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A practical finite-temperature theory is developed for the superfluid regime of a weakly interacting Bose gas
in an optical lattice with additional harmonic confinement. We derive an extended Bose-Hubbard model that is
valid for shallow lattices and when excited bands are occupied. Using the Hartree-Fock-Bogoliubov-Popov
mean-field approach, and applying local-density and coarse-grained envelope approximations, we arrive at a
theory that can be numerically implemented accurately and efficiently. We present results for a three-
dimensional system, characterizing the importance of the features of the extended Bose-Hubbard model and
compare against other theoretical results and show an improved agreement with experimental data.
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I. INTRODUCTION

Bosonic atoms confined in an optical lattice are a remark-
ably flexible system for exploring many-body physics
�1–11�, in which strongly correlated physics can be explored,
for example, through the superfluid to Mott-insulator transi-
tion �12�. In the superfluid regime, a Bose-Einstein conden-
sate exists and experiments have explored its properties, such
as coherence �6,7,13,14�, collective modes �15�, and trans-
port �2,16,17�. To date, few experiments have considered the
interplay between the condensate and the thermal compo-
nents that occurs at finite temperatures �13,15�. Indeed, quan-
titative experimental studies of the finite-temperature regime
have been hampered by the lack of an accurate method for
performing thermometry in the lattice. Recent experimental
work has overcome this issue �18� �also see �19�� and finite-
temperature properties will undoubtedly receive increased
interest in the near future.

A unique feature of many-body physics with ultracold at-
oms is the opportunity to start from a complete microscopic
theory and perform ab initio calculations that can be directly
compared with experiments. In the deep lattice and low-
temperature limits, bosonic atoms in an optical lattice pro-
vide a precise realization of the Bose-Hubbard model �20�,
originally proposed as a toy model for condensed-matter
physics �21�. However, there is a wide regime of experimen-
tal interest in which the approximations central to the Bose-
Hubbard model �nearest-neighbor tunneling, local interac-
tions, and neglect of excited bands� are not valid. In such
regimes it is necessary to go beyond the Bose-Hubbard
model to furnish an accurate description of the physical
system.

Theoretical understanding of the properties of bosons in
optical lattices is still emerging, and accurate modeling is
made difficult by the combined harmonic lattice potential
used in experiments, which leads to a complex spectrum,
even in the absence of interactions �22–25�. One approach is
to use quantum Monte Carlo calculations which, in principle,
fully include thermal fluctuations and quantum correlations.
Applications of this approach have mainly been to the Bose-
Hubbard model �26–28�, although recently a continuous
space algorithm has also been developed for the full lattice
potential �29�. Mean-field methods provide an approximate

treatment that is much simpler to use and are applicable in
the superfluid regime where only weak correlations arise
from interparticle interactions. Extensive studies of the har-
monically trapped gas have demonstrated that the Hartree-
Fock-Bogoliubov-Popov �HFBP� mean-field theory �30� pro-
vides a capable description of thermodynamic properties
�31�, which agrees well with experiments �32,33�. The devel-
opment of similar mean-field theories for the lattice system
has been much more limited: HFBP calculations have been
performed for one-dimensional �1D� lattice systems in the
continuous �34,35� and Bose-Hubbard limits �36,37�, and
Duan and co-workers developed a local-density version for
the three-dimensional �3D� Bose-Hubbard model in �38,39�.
To obtain a theory suitable for direct experimental compari-
son over a broad parameter regime, it is necessary to go
beyond the approach in Refs. �38,39� to obtain a formalism
valid for shallow lattices and when excited bands are
occupied.

In this paper we develop a HFBP formalism, based on an
extended Bose-Hubbard model that includes beyond nearest-
neighbor tunneling, excited band occupation, and interac-
tions between bands and we discuss an approximate treat-
ment of off-site interactions. An important aim of our work is
to provide a formalism suitable for efficient numerical imple-
mentation. To achieve this we make use of a local-density
approximation �LDA� that accounts for beyond nearest-
neighbor tunneling and excited bands, and we develop an
envelope approximation that simplifies the treatment of a
general anisotropic harmonic confinement to a problem with
one independent spatial dimension. When combined, the
LDA and envelope approximations allow us to realize an
efficient and practical numerical formulation. We show under
what conditions it reduces to the simplified theory in Refs.
�38,39� and we numerically investigate the features of our
formalism.

In Sec. II we derive the many-body Hamiltonian for
bosons in an optical lattice with two body interaction, which
we convert to the extended Bose-Hubbard Hamiltonian. We
make HFBP mean-field approximations to this in Sec. III.
We diagonalize the mean-field Hamiltonian in the LDA and
compare our implementation to that of �38,39� in Sec. IV. We
derive results on the rich structure of the LDA combined
harmonic lattice density of states in Sec. V, which we com-
pare to the full diagonalization of the noninteracting Hamil-
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tonian. In Sec. VI we show some important features of our
numerical implementation and present numerical results
from our model in Sec. VII. We compare our predictions of
thermal properties with results from the full diagonalization
for the ideal gas and with limited experimental results avail-
able. We consider the significance of beyond nearest-
neighbor hopping and excited bands and illustrate the prop-
erties of our model. In the Appendixes, we consider the
extended Bose-Hubbard parameters, including an approxi-
mate interpolative scheme for off-site interactions.

II. BOSONS IN OPTICAL LATTICES

A. Lattice potential and units

We consider an optical lattice formed by orthogonal
standing waves, created by two opposing lasers in each di-
rection. The laser wavelength � j �in direction j� is off reso-
nant with respect to an atomic transition. The resulting po-
tential in d dimensions, up to an additive constant, is

Vlatt�r� � �
j=1

d

Vj sin2��rj

aj
� , �1�

where Vj is the lattice depth and aj �� j /2 is the lattice spac-
ing in direction j. Most of our results can be generalized to
the nonseparable lattice by adjusting the density of states we
introduce in Sec. V. We avoid doing this for notational
simplicity.

Except where specifically stated otherwise, our results are
generally valid for noncubic lattices and lower-dimensional
systems.1 By a cubic lattice, we mean that the underlying
Bravais lattice has cubic symmetry �or the equivalent in
lower dimensions, such as the square case� and that the lat-
tice spacings aj and depths Vj are the same in each axial
direction. This is the regime of most 3D experiments
�3,12,40–46�. We will generally present results in recoil
units, with the unit of length being aj /� and the unit of
energy being ER�h2 /8ma2, where m is the atomic mass and
a�	 jaj

1/d.

B. Harmonic-trap potential

Experimentally, atoms are subjected to a crossed optical
dipole �45,46� potential �due to the focused lasers used to
make the lattices� and often a magnetic trap also �3,40�.
These effects are well described by introducing an additional
potential that is approximately harmonic in form, i.e.,

Vtr�r� �
1

2
m�

j=1

d

� j
2rj

2, �2�

where � j is the harmonic-trap frequency in direction j. In 3D
experiments, the trap is often spherical or cylindrically sym-
metric �e.g., �x=�y ��z�. We consider the general aniso-
tropic case in d dimensions. We consider both the lattice with

Vtr�r�=0, which we call the “translationally invariant lat-
tice,” and the experimentally relevant combined harmonic
trap and optical lattice potential, which we call the “com-
bined harmonic lattice.” In typical experiments �3,12,44–46�,
we find the harmonic trapping frequencies to be generally
between 2��18 and 2��155 Hz, giving � /�R between
0.005 and 0.02, where ��	 j� j

1/d and �R�ER /� is the recoil
frequency.

C. Many-body Hamiltonian

In this work we consider only bosons, with field operator

�̂�r�, such that �47�

��̂�r�,�̂�r��� = 0, ��̂�r�,�̂†�r��� = ��r − r�� . �3�

In the ultracold regime, a dilute gas of bosons is described by
the Hamiltonian �48�

Ĥ =
 dr �̂†�Ĥlatt + Vtr�r���̂ +
g

2

 dr �̂†�̂†�̂�̂ , �4�

where Ĥlatt�−�2�2 /2m+Vlatt�r�, g�4��2as /m, and as is
the s-wave scattering length.

