cylindrical Bloch
theorem. This means that the restriction concerning the
neighborhood of the origin in the cylindrical Bloch theorem
imposes no substantial restriction on a practical use.
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FIG. 2. The m dependence of relative difference of Re�X̃m�.
Here, Re�X̃m=100� is used as a reference since its deviation from the
asymptotic value is negligible. The refractive indices of the layers
a, b, and core are set to be na=4.5 and 2.5, nb=1.5, and nc=1.0.
Other fiber parameters are determined such that they satisfy the
quarter-wave stack condition for each case. The core radius is set to
satisfy rc /�0�UQWS / �2�nc��0.610.
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B. Physical meanings of sequences between
amplitude coefficients

In our description of electromagnetic waves, the Hankel
functions of the first and second kinds stand for the waves
propagating inward and outward, respectively. An expression
given in Eq. �16� can also be obtained using geometrical
optics as follows. Geometrical optics is valid for a limiting
case of wavelength, �0→0. This is equivalent to a condition,
�ir
1, which justifies an asymptotic expansion approxima-
tion used in Refs. �9,10�. The TE mode behaves as the me-
ridional ray because its caustic radius becomes zero in the
Bragg fiber �18�, indicating that the ray can be considered in
the r-z plane, as shown next.

In Fig. 3, the interface between the mth cladding layers a
and b is illustrated. Let optical rays am and am� �bm and bm� �
propagate outward �inward�. According to the reflection law
of ray, both am and bm make an identical angle �a with
respect to the interface at r=rmA. The same is true of �b
concerning the bm� and am� . Four rays interact with each other
on the interface. Here, these angles are measured from the
axis parallel to the z direction according to the convention of
fiber optics.

Let us associate each optical ray with a cylindrical wave.
In the cladding layer i�=a ,b�, the z component of magnetic
field is described under the asymptotic expansion approxima-
tion as

Hz
�i,m� �

1
�ki,rr

�am exp�− iki,rr� + bm exp�iki,rr�� , �47�

where �ki,r ,ki,� ,ki,z�= �nik0 sin �i ,0 ,nik0 cos �i� is the wave-
number vector of the outward ray am for the TE mode. When
phase factors exp�−i�ar�m−1�B� and exp�i�ar�m−1�B� are in-
cluded in amplitude coefficients am and bm, respectively, Eq.
�47� leads to the treatment in the previous picture �9�. For the
layer b �i=b�, the primed amplitude coefficients �am� ,bm� � are
applied instead of �am ,bm�. Another component of electro-
magnetic field along the � axis is calculated to be

E�
�i,m� �

1
��ki,r�3r

�am exp�− iki,rr� − bm exp�iki,rr�� . �48�

From the continuity condition of electromagnetic fields at r
=rmA, we have the following relationship:

	am�

bm�

 = 	 f̄ ab ḡab

ḡab
�

f̄ ab
�

	am

bm

 , �49�

where

f̄ ab =
1

2
�kb,r

ka,r
	1 +

kb,r

ka,r

exp�− i�ka,r − kb,r�rmA� , �50�

ḡab =
1

2
�kb,r

ka,r
	1 −

kb,r

ka,r

exp�i�ka,r + kb,r�rmA� . �51�

It follows that 
 f̄ ab
2− 
ḡab
2= �kb,r /ka,r�2. Relating ki,r to the
lateral propagation constant as �i=ki,r=nik0 sin �i, we see
that this relationship agrees with Eq. �16�. On the other hand,
the z component of the wave-number vector in each layer is
identical with the propagation constant, �=nak0 cos �a
=nbk0 cos �b, which corresponds to Snell’s law.

Rays am, am� , bm, and bm� correspond to the amplitude co-
efficients Am, Am� , Bm, and Bm� in the present representation,
respectively. The factor �ki,r�−1/2 in Eq. �47� is essential in the
present cylindrical scheme. If this factor is not taken into
account, which means that each ray is associated with a

plane wave, then we arrive at a different result 
 f̄ ab
2− 
ḡab
2
=kb,r /ka,r.

Equations �13�, �17�, and �18� mean how each of waves is
coupled with others. These sequences also describe the rela-
tionship of electromagnetic field intensities in each layer. Let
us introduce the total flux Em= 
Am
2− 
Bm
2�Em� = 
Am� 
2
− 
Bm� 
2� in the mth layer a �b�, taking the direction of propa-
gation into account. Under the transformation �13�, the total
flux varies by the factor given in Eq. �16�, that is, Em�
= ��b /�a�2Em. In the present scheme, the total flux is propor-
tional to the energy density in each cladding layer. When
na�nb, which means that the light velocity in the layer a is
slower than in the layer b, the energy density in the mth layer
a is higher than that in the mth layer a �Em�Em� � because
��b /�a�2�1.

