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In this paper, we estimate the losses during teleportation processes requiring either two high-Q cavities or a
single bimodal cavity. The estimates were carried out using the phenomenological operator approach intro-
duced by de Almeida et al. �Phys. Rev. A 62, 033815 �2000��.
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High-Q cavity is an important scenario for testing the
foundations of quantum mechanics �1� as well as for demon-
strating quantum information processing �2�. As is well
known, the teleportation phenomenon �3�, the cornerstone of
universal quantum computation �4�, has received increasing
attention, and a number of protocols have been suggested for
its implementation in various contexts, including cavity-
QED �5–10�. Experimentally, teleportation has been demon-
strated for discrete variables �11–15� and for a single mode
of the electromagnetic field with continuous variables
�16,17�. More recently, teleportation between matter and
light has been announced �18�, where matter and light are,
respectively, the stationary and flying media. Teleportation
processes involving two modes of a single cavity were con-
sidered in Refs. �19,20�, where the unknown states to be
teleported are, respectively, a superposition of zero- and one-
photon states and a superposition of coherent states, with the
teleportation occurring from one mode to another inside a
cavity. In Ref. �21�, the scheme of Ref. �19� was simplified
so that explicit Bell measurement is not required. In this
paper, we estimate the role of losses during teleportation pro-
cesses, including the losses during the preparation of the
state being teleported. The estimates were carried out using
the phenomenological operator approach �22,23�.

Our proposal requires Ramsey zones, two-level Rydberg
atoms interacting off -resonantly with the cavity fields, selec-
tive atomic state detectors, and cavities �see Fig. 1�. The
model we are considering is

Ha,f ,E =
��0

2
�z + Hf ,E + Hef f , �1�

where �0 is the atomic �e�→ �g� transition frequency,
�z= �e��e�− �g��g�, Hef f =��a†a�e��e� is the effective
Hamiltonian describing the dispersive interaction between
the atom and the field, and Hf ,E=��a†a+�k��kbk

†bk
+�k���ka

†bk+�k
�abk

†�, where a† and a are, respectively, the
creation and annihilation operators for the cavity-field mode
of frequency �; whereas bk

† and bk are the creation and an-
nihilation operators for the kth environmental oscillator
mode, whose corresponding frequency and coupling param-
eter write �k and �k, respectively. As shown in Ref. �22�, Eq.
�1� can be written in the following simplified way in the

reduced Hilbert space comprising the field and environment:

H� = ���a†a + �
k

��kbk
†bk + �

k

���ka
†bk + �k

�abk
†� , �2�

where �=g ,e, �g=�, and �e=�+�. Note that the problem
was reduced to that of the free dissipation of a cavity field
whose frequency is �� when it interacts with the atomic state
���. Also, note that the field frequency is unchanged if the
atom enters the cavity in its ground state. The evolutions of
both the atom and cavity mode state can be obtained by the
following rule �22�:

�������E� → ������,t���k�,t� , �3�

where

��,t = �oe−�t/2−i��t, �4�

�ke,t = exp�i�t��k,t, �5�

�kg,t = �k,t, �6�

and

�	�k,t
�− 	�k,t
� = exp�− 2��o�2�1 − e−�t�� . �7�

The scheme described here applies, for example, to two
cavities made of a pair of mirrors each, with their symmetry
axes perpendicular to each other: two monomodal cavities,
the teleportation occurring from one mode of a cavity to
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FIG. 1. �Color online� Experimental setup for engineering and
teleporting a superposition of coherent states �SCSs� into a single
lossy bimodal cavity or between two lossy monomodal cavities.
Ramsey zones R1, R2 �R1� ,R2�� are necessary for preparing �teleport-
ing� the SCS.
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another mode of a second cavity, and to two orthogonally
polarized modes of a single bimodal cavity. All these fore-
going schemes imply that each mode couples with a different
reservoir, allowing us to safely use the rule given by Eq. �3�
to each mode at a time. Thus, let as assume that the state to
be teleported is prepared in mode 1, which can be one
of the two orthogonally polarized modes of a bimodal
cavity, or a single mode of the cavity 1, in the
superposition �	MQSS�1=N�a���1+b�−��1�, where
N= �1+ �ab�e−2��0�2 +H.c.��−1/2 is the normalization constant,
and a, b are unknown coefficients obeying �a�2+ �b�2=1. This
“Schrödinger cat state” was studied in Ref. �24� to investi-
gate the role of the environment in the transition of the quan-
tum to classical dynamics. Note that the scheme we propose
here differs from that of Refs. �20,25� since we consider the
coherent-states superposition in each mode evolving under
different reservoirs �26�. The atom and the cavity mode fields
coupling parameter is �i=