D. Wannier basis

We expand the boson field operators in a basis of the
Wannier functions of the noninteracting translationally in-
variant lattice, wb�r−Ri�, where b is the band index and Ri is
the lattice site position �see Appendix A�, so that we have �as
in �49��

�̂�r� = �
b,i

âb,iwb�r − Ri� , �5�

where âb,i is the bosonic destruction operator for an atom in
band b at site i. We note that b and i are discrete
d-dimensional vectors. For convenience, we shall refer to the
ground band as b=0. The Wannier basis is a localized basis
for sufficiently deep lattices but, for a given lattice depth,
there is less localization for excited bands �see Appendix A�.
Using a localized basis significantly simplifies the treatment
of interactions when off-site interactions are ignored.

The Wannier states are “quasistationary,” since they are

not eigenstates of Ĥlatt, so that there are transitions between
the different Wannier states in the same band due to the
single-particle evolution. In particular, the matrix element for
hopping from site Ri� to site Ri for band b is defined as

Jb,i,i� � −
 dr wb
��r − Ri�Ĥlattwb�r − Ri�� . �6�

There is no interband hopping �see Eq. �B2�� with the �non-
interacting translationally invariant lattice� definition of the
Wannier functions we are using. A change of variables in Eq.
�6� shows that this formula is dependent on Ri and Ri� only
through the difference Ri−Ri�. Considering the importance
of beyond nearest-neighbor hopping, we note that the
ground-band next-nearest-neighbor hopping matrix element
is as much as 25% of its nearest-neighbor counterpart at Vj

1However, we do not consider quasireduced-dimensional systems,
where some directions are partially accessible, i.e., kT is on the
order of the level spacing.
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=0, but decreases rapidly with increasing Vj, and that beyond
next-nearest-neighbor hopping is less significant, as shown
in Fig. 16 in Appendix B.

E. Extended Bose-Hubbard Hamiltonian

We now express the Hamiltonian in terms of the operators
âb,i by inserting Eq. �5� into Eq. �4� and we consider the
resulting terms in this section. We assume that the trap is
slowly varying relative to the lattice spacings aj, so that


 dr Vtr�r�wb
��r − Ri�wb��r − Ri��

� vi
 dr wb
��r − Ri�wb��r − Ri��

= vi�bb��ii�, �7�

where vi�Vtr�Ri�. In this work, we will always use the local
energy form �7� to represent the harmonic trap. However,
there are approximations involved in Eq. �7�, which we con-
sider in Appendix C. We define the total number operator

N̂ �
 dr �̂†�r��̂�r� = �
b,i

n̂b,i, �8�

where n̂b,i� âb,i
† âb,i. Then, expressing the Hamiltonian in the

grand-canonical distribution to conserve total particle num-

ber, K̂� Ĥ−�N̂,

K̂ = �
b,i
�− �

i�

�Jb,i,i�âb,i
† âb,i�� + n̂b,i�vi − ��


+
1

2 �
i1,i2,i3,i4

b1,b2,b3,b4

âb1,i1
† âb2,i2

† âb3,i3
âb4,i4

U i1,i2,i3,i4
b1,b2,b3,b4

, �9�

where

U i1,i2,i3,i4
b1,b2,b3,b4

� g�dr wb1

� �r − Ri1
�wb2

� �r − Ri2
�

�wb3
�r − Ri3

�wb4
�r − Ri4

� .

If we restrict to on-site interactions �justified in a deep lattice

by the Wannier state locality�, Eq. �9� reduces to K̂=�iK̂i,
where

K̂i � �
b
�− �

i�

�Jb,i,i�âb,i
† âb,i�� + n̂b,i�vi − ��


+
1

2 �
b1,b2,b3,b4

âb1,i
† âb2,i

† âb3,iâb4,iU i,i,i,i

b1,b2,b3,b4

�10�

�this interaction term has previously been stated by �50��. We
retain a smaller set of interaction parameters, i.e.,

Ubb� � g
 dr�wb�r�wb��r��2, �11�

which is a good approximation in the typical experimental
regime, where the interaction parameters are small compared

to the band-gap energy scale, so that we may ignore colli-
sional couplings between bands in the many-body state. This
approximation would need to be revised in the vicinity of a
Feshbach resonance �e.g., see �51��, but this is beyond our
scope here.

We derive an approximation scheme for off-site interac-
tions in Appendix D. The result is a modification of the in-
teraction coefficients. As discussed in Appendix D, if we use
the all-site interaction coefficients in our model at Vj =0,
with appropriate interpretation of the number densities, our
model is exactly the same as existing no-lattice models. For
the noncondensate, we find that the effects of off-site inter-
actions are negligible for Vj 	5ER. Formulating a consistent
theoretical description in the shallow lattice limit is fraught
for a Wannier state approach, because these states are delo-
calized in this regime; some work in the shallow lattice has
been reported �52�. However, our off-site interaction coeffi-
cients provide a useful interpolation scheme, which is accu-
rate in the no-lattice case and for moderate to deep lattices.
For the condensate, interference between sites, mediated by
the tails of distant Wannier states, can reduce the interaction
coefficient as discussed in Appendix D. All of our work other
than Appendix D uses on-site interaction coefficients.

Other extended Bose-Hubbard works have used various
simplifications of Eq. �9�: the use of nearest-neighbor hop-
ping and nearest-neighbor interactions �49�; the use of
ground band only, nearest-neighbor hopping, and nearest-
neighbor interactions in a homogeneous system �53�; the use
of ground band only and nearest-neighbor interactions �54�;
and the use of nearest-neighbor hopping and on-site interac-
tions in a homogeneous system �55�.

Limiting to the ground band of a cubic lattice, nearest-
neighbor hopping �and adding the energy offset J0,i,i�, and
on-site interactions, the Hamiltonian reduces to the Bose-
Hubbard model �21,56�, which is

− J �
�i,i��

â0,i
† â0,i� + �

i

n̂0,i�vi − �� +
U

2 �
i

n̂0,i�n̂0,i − 1� ,

�12�

where �i , i�� restricts the sum to nearest neighbors i and i�,
J�J0,i,i�, and U�U00.

III. MEAN-FIELD APPROXIMATION

A. Mean-field approach: Condensate and noncondensate

We assume that the local number of condensate atoms is
either macroscopic or zero �57,58�, so that the field operator

�̂�r� can be separated into a c-number condensate compo-
nent �the order parameter� 
�r� and a noncondensate field

operator �̃�r� defined by the usual broken symmetry ap-

proach, 
�r����̂�r��, �̃�r���̂�r�−
�r� so that ��̃�r��=0.
The assumption that 
�r� is a c number is inaccurate near

the edges of the condensate, where the local condensate den-
sity �
�r��2 is small and just below the critical temperature,
since fluctuations are important in such regions.

We expand the condensate amplitude and the nonconden-
sate field operator in a Wannier basis as follows: 
�r�
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=�iziw0�r−Ri� , �̃�r�=�b,i�̂b,iwb�r−Ri�, where we have re-
stricted the condensate amplitude expansion to the ground
band. For an ideal gas this assumption is exact and, with
interactions, the approximation is justified by our assumption
that interactions are perturbative relative to the band-gap
energy scale.

From Eq. �5�, orthogonality �A3�, and completeness of the
Wannier functions �from the completeness of the Bloch func-
tions�, we get

zi � �â0,i�, �̂0,i � â0,i − zi, �̂b,i � âb,i �13�

for b above the ground band. The operators �̂b�,i satisfy stan-
dard bosonic commutation relations. The condensate density
is

�
�r��2 = �
i,i�

zi
�zi�w0

��r − Ri�w0�r − Ri�� , �14�

allowing for the nonlocality of the Wannier states, with
condensate number

Nc �
 dr�
�r��2 = �
i

�zi�2. �15�

For the noncondensate, we assume that the thermal coher-
ence length is sufficiently short �long-range coherence is ab-
sorbed by the condensate� that the noncondensate one-body
density matrix is diagonal in lattice site indices, so that the
noncondensate density is then given by

��̃†�r��̃�r�� = �
b,i

ñb,i�wb�r − Ri��2, �16�

with ñb,i���̂b,i
† �̂b,i�. The total noncondensate population is

Ñ �
 dr��̃†�r��̃�r�� = �
b,i

ñb,i, �17�

and we define the b band noncondensate population as Ñb
��iñb,i.