Equations �16� and �21� make it possible to design a new
class of Bragg fibers which are composed of multiple kinds
of cladding materials. For the mth and �m+1�th layers a, the
relationship of total fluxes is calculated as Em+1=Em from Eq.
�21�. It means that the energy density in layers of a kind is
identical to each other in spite of a spatial separation and that
the effect of layer between them, namely, layer b, disappears.
For multilayer structures, similarly, total fluxes of arbitrary
two layers are related with each other by the property of
themselves only, independent of the structure between them.
When the layer consists of A, B, and �, for example, we can
see that the energy densities of layers A and � are related as
E�= ��� /�A�2EA from Eq. �16� without the effect of the layer
B. In Fig. 4, we show variations of Bragg fiber with cladding
consisting of three kinds of layers.

z

b

φ

a

φ

m
a ′

m
b ′

m
a

m
b

a

n
b

n

r

m A
r

~~

l a y e r  a l a y e r  b

FIG. 3. Interface between the mth cladding layers a and b in an
infinitesimal region. Outward rays am and am� and inward rays bm

and bm� are coupled with each other on the interface at r=rmA. �a

and �b are the angles which am and bm� make with respect to the
interface, respectively. The magnitude of vectors corresponds to the
wave number in medium.
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C. Bloch theorem description in various coordinates

In the present scheme, we have applied the Bloch theorem
to the cylindrical coordinates, which is applicable to other
systems. Let us suppose that the wave function is separated
into

	�r;r0� = ��r − r0�F�r� , �52�

where r0=0 is the origin of the radial direction and usually
set to zero. A function � is dependent on the radial position
measured from the origin and is determined appropriately in
accordance with coordinate systems. The function � is
strongly dependent on r0, whereas F�r� is little affected by
r0. It implies that F�r� is approximately invariant under the
translation operation by the period �, namely, F�r+��
�F�r�, except for the vicinity of the origin.

In the present scheme, namely, the cylindrical coordi-
nates, ��r−r0� is set to �r−r0. In the spherical coordinates,
for example, this function should be chosen as ��r−r0�=r
−r0 with which the Maxwell equation in the spherical coor-
dinates is approximately reduced to the equation of harmonic
oscillator again. These are consistent with the fact that the
field intensity 
	�r ;r0�
2 is attenuated by the ratio of
�r−r0�−1 and �r−r0�−2 in each of coordinates, respectively.
Note that the wave functions have a singular point at the
origin for the cylindrical and spherical coordinates. The Car-
tesian coordinate system is a special case in which ��r−r0�
should be unity. In this case, the dependence of wave func-
tion 	�r ;r0� on the origin r0 disappears, which is the situa-
tion supposed in the original Bloch theorem.

VII. CONCLUSION

We have studied the description of the Bloch theorem in
the cylindrically periodic structure. This theorem is valid, in
a good approximation, except for the neighborhood of the
origin due to the singular point. The cylindrical Bloch theo-
rem has been applied to the analysis of the TE mode in a
Bragg fiber which consists of a hollow core and a multian-
nulus cladding. Numerical consideration on the Bragg fiber
shows that the above exception imposes no substantial re-
striction on a practical use.

In the present scheme, the electromagnetic fields in the
Bragg fiber are genuinely treated as the cylindrical waves,

which provides us a clear mathematical model of the Bragg
fiber. The eigenvalue equations are analytically expressed in
terms of the Bessel and Hankel functions. The Bloch wave
number can substantially be treated as a constant over the
entire cladding region. The eigenvalue equations enable us to
calculate the propagation constant and electromagnetic field
distribution from which various characteristics can be de-
rived with high accuracy.

Equations �16� and �21� are useful for understanding the
physics in the Bragg fiber by combining with the concept of
total flux, as described in Sec. VI B. Equation �16� is related
with geometrical optics which is helpful for drawing the
physical picture. These two equations give a criterion to de-
sign generalized Bragg fibers. It is shown that the Bloch
theorem is applicable to coordinates other than cylindrical
system, such as spherical coordinate system. Although the
present scheme can be extended to the TM and hybrid
modes, the work belongs to the future study.

APPENDIX A: CORRESPONDENCE BETWEEN PRESENT
AND PREVIOUS PICTURES

Throughout this paper, cylindrical waves are described
with Bessel functions and the absolute coordinate is used for
radius variation. On the other hand, in the previous picture
�9,10�, the Hankel functions are approximated in the form of
the asymptotic expansion, namely, nearly plane waves, and
relative coordinates are introduced to calculate the phase fac-
tor in the cladding. In this appendix, we study the relation-
ship between amplitude coefficients of these two pictures.