g2


i
, where g is the Rabi frequency,

� is the atom-field interaction time, 
i= ��i−�0� is the detun-
ing between the field frequency corresponding to mode or
cavity i=1,2, and �0 is the atomic �e�→ �g� transition fre-
quency. The evolution outside the cavity occurs with �i=0.
As discussed in Ref. �20�, having in mind a bimodal cavity,
we consider the last term in Eq. �1� involving � being effec-
tive only with one mode at a time. Therefore, while the in-
teraction between an atom and mode 1 �Eq. �2�� of the cavity
field is taking place, the relative phase due to the dispersive
interaction between the atom and mode 2 �Eq. �1�� of the
cavity field is negligible. This will be true provided the dif-
ference � between the two modes is large enough. In addi-
tion, to simplify our estimation of the fidelity of the tele-
ported mesoscopic quantum superposition state �MQSS�, we
assume that the atom-field coupling is turned on �off� sud-
denly at the instant the atom enters �leaves� the cavity. With
these remarks in mind, let us discuss the ideal process.

The ideal MQSS to be teleported is prepared by injecting
a coherent state ���1 into mode 1, assuming �ik=0 in Hamil-
tonian �1�. Then, a two-level atom 1 is laser excited and
rotated in a Ramsey zone R1 to an arbitrary superposition
a�e�2+b�g�2. After that, atom 1 crosses the cavity, having
been velocity selected to interact off-resonantly with mode 2
such that ��=, where � is the atom-field interaction time.
Atom 1 then crosses a Ramsey zone R1� undergoing a  /2
pulse and is detected, inducing a collapse of the cavity field
to the even �+� or odd �−� MQSS N�a���1�b�−��1�. The
+�−� sign occurs if the atom 1 is detected in the state
�g�1��e�1�. From now on, let us suppose that the even MQSS
has been prepared. To teleport the MQSS, first atom 2
crosses a Ramsey zone R2, undergoing a  /2 pulse, and then
interacts off-resonantly with mode 2, assumed previously
prepared in the coherent state ���2, with the coupling param-
eter adjusted to ��=. As commented, mode 2 can be one of
two orthogonally polarized modes of a bimodal cavity or a
single mode of a second cavity. When considering a bimodal
cavity, after the interaction of atom 2 and mode 2, the Stark
shift is switched to a large detuning, thus, freezing the evo-
lution corresponding to mode 2 and, at the same time, initi-
ating the interaction of atom 2 and mode 1 �2�. After crossing
the cavity, atom 2 crosses the Ramsey zone R2� undergoing a

 /2 pulse. By detecting atom 2 and measuring the phase of
the field in mode 2, the field state in mode 1 is projected on
to one of four possibilities. An appropriate rotation applied
on the state in mode 2 thus completes the teleportation pro-
cess. Let us consider these steps in detail, having in mind the
rules given by Eq. �3�.

Preparing the MQSS in a dissipative environment. Before
atom 1 crosses R1, the whole state of the system composed
by atom 1, modes 1 and 2, and the reservoirs is
�	�0��= �e�1���0��1���0��2�E�R1�E�R2. After the atom
crosses R1 and before it enters the cavity ��=0�,
this initial state evolves to �	�0��→ �	�t��
= �a�g�1+b�e�1����t��1���t��2��k,t�R1��k,t�R2. Next, atom 1 in-
teracts off-resonantly with mode 1, such that ��=, resulting
in

�	�t�� =
1

2
�a�e�1�− ��t��1���t��2��e,t�R1��k,t�R2

+ b�g�1���t��1���t��2��g,t�R1��k,t�R2� . �8�

Atom 1 then crosses R1�, undergoing a  /2 pulse and, when
it is detected in the ground state, the cavity field collapses to
the even MQSS in mode 1,