B. HFBP Hamiltonian

To express the Hamiltonian in terms of the amplitudes zi

and operators �̂b,i, we substitute Eq. �13� into Eq. �10� �59�.
However, the Hamiltonian still includes up to fourth powers

in the operators �̂b,i. We make a quadratic Hamiltonian sim-
plification by making a mean-field approximation motivated
by Wick’s theorem �30,60�. This is valid in the weakly inter-
acting regime; therefore, our work is not valid in the strongly
correlated Mott-insulator case. In a 3D cubic lattice, the
Mott-insulator transition occurs for the unit-filled system
when U /6J�5.83 at T=0 �20,61�. For typical experimental
parameters, the transition occurs in 87Rb when V	13ER

�where V=	 jVj
1/d�, but can be V	16ER for 23Na �46� �the

scattering length of 23Na is smaller than 87Rb, and �46� used
a large lattice spacing�. The lattice depth for the Mott-
insulator transition is increased for higher filling factors.

Making the usual HFBP approximation �30,62,59�, we
obtain a quadratic Hamiltonian. Separating this Hamiltonian

by the number of depletion operators �̂i
† and �̂i appearing and

by band,

K̂Q � �
i
�K̂0,i + K̂1,i + K̂1,i

† + �
b

K̂2,b,i� , �18�

with

K̂0,i � zi
��− �

i�

J0,i,i�Ŝi�,i + vi − � +
U00

2
�zi�2�zi, �19�

K̂1,i � �̂0,i
† �− �

i�

J0,i,i�Ŝi�,i + vi − � + U00�zi�2 + 2�
b

U0bñb,i�zi,

�20�

K̂2,b,i � �̂b,i
† L̂b,i�̂b,i +

U0b

2
��̂b,i

†2zi
2 + �̂b,i

2 zi
�2� , �21�

where

L̂b,i � − �
i�

Jb,i,i�Ŝi�,i + vi − � + 2U0b�zi�2 + 2�
b�

Ubb�ñb�,i,

�22�

and Ŝi�,i is the shift operator from the site Ri to Ri�, e.g.,

Ŝi�,i�̂b,i= �̂b,i�.

C. Gross-Pitaevskii equation

By minimizing the energy functional d�K̂Q� /dzi
�=0, using

��̂0,i
† �= ��̂0,i�=0, we obtain the generalized Gross-Pitaevskii

equation

�− �
i�

J0,i,i�Ŝi�,i + vi − � + U00�zi�2 + 2�
b

U0bñb,i�zi = 0.

�23�

We note that if zi satisfies the generalized Gross-Pitaevskii

equation, then the terms K̂1,i and K̂1,i
† are zero and the next

contribution comes from K̂2,b,i.
When the interaction and the trap energy are much more

significant than the hopping energy, Eq. �23� has the
Thomas-Fermi solution

�zi�2 =
1

U00
max�0,� − vi − 2�

b

U0bñb,i� , �24�

where � is determined by N=�i�zi�2+�b,iñb,i.

D. Hartree-Fock

The Hartree-Fock treatment is obtained by ignoring the

terms �̂b,i
†2zi

2 and �̂b,i
2 zi

�2 in K̂2,b,i which can then be diagonal-

ized by a single-particle transformation, setting �̂b,i
=� j�ub,i,j
̂b,j �where the symbol � j� indicates a sum over
modes excluding the condensate�. The operators 
̂b,j are cho-
sen to satisfy usual bosonic commutation relations
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�
̂b,j,
̂b�,j�
† � = �bb�� j j�, �
̂b,j,
̂b�,j�� = 0, �25�

and the ub,i,j modes are an orthonormal basis, i.e.,
�iub,i,j

� ub,i,j�=� j j�, satisfying

L̂b,iub,i,j = Eb,jub,i,j , �26�

so that �iK̂2,b,i=� j�Eb,j
̂b,j
† 
̂b,j. Taking the condensate to sat-

isfy the generalized Gross-Pitaevskii equation, we have K̂Q

→ K̂HF, with

K̂HF � �
i

zi
��− �

i�

J0,i,i�Ŝi�,i + vi − � +
U00

2
�zi�2�zi

+ �
b,j

�Eb,j
̂b,j
† 
̂b,j . �27�

Since the Hamiltonian is diagonal in band b and mode j, we
can treat the Hartree-Fock modes as noninteracting, so that
the noncondensate is given by ñb,i=� j��ub,i,j�2n̄BE�Eb,j�, where
n̄BE�E���e�E−1�−1.

E. Quasiparticle treatment

In general, it is desirable to go beyond the Hartree-Fock
treatment when the condensate is present to more fully in-
clude the effect of the condensate on the excitations of the
system �the lattice makes this more important; see Sec. VII�.
To do this, we retain the terms �̂b,i

†2zi
2 and �̂b,i

2 zi
�2 in the Hamil-

tonian, which can be diagonalized using a quasiparticle
transformation �57�

�̂b,i = �
j

��ub,i,j
̂b,j + vb,i,j
� 
̂b,j

† � , �28�

where we refer to 
̂b,j as the quasiparticle operators and
ub,i,j , vb,i,j as the quasiparticle modes. We require that Eq.
�25� holds, as for the Hartree-Fock case so that

� j��ub,i,jub,i�,j
� −vb,i,j

� vb,i�,j�=�ii� and ��̂b,i , �̂b,i��=� j��ub,i,jvb,i�,j
�

−vb,i,j
� ub,i�,j�=0. The quasiparticle modes are normalized ac-

cording to �i��ub,i,j�2− �vb,i,j�2�=1. We choose the modes to
satisfy the Bogoliubov-de Gennes equations

L̂b,iub,i,j + U0bzi
2vb,i,j = Eb,jub,i,j , �29�

L̂b,ivb,i,j + U0bzi
�2ub,i,j = − Eb,jvb,i,j . �30�

The Hamiltonian K̂Q is diagonal with these solutions �59�,

K̂Q = �
i

zi
��− �

i�

J0,i,i�Ŝi�,i + vi − � +
U00

2
�zi�2�zi

+ �
b,j

�Eb,j�
̂b,j
† 
̂b,j − �

i

�vb,i,j�2� , �31�

and we can treat the quasiparticles as noninteracting which
leads to

ñb,i = �
j

���ub,i,j�2 + �vb,i,j�2�n̄BE�Eb,j� + �vb,i,j�2. �32�

References �62,63� explain that, for a general potential, Eqs.
�29� and �30� give quasiparticle functions, which are or-
thogonal to the condensate only in a generalized sense,
�izi

�ub,i,j +zivb,i,j =0. To be orthogonal in the sense �izi
�ub,i,j

=�izivb,i,j =0, adjustments are required, e.g., E0,ju0,i,j is re-
placed with �36,64�

E0,ju0,i,j + U00�
i

�zi�2�zi
�u0,i,j − ziv0,i,j�zi. �33�

We do not follow this approach since, in our LDA solution
below, we approximate by using an orthogonal Bloch form
for the modes.

IV. LOCAL-DENSITY APPROXIMATION

The LDA has been extensively used for �nonlattice� har-
monically trapped Bose gases. The essence of this approxi-
mation is the replacement −�2�2 /2m→p2 /2m in the Hamil-
tonian with r and p treated as classical variables. The
extension of this approach to the lattice case is made by the

replacement Ĥlatt→Kb�k�, where k is the quasimomentum, b
is the quantized band index, and Kb�k� is the Bloch spec-
trum. In what follows, we present our assumptions in making
this replacement.

A. Bloch approximation

We set j to be the quasimomentum k and make the LDA
by seeking solutions where u and v have the Bloch form

ub,i�,k = eik·�Ri�−Ri�ub,i,k, vb,i�,k = eik·�Ri�−Ri�vb,i,k. �34�

This assumption is exact for the translationally invariant
case, and we justify it in general by comparing the noninter-
acting density of states obtained using this approximation to
the numerical diagonalization of the full combined harmonic
lattice problem in Sec. V C.

To make progress, it is useful to consider the Bloch waves

�b,k�r� of Ĥlatt

Ĥlatt�b,k�r� = Kb�k��b,k�r� , �35�

which serves to define the energy Kb�k�. We find from Eqs.
�34� and �B3� that −�i�Jb,i,i�ub,i�,k=Kb�k�ub,i,k, so that

L̂b,iub,i,k = �Kb�k� + vi − � + 2U0b�zi�2 + 2�
b�

Ubb�ñb�,i�ub,i,k.