Let us introduce amplitude coefficients in the cladding
layer a �b� for the previous picture as am, bm �am� ,bm� �, cor-
responding to Am, Bm �Am� ,Bm� � in the present picture, respec-
tively. From Eq. �9� in Ref. �9�, the boundary condition at the
interface of the mth cladding layers a and b �r=rmA� is

GbQb�rm,b = 0�	am�

bm�

 = GaQa�rm,a = a�	am

bm

 , �A1�

where

Gi =
1

��i�
1 1

i
�
0

�i
− i

�
0

�i
� , �A2�

Qi�r� = 	exp�− i�ir� 0

0 exp�i�ir�

 , �A3�

and 0�ra,m�a and 0�rb,m�b are relative coordinates
measured from r=r�m−1�B and rmA in the absolute coordinate,
respectively. On the other hand, the boundary condition in
the absolute coordinate picture is represented by Eq. �12�, the
left-hand side of which can be equated to the left-hand side
of Eq. �A1�. With the asymptotic expansion of Hankel
functions,

	am

bm

 = Ũm	Am

Bm

 , �A4�

where

Α

r
r

n

0
0

c

Γ

C o r e

Β

C l a d d i n g

Λ

r
r

n

0

0

Λ

C o r e C l a d d i n g

c

Γ

Α

Β

(b)(a)

FIG. 4. Examples of the refractive index distribution of gener-
alized Bragg fibers with three kinds of layers: asymmetric �left� and
symmetric �right� in a period. Here, nc and ni�i=A,B,�� are the
refractive indices in the core and cladding layer i, respectively, and
the cases of nA�nB�n� are indicated. In a period, three and four
interfaces are contained, respectively. Inverted magnitude about nB

and n� is also permitted.
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Ũm = 	exp�− i�m� 0

0 exp�i�m�

 �A5�

is a unitary matrix and �m=�ar�m−1�B−� /4.
Note that the total flux Em, defined in Sec. VI B, in both

sides is invariant under the transformation Ũm. In the

asymptotic expansion, Ũm is proportional to the inverse ma-
trix Mm

−1. In the relative coordinate picture

�r�m−1�BMm
−1 = Ũm�ra,m = 0� = 1, �A6�

indicating that ��m+1�,m=1 in this picture. With above, we
have shown that Eq. �32� reduces to Eq. �18� in Ref. �9�.

Premultiplying Eq. �18� by Ũm+1 and making use of

Ũm
† Ũm=1, we obtain

	am+1

bm+1

 = Ũm+1	Xm Ym

Ym
� Xm

� 
Ũm
† 	am

bm

 � 	 X Y

Y� X� 
	am

bm

 ,

�A7�

where

Xm exp�− i��m+1 − �m��

� �cos �bb −
i

2
	�b

�a
+

�a

�b

sin �bb�exp�− i�aa� = X ,

�A8�

Ym exp�− i��m+1 + �m��

�
i

2
	�b

�a
−

�a

�b

sin �bb exp�i�aa� = Y , �A9�

and 
X
2− 
Y
2=1. Hence, we have confirmed that Eq. �18�
reduces to Eq. �12� in Ref. �9�.

Then, we show the eigenvalue equations are consistently
described under the transformation �A4�. With the
asymptotic expansion of Hankel functions,

� rmB

r�m−1�B

H0
�2���armB�

H0
�2���ar�m−1�B�

� exp�− i�a�� , �A10�

then X̃m�Xm exp�−i�a��=X. Therefore, eigenvalues
exp�−iKj�� are formally identical with each other in both

pictures �K̃j �Kj�. This means that Eq. �33� is in formal

agreement with Eq. �19� in Ref. �9�. Furthermore, with Ỹm
�Ym exp�−i�a��=Y exp�i��m+1+�m�− i�a��,

�̃ j �
�exp�− iKj�� − X� − Y

�exp�− iKj�� − X� + Y
, �A11�

then Eq. �42� is equivalent to Eq. �21� in Ref. �9�.
As stated above, the representations in the present scheme

are consistent with the results in Ref. �9�.

APPENDIX B: RELATIONSHIP BETWEEN THE
ELECTROMAGNETIC MODES AND BLOCH

WAVE NUMBER IN BRAGG FIBER

In the present scheme, the electromagnetic fields in the
Bragg fiber are associated with the Bloch wave number, as
mentioned in Ref. �9�. Subtracting the complex conjugate of
lower component in Eq. �18� from the upper component, we
obtain

Am+1 − Bm+1
� = Xm�Am − Bm

� � + Ym�Am
� − Bm� . �B1�

Since Xm and Ym are generally nonzero, Bm
� =Am must hold

for arbitrary m. The index m means the ordering of cladding
layers and it implies that the cladding layers are supposed to
be repeated infinitely in the present model. In such a situa-
tion, the reflectance at the interface between the mth and
�m+1�th cladding layers is unity, which is referred to in Ref.
�9�. In practice, m should be a finite number and some de-
grees of the propagating field go out of the core to the clad-
ding region. Now, however, let us continue discussion as m
being sufficiently large.

The relation of Bm=Am
� produces exp�iK̃j

���
=exp�−iK̃j�� for propagation modes. To prevent the power
of the eigenvalue in Eq. �37� from divergence for sufficiently
large m, the Bloch wave number should be related to the

electromagnetic wave in the Bragg fiber. When Re�X̃m� is

larger �smaller� than �
X̃m
2− 
Ỹm
2�1/2, the eigenvalue K̃2�K̃1�
should be employed so that the electromagnetic field decays

in the cladding. On the other hand, when �Re�X̃m��2� 
X̃m
2

− 
Ỹm
2, the electromagnetic field oscillates in the cladding,
which corresponds to the radiation mode �9�.
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