��� = Np�a���t��1��g,t�R1 + b�− ��t��1��e,t�R1����t��2��k,t�R2,

�9�

where Np is the normalization constant. Disregarding mode 2
and its corresponding reservoir in Eq. �9�, we have prepared
MQSS state,

�	MQSS�1 = Np�a���t��1��k,t�R1 + b�− ��t��1�− �k,t�R1� ,

�10�

where we use �g,t=�k,t and �e,t=exp�i�t��k,t=−�k,t from Eq.
�5�. We remark the straightforward calculation when using
the phenomenological operator approach �POA� method.

Teleporting the MQSS in a dissipative environment. After
preparing mode 1 in the MQSS given by Eq. �9�, atom 2
crosses Ramsey zone R2 undergoing a  /2 pulse. The whole
state of the system is

1
�2

��e�2 + �g�2�Np�a���t��1��k,t�R1 + b�− ��t��1�− �k,t�R1�

����t��2��k,t�R2. �11�

Next, atom 2 interacts off-resonantly with mode 2, such that
��=, resulting in

Np

�2
�a�e�2���t��1��k,t�R1�− ��t��2�− �kt�R2 + b�e�2�− ��t��1�

− �k,t�R1�− ��t��2�− �k,t�R2

+ a�g�2���t��1��k,t�R1���t��2��k,t�R2 + b�g�2�− ��t��1�

− �k,t�R1���t��2��k,t�R2� , �12�

where again we have used Eq. �5�. After the interaction of
atom 2 and mode 2, atom 2 then interacts off-resonantly with
mode 1. Considering a bimodal cavity, soon after the inter-
action of atom 2 and mode 2, which leads to Eq. �12�, the
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Stark shift must be switched to a large detuning

= ��2−�0�, thus, freezing the evolution corresponding to
the interaction between atom 2 and mode 2 and, at the same
time, initiating the off-resonant interaction of atom 2 and
mode 1, such that ��=. The result, after this interaction, is

Np

�2
�a�e�2�− ��t��1�− �k,t�R1�− ��t��2�− �k,t�R2

+ b�e�2���t��1��k,t�R1�− ��t��2�− �k,t�R2

+ a�g�2���t��1��k,t�R1���t��2��k,t�R2 + b�g�2�− ��t��1�

− �k,t�R1���t��2��k,t�R2� . �13�

After crossing the cavities, atom 2 crosses Ramsey zone R2�
undergoing a  /2 pulse, such that Eq. �13� evolves to

Np

2
	�e�2���t��1��k,t�R1�− a���t��2��k,t�R2 + b�− ��t��2�− �k,t�R2�

+ �e�2�− ��t��1�− �k,t�R1�a�− ��t��2�− �k,t�R2

− b���t��2��k,t�R2� + �g�2���t��1��k,t�R1�a���t��2��k,t�R2 + b�

− ��t��2�− �k,t�R2��g�2�− ��t��1�− �k,t�R1�a�− ��t��2�

− �k,t�R2 + b���t��2��k,t�R2�
 . �14�

Finally, detecting atom 2 and measuring the phase of the
field state in mode 1, the field state in mode 2 is projected on
one of four possibilities allowed by Eq. �14�. The phase of
the field in mode 1 can be measured by injecting a reference
field of known amplitude ��t� at time t into mode 1, which
makes the field states ���t��1 and �−��t��1 in Eq. �14� evolve,
respectively, to the states �2��t��1 and �0�1. Such states can be
distinguished by sending a stream of two-level atoms, all of
them in their ground state �g�s, to interact resonantly with
mode 1 of the cavity field. Detecting all these atoms in the
ground state indicates that mode 1 was in �−��t��1 of Eq.
�14�, while detecting at least one atom in the excited state
indicates that mode 1 was in ���t��1 state. When atom 2 is
detected in the �g�2 state and the field in mode 1 is detected
in ���t��1, then mode 2 is projected exactly on the desired
state,