�36�

B. Envelope functions

We define a function ñb�r� which is a proxy with the
continuous variable r for the number of noncondensate at-
oms per site: ñb�Ri�= ñb,i. Introducing this envelope function
greatly simplifies our formalism by allowing us to use con-
tinuous functions to exploit the symmetry of Vtr�r�, which is
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broken on short length scales by the lattice. Then, for a suf-
ficiently small lattice spacing,

1

ad
 dr ñb�r� � �
i

ñb�Ri� = �
i

ñb,i = Ñb, �37�

where ad is the volume of a unit cell of the optical lattice.
Similarly, we define the condensate mode envelope z�r�,
where z�Ri�=zi and nc�r���z�r��2, so that

1

ad
 dr nc�r� � �
i

�z�Ri��2 = �
i

�zi�2 = Nc. �38�

We also define the envelope functions ub�k ,r� and vb�k ,r�,
with ub�k ,Ri�=ub,i,k and vb�k ,Ri�=vb,i,k, and from Eq. �36�
we have L̂b,i→Lb�k ,r�, where

Lb�k,r� = Kb�k� + Vtr�r� − � + 2U0bnc�r� + 2�
b�

Ubb�ñb��r� .

�39�

Envelope functions represent the discrete functions and do
not contain the fast Wannier state variation. However, apart
from exceptional imaging techniques �65�, normal optical
imaging techniques would not distinguish density variation
at the order of one site. If we require the detailed spatial
density, rather than just site occupation, once we have the
envelope functions, we can calculate �
�r��2
=�i,i�z

��Ri�z�Ri��w0
��r−Ri�w0�r−Ri�� from Eq. �14� and

��̃†�r��̃�r��=�b,iñb�Ri��wb�r−Ri��2 from Eq. �16�.

C. Bogoliubov spectrum

By making use of the envelope functions from the previ-
ous section, the Bogoliubov-de Gennes equations �29� and
�30� take the algebraic form

� Lb�k,r� U0bz2�r�

− U0bz�2�r� − Lb�k,r� 
�ub�k,r�
vb�k,r� 
 = Eb�k,r��ub�k,r�

vb�k,r� 
 .

�40�

Solving the characteristic equation yields

Eb�k,r� = �Lb
2�k,r� − �U0bnc�r��2. �41�

From Eq. �40�, choosing the normalization condition
�ub�k ,r��2− �vb�k ,r��2=1 �as in �60� for the no-lattice case�,
we have

�ub�k,r��2 =
Lb�k,r� + Eb�k,r�

2Eb�k,r�
, �42�

�vb�k,r��2 =
Lb�k,r� − Eb�k,r�

2Eb�k,r�
. �43�

Setting vb�k ,r�=0, we find �ub�k ,r��2=1 and Eb�k ,r�
=Lb�k ,r�, yielding the LDA envelope form of the Hartree-
Fock solution �26�.

It has been stated that the Thomas-Fermi approximation is
necessary to be consistent with the LDA �66�. We use the

Thomas-Fermi solution for all of our interacting calculations,
which we restate using the envelope functions, starting from
Eq. �24� to find

nc�r� =
1

U00
max�0,� − Vtr�r� − 2�

b

U0bñb�r�
 . �44�

For the noncondensate, using Eq. �32� and the envelope
functions, we have �BZ is the first Brillouin zone�

ñb�r� = � a

2�
�d


BZ
dk���ub�k,r��2 + �vb�k,r��2�n̄BE�Eb�k,r��

+ �vb�k,r��2� . �45�

From Eq. �41�, if nc�r� is zero �e.g., above Tc or outside the
Thomas-Fermi radius�, we have the Hartree-Fock result.
Otherwise, for the ground band, from Eq. �44�,

L0�k,r� = K0�k� + U00nc�r� , �46�

E0�k,r� = �K0
2�k� + 2K0�k�U00nc�r� , �47�

which is a useful simplification and is automatically self-
consistent with nc�r�.

If we rearrange the equation for the noncondensate enve-
lope �45�, we obtain

ñ0�r� = � a

2�
�d


BZ
dk�K0�k� + U00nc�r�

E0�k,r�
n̄BE�E0�k,r��

+
K0�k� + U00nc�r� − E0�k,r�

2E0�k,r� �
= � a

2�
�d


BZ

dk

2
�K0�k� + U00nc�r�

E0�k,r�

�coth��E0�k,r�
2


 − 1� , �48�

If K0�k� is restricted to nearest-neighbor hopping, then this
result is consistent with that given by Lin et al. �39�. We note
that they do not make the envelope approximation �the dis-
crete LDA sum in their Eq. �15� should have been divided by
the number of sites�. Additionally, their theory is restricted to
the ground band and is stated for a cubic lattice and a spheri-
cal harmonic trap.

V. DENSITY OF STATES

The theory we develop relies on the detailed knowledge
of the density of states of the translationally invariant lattice.

A. Definition and usage

By “density of states,” we refer to the per-site density of
states for the noninteracting translationally invariant lattice
which we define as �67�

gb�K� �
1

�2��d

BZ

dk � �K − Kb�k�� , �49�

where we take Kb�k� from its definition �35�. When an inte-
grand depends on k only through Kb�k�, we can change vari-
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ables to K=Kb�k� since we then have, for any function
Qb�Kb�k� ,r�,



−�

�

dK gb�K�Qb�K,r� =
1

�2��d

BZ

dk Qb�Kb�k�,r� .

�50�

Applying this to Eq. �45�,

ñb�r� = ad

−�

�

dK gb�K��Lb�K,r�
Eb�K,r�

n̄BE�Eb�K,r��

+
Lb�K,r� − Eb�K,r�

2Eb�K,r� � . �51�

We emphasize that this is making no additional approxima-
tions. Similarly, in the Hartree-Fock approach, or above the
critical temperature, ñb�r�=ad�−�

� dK gb�K�n̄BE�Eb�K ,r��. To
calculate the density of states, we first need the energy dis-
persion Kb�k�, which is easy if the lattice potential is sepa-
rable �the well-studied Mathieu’s equation �68–70��, but
separability is not required. We numerically calculate the
density of states and show the results in Fig. 1.

B. Limiting results for the translationally invariant lattice

1. Tight binding

From Eq. �B6�, the dispersion can be written as a Fourier
cosine series, with the hopping matrix elements as coeffi-
cients,

Kb�k� = − �
j=1

d

�Jbj,j
0 + 2�

l�0
Jbj,j

l cos�lkjaj�
 �52�

for a separable lattice, where we define the band b hopping
between neighbors l sites apart in axial direction j to be Jb,j

l

�e.g., Jb,y
l =Jb,000,0l0 and, for the cubic lattice, J=J0,j

1 �.2

In the tight-binding limit, beyond nearest-neighbor hop-
ping is ignored �for the importance of beyond nearest-
neighbor hopping, see also Sec. VII B and Appendix B�. In
one dimension, the density of states is then, from Eq. �49�,
g0�K�=1 / �2�a�J0,j

1 ��1− ��K+J0,j
0 � /2J0,j

1 �2�, which has infinite
van Hove singularities at the maximum and minimum ener-
gies of the band, which can also be seen from the zero de-
rivative in Eq. �52�. In two dimensions, the square-lattice

2When we use this notation, we are implicitly assuming that the
energy spectrum is invariant under inversion of quasimomentum, in
view of �B1�.
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FIG. 1. �Color online� Density of states for the 3D cubic lattice:
b=0 �black solid curve�, 001 �red dashed curve; the integers specify
the components bx ,by ,bz�, 011 �green dashed-dotted curve�, and
002 �blue dotted curve� for �a� V=5ER and �b� V=10ER.
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FIG. 2. �Color online� Tight-binding �black solid curve� and
actual �red dashed curve� density of states for V=5ER for �a� the 1D
and �b� the 2D square lattice.
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FIG. 3. �Color online� Tight-binding �black solid curve� and
actual �red dashed curve� 3D cubic-lattice ground-band density of
states for �a� V=2ER and �b� V=5ER
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density of states3 has an infinite van Hove singularity at the
band center and nonzero density at the band edges. The den-
sities of states for one and two dimensions are shown in Fig.
2. In three dimensions, we compare the tight-binding density
of states to the actual density of states in Fig. 3 for the
cubic-lattice ground band. For V	5ER, the effect of beyond
nearest neighbors is much reduced, except for very low
energies.

2. Effective mass

If, at the minimum energy of a band �Kb
min=Kb�k0��, we

have �Kb�k0�=0, then from the quadratic Taylor series, we
get the effective-mass approximation Kb�k��Kb�k0�
+� j�

2kj
2 /2mj

�, where mj
� is the effective mass at k0 in direc-

tion j and 1 /mj
����2Kb�k� /�kj

2�k=k0
/�2 �67�. If, due to the

second derivative test, we have mj
��0 for all j and assuming

that the effective-mass approximation applies for all K in
some region near Kb

min �for excited bands and deep lattices,
there is only a small region around k0 for which this is a
good approximation�, then for that region of K, from Eq.
�49�,

gb�K� =
max�K − Kb

min,0�d/2−1

��d/2��2��d/2��2/m��d/2 , �53�

where m��	 jmj
�1/d. We note that this shows that the van

Hove singularities at the minimum energy are qualitatively
the same for the effective-mass assumption as for the tight-
binding assumption: infinite in one dimension, a finite jump
in two dimensions, and an infinite derivative in three
dimensions.

3. High energies

For high energies, K�� jVj, the most significant effect of
the lattice on the density of states is the spatially averaged
energy of the lattice potential 1

2� jVj as shown in Fig. 4.

C. Limiting results for the combined harmonic lattice

In this section, we consider the LDA density of states for
the combined harmonic trap and optical lattice potential
�some features of the combined harmonic lattice density of
states in the 1D tight-binding case, and the two-dimensional
�2D� case, numerically, are discussed in �22��. We introduce
the LDA density of states for comparison with the full nu-
merical diagonalization as justification of the validity of the
LDA approach.

For the harmonically trapped case, in the noninteracting
LDA, when we wish to calculate some function Q�Kb�k�
+Vtr�r�� of the energy, such as the total number of noncon-
densate atoms �37� and �45�, we have

1

�2��d�
b

 dr


BZ
dk Q�Kb�k� + Vtr�r��

=
 dE Q�E�gLDA�E� �54�

from Eq. �50� where gLDA�E� is given by the convolution

gLDA�E� �
1

�2��d�
b

 dr


BZ
dk � �E − Kb�k� − Vtr�r��

= �
b



0

E

dVtr gtr�Vtr�gb�E − Vtr� , �55�

with

gtr�Vtr� � 
 dr � �Vtr − Vtr�r�� =
�2��d/2

��d/2��m�2�d/2Vtr
d/2−1.

�56�

Since the combined density of states, gLDA�E�, has a rich
structure, we consider what we expect at various energies. In
a region where the effective-mass approximation �53� ap-
plies, the contribution to gLDA�E� from band b is

1

�d − 1� ! �����d �E − Kb
min�d−1, �57�

where the effective trap frequencies are defined by

� j
� �� m

mj
�� j , �58�

as in �24� and ��=	 j� j
�1/d. We therefore expect the initial

contribution from each band �just after Kb
min� to the combined

density of states to scale like a harmonically trapped particle,
with power d−1.

If we assume that the bands are rectangular with width Wb
and minimum energy Kb

min, so that gb�K�=1 / �Wbad� for
Kb

min�K�Kb
min+Wb and gb�K�=0 otherwise, then

3By convolution we can express it as a complete elliptic integral
of the first kind as g0�K�=K�1− ��K+2J0,j

0 � /2J0,j
1 �2 /4� / �2�2a2

�J0,j
1 ��.

K/ER

�
b
g b

(K
)E

R
a
3

0 20 40 60 80 100
0

5

10

15

FIG. 4. �Color online� 3D cubic-lattice density of states for V
=15ER �black solid curve�; the free-particle density of states shifted
by the minimum-energy eigenvalue ��

4
��K−K0�0�� /ER, blue dashed

curve� and by the spatially averaged energy of the lattice
��

4
��K− 1

2� jVj� /ER, red dashed-dotted curve�.
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gLDA�E�

�
2�2��d/2

d��d/2��m�2a2�d/2

��
b

max�E − Kb
min,0�d/2 − max�E − Kb

min − Wb,0�d/2

Wb

�59�

�
�2��d/2

��d/2��m�2a2�d/2�
b
�E − Kb

min −
Wb

2
�d/2−1

=
1

ad�
b

gtr�E − Kb
min −

Wb

2
� , �60�

for E�Kb
min+Wb, using Eqs. �55� and �56�. So, we expect the

eventual contribution of the band to the combined density of
states �far after Kb

min+Wb� to scale like the trap, with power
d /2−1. The high-energy contribution is therefore like the
density of states for a particle in a harmonic trap with no
kinetic energy, we call this the “trap-only” region.

For energies beyond the effective-mass region, but with
Kb

min�E�Kb
min+Wb, the combined density of states depends

on the detailed structure of the band gb�K� with an approxi-
mation given by Eq. �59�.4 So, the initial contribution from

the band is effective-mass-like and the high-energy contribu-
tion from the band is trap-only-like. We estimate the cross-
over point between these two regimes by equating the single-
band contribution from Eqs. �57� and �60�. In three
dimensions there is no intersection for the first excited bands
for V	5ER and, for the ground band,

Ecr − Kb
min =

W0

2
+

1

128�2�m�a2

�2 �3

�Ecr − K0
min�4. �61�

Using the tight-binding approximations �B7� and m /mj
�

��2J0,j
1 /ER,j �24� �where ER,j �h2 /2m� j

2�, for the cubic lat-
tice, and assuming that the crossover is near the middle of
the band Ecr−K0

min�W0 /2,

Ecr − K0
min � �1

2
+

27

256�2�W0 � 0.51W0, �62�

as shown in Fig. 5. This result has the same scaling, but is
slightly lower than Ecr−K0

min�0.86W0 given in �71�.
For high energies, once there have been many bands, we

consider the assumption that the bands start at the free-
particle positions, adjusted by the average energy of the lat-
tice �as shown in Fig. 4�, Kb

min=� j�
1
2Vj +�2�2bj

2 /2maj
2�. We

keep the other assumptions leading to Eq. �60� and approxi-
mate the sum in Eq. �60� by an integral over the region of
bands b such that 0�Kb

min�E, then we recover the density
of states for a trap with no lattice �Eq. �57� with m=m��.
Evaluating this integral in band space, we find

gLDA�E� �
1

�d − 1� ! ����d�E −
1

2�
j

Vj�d−1

, �63�

so, the eventual contribution of all bands has power d−1,
like the density of states of a harmonically trapped particle.

D. Comparative results

We compare the density of states obtained from the full

diagonalization of Ĥlatt+Vtr�r� �see �71�� to the LDA density
of states in Fig. 5. For the low-energy LDA results, we also
show the contribution from the ground band. We plot the
product gLDA�E��d since, for the LDA case, gLDA�E��d is
independent of � from Eq. �56�. For the full diagonalization,
we can see no dependence of the full density of states mul-
tiplied by �3 for varying � apart from granularity due to the
few discrete energies for large � at low energy. The LDA
results show excellent agreement with the full diagonaliza-
tion. We note that approximation �63� becomes valid in the
V=15ER case only for E�Emin+40ER, beyond the region of
this plot. The effective-mass region is not visible on the plot
for V=15ER due to the scale.

VI. NUMERICAL IMPLEMENTATION

A. Translationally invariant density of states

We find the translationally invariant energies Kb�k� from
the noninteracting Bloch solutions to find the density of
states, by diagonalizing the tridiagonal �since the lattice po-

tential is sinusoidal� Hamiltonian Ĥlatt in momentum space

4For Kb
min�E�Kb

min+Wb the rectangular assumption implies that
the contribution to gLDA�E� from band b is proportional to �E
−Kb

min�d/2. For three dimensions, this is a blend between the
effective-mass �power d−1� behavior near the start of the band and
the trap-only �power d /2−1� behavior far after the band. For lower
dimensions, the rectangular assumption is poor from Fig. 2.

g L
D

A
(E

)(
ω

/
ω

R
)3

E
R

g L
D

A
(E

)(
ω

/
ω

R
)3

E
R

(E − Emin)/ER (E − Emin)/ER

0 5 10 15 20 250 5 10

0 5 100 2 4

0

20
40

60

80

100

120

0

2

4

6

8

0

10

20

30

40

50

60

0

2

4

6

8

(a)

(c)

(b)

(d)

FIG. 5. �Color online� Combined harmonic cubic-lattice density
of states in three dimensions for ��a�,�b�� V=5ER and ��c�,�d�� V
=15ER from the full diagonalization �black dotted curve�, LDA �red
solid curve�, and Ecr �dashed-dotted curve�. Shown are ��a�,�c�� the
ground to the first excited bands with the LDA ground band �lower
red solid line� for reference; ��b�,�d�� many bands and the high-
energy approximation �63� �dashed curve�. The LDA is so good that
it is obscured by the full diagonalization results in all cases.
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�67�. We calculate the density of states by binning the
energies.