�	MQSS�2 = Nt„a���t��2��k,t�R2 + b�− ��t��2�− �k,t�R2… ,

�15�

where mode 1 and its corresponding reservoir are neglected.
If the measurement results in �g�2�−��t��1, a single atom in-
teracting off-resonantly with mode 2 such that ��= com-
pletes successfully the teleportation process. For measure-
ments revealing the state �e�2 in Eq. �14�, no matter what the
field state in mode 1 is, the teleportation process cannot be
completed unless additional cavities and/or atoms be intro-
duced, thus, overcomplicating the scheme. The probability of
success of the present protocol is then 50%. Here, we stress
the role of the POA method in simplifying each step of the
process. As can be seen from Eq. �14�, only the reservoir
corresponding to mode 2, which receives the state to be tele-
ported, affects this teleportation protocol. In fact, this is a
consequence of different reservoirs existing for each mode.
For a treatment of two modes evolving under the same res-

ervoir in state engineering and teleportation processes, see
Refs. �20,25�. Also, note that mode 2 and its corresponding
environment do not affect the prepared MQSS in mode 1 and
vice versa, although both modes are now mixed to their cor-
responding environments. To calculate the reduced density
operator �MQSS�t� of the teleported state in mode 2, we only
need to trace out mode 1 and its environment,

�MQSS�t� = Nt
2��a�2���t��22���t�� + �b�2�− ��t��22�− ��t�� + Z�t�

��ab����t��22�− ��t�� + H.c.�� , �16�

where Z�t�= �	�k,t
 �−	�k,t
� is given by Eq. �7�, and the nor-
malization constant is Nt= 	1+ �Z�t�ab�e−2���t��2 +H.c.�
−1/2.
The fidelity of the teleported state is easily
computed by FT�t�= 2�	MQSS�0���MQSS�t��	MQSS�0��2, where
�	MQSS�0��1=NE�a���0��1+b���0��1�. In Fig. 2, we present
the fidelity for the teleported MQSS �Eq. �16�� for �=0.5,
1.0, 1.5, and 2.0. The parameters are taken from recent ex-
periments in cavity-QED �1,2�. Note that a successful real-
ization of the teleportation process is obtained for � ranging
from 0.5 to 1.0. For �=0.5, the fidelity remains near unity
for all times, while for �=1.0 the fidelity decays to about
0.85 by the time the teleportation is completed, reaching the
lowest value 0.7 for larger times, yet a significantly high
value. For �=1.5, the fidelity of the MQSS, by the time the
teleportation is concluded, is about 0.6, higher than the clas-
sical limit 0.5. Regarding nowadays technology, teleportation
in cavity fails for ��2.0. These results are closely related to
those of Ref. �25�, where two modes of a bimodal cavity
evolve under the same reservoir. In Ref. �25�, the effective
damping rate for each mode is the mean damping rate for the
two modes. Here, however, considering two orthogonally po-
larized modes of a bimodal cavity, the two modes evolve
independently of each other. As a consequence of a common
reservoir for two modes, at the microwave domain the result
obtained from an exact calculation presented in Refs. �20,25�

FIG. 2. Fidelity for the teleported MQSS for �=0.5 �box�, 1.0
�cross�, 1.5 �circle�, and 2.0 �diamond�. The coefficients are
a=b=0.5, and the experimental damping time is T2=0.9�103 for
mode 2.
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can be obtained from the rules given by Eq. �3� by simply

replacing �1 and �2 with �̄= ��1+�2� /2.
It is worthwhile to compare the scheme analyzed above

with other related recent proposals. For instance, in Ref.
�27�, a scheme for teleporting a superposition of two coher-
ent states was proposed, which is closely related to one of the
protocols that we have analyzed in this paper. However, dif-
ferent from our work, the authors have not either included
losses nor analyzed the possibility to realize teleportation
inside a single bimodal cavity. In Ref. �28�, the authors
present a scheme for teleporting an entangled coherent state.
Their scheme relies on the use of five high-Q cavities, and
the losses are not included. In Ref. �29�, the authors propose

a similar scheme which uses four cavities. In their scheme,
the authors do not analyze the role of the losses, even requir-
ing the excitation of the coherent state to be not small. Also,
it is worth to mention that the papers �30–32�, dealing with
teleportation of atomic states, takes advantage from noise to
achieve teleportation, while we consider the noise as a source
of errors in our cavity-field states teleportation protocol.
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