B. Scaled units

From Eqs. �44� and �45�, ñb�r� and nc�r� depend on r only
through Vtr�r�= 1

2m��x
2x2+�y

2y2+�z
2z2�, so we define the

scaled coordinates x̄=x�x /� , ȳ=y�y /� , z̄=z�z /� , r̄2

= x̄2+ ȳ2+ z̄2, so that Vtr�r̄�= 1
2m�2r̄2 and dx̄dȳdz̄=dxdydz.

Our formulas then become

nc�r̄� =
1

U00
max�0,� − Vtr�r̄� − 2�

b

U0bñb�r̄�
 , �64�

Lb�K, r̄� = K + Vtr�r̄� − � + 2U0bnc�r̄� + 2�
b�

Ubb�ñb��r̄� ,

�65�

Eb�K, r̄� = �Lb
2�K, r̄� − �U0bnc�r̄��2, �66�

ñb�r̄� = ad

−�

�

dK gb�K��Lb�K, r̄�

Eb�K, r̄�
n̄BE�Eb�K, r̄��

+
Lb�K, r̄� − Eb�K, r̄�

2Eb�K, r̄�
� . �67�

We can then calculate the total number using

Nc =
2�d/2

��d/2�ad

0

�

dr̄ r̄d−1nc�r̄� , �68�

Ñb =
2�d/2

��d/2�ad

0

�

dr̄ r̄d−1ñb�r̄� , �69�

which is now a problem in the two dimensions K and r̄ and
is fundamental to our development of an efficient numerical
algorithm.

C. Interaction parameters

We calculate the 1D Wannier functions and use their sepa-
rability �from the separability of the Bloch functions� to get
the interaction coefficients. For the cubic lattice in three di-
mensions, the densities of the three bands 001, 010, and 100
must be equal, i.e., ñ001�r̄�= ñ010�r̄�= ñ100�r̄�. Thus, we can
use this symmetry to simplify our calculation of higher
bands. For a given one of these bands, 1

3 of the atomic popu-
lation is in the same band and 2

3 is in one of the other first
excited bands, so that

U001,001ñ001�r̄� + U001,010ñ010�r̄� + U001,100ñ100�r̄�

= �U001,001 + 2U001,010�
ñ001�r̄� + ñ010�r̄� + ñ100�r̄�

3
,

�70�

since U001,010=U001,100. We therefore treat the three excited

bands together and use �U001,001+2U001,010� /3 for their self-
interaction parameter.

D. Procedure

We fix the parameters N, Vj, aj, as, � j, and m throughout
the entire calculation. For the cubic lattice, we calculate the
density of states gb�K� and the interaction parameters Ubb�
once for each V and use them for any cubic-lattice calcula-
tion. For the noncubic lattice, we calculate the density of
states and interaction parameters for each case.

We solve Eqs. �64�–�67� self-consistently, finding � so

that N=Nc+�bÑb from Eqs. �68� and �69�. We present our
algorithm for doing this in Fig. 6. We note that, once we have
a choice for the chemical potential, the calculation is com-
pletely local. Therefore, in contrast to the Gross-Pitaevskii
equation approach of �60�, we do not check the target for the
total number N until the calculations at every site are self-
consistent.

For the ground band we use simplification �48�, with
scaled units and the density of states �this is not shown in
Fig. 6�. For the translationally invariant lattice, we use al-
most the same calculation, with Vtr�r� set to zero, and use
only one spatial point r̄. However, due to the importance of
the low-energy states in that case, we make the substitution
u4=K and use �dK→�4u3du, so that the integrand is not
divergent.

E. Finite-size effect

For the noninteracting gas in a combined harmonic lattice,
we allow for the effect of a positive chemical potential at
condensation, equal to the minimum energy �fs� d

2��̄�,
where � j

� are the effective trapping frequencies, defined in
Eq. �58�, and �̄� is their arithmetic mean. We limit the do-
main of integral �67� to K+Vtr�r̄���fs, which has a negli-
gible effect on results compared to the effect of increasing
the chemical potential.

For the interacting gas, it is normal to consider the finite-
size effect and mean-field interaction shift as independent
additive corrections, which we do in �73�, but additional
work is needed to find a consistent way of treating them
together. We do not consider the finite-size effect due to fac-
tors other than the positive chemical potential.

VII. NUMERICAL RESULTS

In this section we present results demonstrating the appli-
cation of our mean-field theory to experimentally realistic
regimes of a Bose gas in a 3D combined harmonic lattice
potential. Our results quantify lattice and interaction effects
on the thermal properties of the system. We refrain from
discussing the critical temperature here, which we deal with
in detail in �73�.

A. Finite-size effect

We consider the effect on the noninteracting condensate
fraction of a nonzero ground-state energy. We plot the con-
densate fraction for �=0.02�R and V=15ER in Fig. 7 �results
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FIG. 6. �Color online� Procedure for LDA calculation.

FINITE-TEMPERATURE THEORY OF SUPERFLUID … PHYSICAL REVIEW A 80, 033620 �2009�

033620-11



at other lattice depths and trap frequencies are similar, except
for scaling due to the different critical temperatures�. We
chose a small number of atoms, N=1000, to accentuate the
finite-size effect.

We see that the saturated chemical-potential adjustment
describes the bulk of the finite-size effect well, and the LDA
calculation is in excellent agreement with the full diagonal-

ization �by diagonalization of Ĥlatt+Vtr�r� to obtain the ideal
spectrum which is used solve for the condensate fraction
using a grand-canonical approach, see �71��. We note that the
LDA result shows a phase transition �i.e., discontinuous be-
havior� at the critical temperature, whereas the full diagonal-
ization shows a more gradual change.

B. Beyond nearest-neighbor hopping

Here, we consider the effect on the noninteracting con-
densate fraction of beyond nearest-neighbor hopping �we use
all neighbors for our numerical calculations in all other sec-

tions�. We show the condensate fraction for N=105 and �
=0.01�R in Fig. 8. We see that beyond nearest-neighbor hop-
ping is significant for V=2ER and much less so for V=5ER.
For V=10ER �not shown�, the condensate fractions are barely
distinguishable on an equivalent plot. The decrease in sig-
nificance of beyond nearest-neighbor hopping with increas-
ing V /ER agrees with what we expect from Fig. 3 �see also
Appendix B�.

C. Excited bands

In this section, we consider the significance of excited
bands. We do not compare to the full diagonalization since
the separation into bands for that calculation is not well de-
fined. The higher the temperature, the more important are
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FIG. 7. Condensate fraction for a noninteracting combined har-
monic cubic lattice in three dimensions with N=1000, �=0.02�R,
and V=15ER, comparing full diagonalization �solid curve�, LDA
with ���fs �dashed curve�, and LDA with ��0 �dashed-dotted
curve�.
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FIG. 8. Noninteracting condensate fraction for N=105, �
=0.01�R, �a� V=2ER, and �b� V=5ER. The full diagonalization
curve �solid curve� is almost obscured by the all-neighbor result
�dashed curve� and is appreciably different from the nearest-
neighbor result �dashed-dotted curve�.
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noncondensate atoms in the ground band at the critical temperature
for the experimental setup of �12�.
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FIG. 10. Quantum depletion of 23Na in a 3D optical lattice. The
data points with error bars give the experimental quantum deple-
tion. The curves give quantum depletion calculated by �46� �solid
curve� and our calculated quantum depletion �dashed curve�.
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excited bands, since they are more thermodynamically acces-
sible. We therefore consider the significance of excited bands
at the critical temperature. It is clear �e.g., see Fig. 1� that
increasing the lattice depth decreases the occupation for a
given temperature, and hence the significance, of excited
bands.

We show the number of noncondensate atoms in excited
bands as a proportion of the noncondensate number in the
ground band in Fig. 9. The calculations are for 87Rb using
HFBP with as=5.77 nm and the parameters of �12� with an
optical lattice wavelength of �=2a=852 nm and a spherical
trap with frequency �=2��24 Hz. We used their maxi-
mum number of atoms, N=2�105. We see that excited
bands become insignificant for V	3ER. The significance of
excited bands at condensation would increase for an in-
creased number of particles or a tighter trap due to the in-
creased critical temperature.

D. Quantum depletion

The quantum depletion consists of the atoms promoted
out of condensate due to interactions rather than thermal ef-
fects, thus leading to a reduction in the condensate fraction at
T=0. The number of atoms in the quantum depletion is given
by the temperature-independent part of Eq. �45� as follows:

NQ =
1

�2��d
 dr

BZ

dk�vb�k,r��2. �71�

The quantum depletion is significantly enhanced by increas-
ing the lattice depth which provides a convenient physical
system to explore the crossover from a weakly to a strongly
interacting Bose gas. The experimental measurement of
quantum depletion in an optical lattice was reported in �46�.
In that work, atoms were loaded into a lattice, which was
linearly ramped up to a depth of V�20ER and linearly
ramped back down. By observing the diffuse background
peak of the momentum distribution of time-of-flight images
during this sequence, the populations of the condensed and
the noncondensed atoms were estimated. The complete
ramping procedure led to the production of �20% thermal
depletion �heating�, and “linear interpolation was used to
subtract this small heating contribution �up to 10% at the
maximum lattice depth�” to obtain the quantum depletion
�46�. Their results are presented in Fig. 10. We have calcu-
lated the zero-temperature quantum depletion to compare
with their experimental results. We have reproduced their
calculations �46� with fixed peak density to a level indistin-
guishable on the plot �solid black curve�, confirming that our
microscopic parameters agree with theirs, and we found that
their results imply N�107 at V=20ER. We used our LDA
calculations with fixed total number5 rather than fixed peak
density to give improved agreement with experimental re-
sults with no fitting parameters �dashed curve�.6 The agree-
ment is improved over the entire range, most noticeably at
higher lattice depths. More precise experimental measure-
ments at intermediate lattice depths to better test theory
would be useful.

E. Effect of quasiparticles

In addition to the quantum depletion, which was consid-
ered at zero temperature in Sec. VII D, the Bogoliubov qua-
siparticles modify the energy dispersion as in Eq. �41�. We
compare the quantum depletion to the residual Bogoliubov
effect in this section �using the parameters of �12�, as dis-
cussed in Sec. VII C�. In Fig. 11, we show the condensate
fraction and the condensate plus quantum depletion fraction.
At zero temperature, the only effect of quasiparticles is the
quantum depletion. The methods with and without quasipar-
ticles give the same results above the critical temperature and
the same critical temperature,7 since Eqs. �66� and �67� are
the same when there is no condensate. In Fig. 11 we can see

5We have assumed N=1.7�105 atoms, which is mentioned in
�46�. Although the number of atoms throughout is unclear, using
their maximum number of atoms, N=5�105, makes only a small
change to the results.

6We note that our methods are not valid after the Mott-insulator
transition. Although the n=1 Mott-insulator transition is at V
=16.4ER, the “measurements were performed at a peak lattice site
occupancy number of �7” �46�, and the Mott-insulator transition is
at V�20ER for n�3, which extends our validity regime somewhat.

7The critical temperature is the same if we define it as the lowest
temperature for which all particles can be accommodated as thermal
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FIG. 11. Condensate and quantum depletion fractions for the
parameters of �12�; �a� V=5ER and �b� V=10ER. Results are for the
HFBP method for the condensate only �solid curve�, for the con-
densate plus quantum depletion �dashed curve� and for the Hartree-
Fock method �dashed-dotted curve�.
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FIG. 12. �Color online� Spatial densities for the parameters of
�12� at T=0.8Tc, �a� V=5ER, and �b� V=10ER. Results are for the
HFBP method: total �black solid curve�, condensate �cyan dashed
curve�, quantum depletion �green filled circles� and the Hartree-
Fock method: total �blue dashed-dotted curve� and condensate �red
dotted curve�.

FINITE-TEMPERATURE THEORY OF SUPERFLUID … PHYSICAL REVIEW A 80, 033620 �2009�

033620-13



the zero-temperature increase in quantum depletion due to
the increase in lattice depth �as in Fig. 10� and we can see
that the nature of the Bogoliubov quasiparticle spectrum �41�
also increases thermal depletion relative to the Hartree-Fock
prediction. In Fig. 12 we show the total spatial density and
that of the condensate and quantum depletion. The quantum
depletion follows the condensate density from Eqs. �41� and
�43�. A larger lattice depth increases the effective interaction,
decreasing the core density and, for the Hartree-Fock case,
forces all of the thermal depletion away from the condensate
region.

VIII. CONCLUSIONS

The main purpose of this paper has been the derivation of
an accurate computationally tractable theory for describing
experiments with finite-temperature Bose gases in optical lat-
tices. Based on an extended Bose-Hubbard model, derived
from the full cold atom Hamiltonian, our theory includes the
important physical effects needed to describe this system
over a wide parameter regime. We obtain a mean-field theory
for the system using the Hartree-Fock-Bogoliubov-Popov
approximation. Through the development of two key tech-
niques, a local-density approximation for the lattice physics
and an envelope approximation for spatial dependence of the
mean fields, we realize a formalism for calculation that is
efficient and accurate. By neglecting the extended features of
our formalism, we show that it reduces to a form equivalent
to the Bose-Hubbard mean-field theory of �39�.

We have presented a range of results verifying the accu-
racy of our theory and demonstrating the regimes in which
extended features of our model, over the usual Bose Hubbard
model, are important. We have also compared to recent ex-
perimental results by the MIT group and find that our for-
malism provides an improved agreement with the experi-
mental data over previous calculations �46�.

The methods outlined in this paper can be applied to other
thermodynamic quantities. For example, we have used our
numerical results to calculate the entropy

S

k
= �

b

 dr
 dK gb�K���Eb�K,r�n̄BE�Eb�K,r��

− ln�1 − e−�Eb�K,r��� , �72�

and from that the specific heat and then the energy can be
obtained. Our formulation is amenable to analytical results as
we have done in �73�.

Experimental work in optical lattices is continuing apace
and, with the recent development of thermometry techniques
�18�, it is likely that thermodynamics will be measured in the
near future. For the purposes of developing a better under-
standing of lattice bosons and the emergence of beyond
mean-field effects, it is crucial to have a quantitative and
accurate mean-field theory for comparison. The theory pre-
sented here serves this purpose.
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APPENDIX A: WANNIER FUNCTIONS

We define the Wannier function for band b, localized at
site Ri, as

wb�r − Ri� �
1

�Ns
�

k�BZ
e−ik·Ri�b,k�r� , �A1�

where Ns is the number of sites �we let Ns→� for the com-
bined harmonic lattice�. We have

�b,k�r� =
1

�Ns
�
i=1

Ns

eik·Riwb�r − Ri� . �A2�

For Ri on the lattice, �k�BZeik·Ri =Ns�Ri,0
, so we have

atoms. We note the consistency issues near the critical temperature
discussed in �72�.
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FIG. 13. Ground-band Wannier functions �solid curve� com-
pared to the Gaussian approximation �dashed curve� for �a� V
=2ER and �b� V=15ER.
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bands for V=5ER �solid curve� compared to the harmonic-oscillator
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 dr wb
��r − Ri�wb��r − Ri�� = �bb��ii�. �A3�

For an optical lattice in one dimension, we show the Wannier
function for the ground band in Fig. 13 and for the first and
the second excited bands in Fig. 14. The harmonic-oscillator
approximation �the eigenstates of Vlatt�r��� j=1

3 Vj��rj /aj�2�
overstates the peak height at the expense of the tails and
misses the detailed structure of the Wannier functions.

APPENDIX B: HOPPING MATRIX

Since Ĥlatt�b,k�r�=Kb�k��b,k�r�, we have �as in �74��
Ĥlattwb�r−Ri��=−�i�=1

Ns Jb,i,i�wb�r−Ri�, where the hopping
matrix, defined as Eq. �6�,

Jb,i,i� = −
1

Ns
�

k�BZ
e−ik·�Ri�−Ri�Kb�k� �B1�

is the Fourier transform of the energy. In particular, −Jb,i,i
=�k�BZKb�k� /Ns is the average energy in the band. So,


 dr wb
��r − Ri�Ĥlattwb��r − Ri��

=
�bb�

Ns
�

k�BZ
e−ik·�Ri�−Ri�Kb�k� , �B2�

so that there is no interband hopping and the hopping matrix
depends only on the difference Ri−Ri�. We can invert Eq.
�B1� to write the dispersion relation as a Fourier series

Kb�k� = − �
i�=1

Ns

Jb,i,i�e
ik·�Ri�−Ri� = − �

i=1

Ns

Jb,i,0e−ik·Ri. �B3�

For the 1D case, if the spectrum is even in kx then

Kbx
�kx� = − Jbx,x

0 − 2�
l�0

Jbx,x
l cos�lkxax� . �B4�

We demonstrate the Fourier cosine series for the translation-
ally invariant lattice spectrum in Fig. 15. For V=ER, we can
see that a few terms are needed for the series to approach the
nearly free-particle dispersion. By V=5ER, the ground band
is well described by nearest neighbors. For the first excited
band, the approach to nearest-neighbor dispersion with in-
creasing V /ER is somewhat slower.

The width of band bx is

�Kbx
� �

ax
� − Kbx

�0�� = 4��
l�0

Jbx,x
2l−1� , �B5�

so for a separable lattice

Kb�k� = − �
j=1

d

�Jbj,j
0 + 2�

l�0
Jbj,j

l cos�lkjaj�
 , �B6�

and the width of band b is

Kb
max − Kb

min = 4�
j
��

l�0
Jbj,j

2l−1� . �B7�

In the tight-binding case where l=1 dominates, the band-
width is 4� j�Jbj,j

1 �.
The ratio of the beyond nearest-neighbor to the nearest-

neighbor hopping is shown in Fig. 16 and we see that the
ground-band next-nearest-neighbor hopping matrix element
is as much as 25% of its nearest-neighbor counterpart at Vj
=0, but decreases rapidly with increasing Vj. The beyond
next-nearest-neighbor hopping is less significant. For the first
excited band, some of the ratios can increase initially.

APPENDIX C: HARMONIC TRAP

In this work, we will always use the local energy form �7�
to represent the harmonic trap. In this section, we consider an
exact treatment for the separable case by defining

vb,b�,i,i� �
 dr Vtr�r�wb
��r − Ri�wb��r − Ri�� . �C1�

1. On-site variation

Here, we consider the accuracy of Eq. �7� to the diagonal
part of vb,b�,i,i�. There are three components to the integral in
Eq. �7�, one for each trap direction and the three components
are additive. Considering, e.g., the x component, we have
�using Xi for the x component of Ri�


 dr
1

2
m�x

2x2�wb�r − Ri��2

=
1

2
m�x

2Xi
2 +

1

2
m�x

2

−�

�

dx x2�wb�x��2, �C2�

since x�wb�x��2 is odd and wb�r� is normalized. For the
ground band, we can recover Eq. �7� by absorbing a constant
into the chemical potential. For excited bands there is an
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FIG. 15. �Color online� Fourier series for the 1D translationally
invariant lattice spectrum for ��a�,�b�� V=ER, ��c�,�d�� V=5ER,
��a�,�c�� ground band, and ��b�,�d�� first excited band, using all
neighbors �black solid curve�, nearest, and next-nearest neighbors
�red dashed curve� and nearest neighbors �blue dashed-dotted
curve�.
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error due to the difference 1
2m�x

2�−�
� dx x2��wb�x��2− �w0�x��2�,

which is applied to n̂b,i in the Hamiltonian. We plot the con-
tribution for the first excited band in Fig. 17�a�.

2. Off-site contribution

Now, we consider the case with i� i� and b=b�. We note
again that the components of the trap contributing to the
integral in the three directions are additive. We only get a
potential error in the x component if components in the other

directions of i and i� are equal. Then, for Xi�Xi�,


 dr
1

2
m�x

2x2wb
��r − Ri�wb�r − Ri��

=
1

2
m�x

2

−�

�

dx x2wb
��x�wb�x − �Xi� − Xi�� , �C3�

since wb�x−Xi� and wb�x−Xi�� are orthogonal and
wb

��x−Xi�wb�x−Xi�� is even about �Xi+Xi�� /2 as wb�x� is ei-
ther even or odd. In Fig. 17�b� we plot this contribution for
nearest neighbors as a function of V.

3. Interband contribution

Now, we consider the case with b�b� and i= i�. To allow
for this contribution, it would be necessary to include matrix
elements between bands in the Hamiltonian. To quantify the
error, we consider the additive component in the x direction.
There is only a contribution if the other components of bands
b and b� are equal. Then, with bx being the x component of b
and bx�bx�,


 dr
1

2
m�x

2x2wb
��r − Ri�wb��r − Ri�

=
1

2
m�x

2

−�

�

dx�x + Xi�2wbx

� �x�wbx�
�x� . �C4�

Considering, e.g., bx=0 �the ground band� and bx�=1 �the
first excited band�, w0

��x�w1�x� is odd so the above becomes
m�x

2Xi�−�
� dx xw0

��x�w1�x�. In Fig. 17�c�, we plot this contri-
bution as a function of V.

APPENDIX D: INTERACTION COEFFICIENTS

1. Beyond the on-site interaction approximation

Here, we derive approximate results for interactions ex-
tending to all sites. To do this, we make the HFBP mean-field
approximations, as discussed in Sec. III, but starting from the
more general extended Bose-Hubbard Hamiltonian �9�. As in
the on-site case, we ignore collisional couplings between
bands in the many-body state. For the noncondensate, we
also ignore collisional coupling that relies on coherences be-
tween sites �i.e., requiring two indices at two sites� in the
many-body state to find

�
i1,i2,i3,i4

b1,b2,b3,b4

�̂b1,i1
† �̂b2,i2

† �̂b3,i3
�̂b4,i4

U i1,i2,i3,i4
b1,b2,b3,b4

� 4 �
i,b,b�

�̂b,i
† �̂b,i�

i�

ñb�,i�U i,i�,i,i�
b,b�,b,b�

. �D1�

We assume that the density varies sufficiently slowly that
ñb,i� ñb,j for sites R j near Ri. In the following, we will sum
over all sites, by assuming that where the approximation
ñb,i� ñb,j is poor, due to the sites being far apart, these terms
will be suppressed by the negligible Wannier function over-
lap. Then we have
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FIG. 16. Ratio of beyond nearest-neighbor to nearest-neighbor
hopping. Jb,j
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FIG. 17. Error due to �a� on-site variation of the trap, I1

=�−�
� dx�x /ax�2��w1�x��2− �w0�x��2� �this form is chosen, so that the

error is in units of 1
2m�x

2ax
2�, �b� contribution from adjacent sites,

I2= ��−�
� dx�x /ax�2wb

��x�wb�x−ax��, ground band �solid curve�, and
first excited band �dashed curve�, and �c� Wannier function
overlap between the ground and first excited bands, I3

=�−�
� dx�x /ax�w0
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�
i1,i2,i3,i4

b1,b2,b3,b4

�̂b1,i1
† �̂b2,i2

† �̂b3,i3
�̂b4,i4

U i1,i2,i3,i4
b1,b2,b3,b4

� 4g �
i,b,b�

�̂b,i
† �̂b,iñb�,i�

i�

 dr�wb�r�wb��r − Ri���

2

= 4 �
i,b,b�

�̂b,i
† �̂b,iñb�,iUbb�

� , �D2�

which is the same as in Eq. �21� with Ubb�
� substituted for

Ubb� where

Ubb�
� � g�

i�

 dr�wb�r�wb��r − Ri���

2. �D3�

For the coherent condensate, we assume that zi�zj, for sites
R j near Ri. As above, we assume that contributions between
sites far apart are suppressed by the negligible Wannier func-
tion overlap. Assuming that the phase factors are chosen so
that w0�r� is real, we have, for site Ri1

,

�
i2,i3,i4

zi1
� zi2

� zi3
zi4

Ui1,i2,i3,i4
0,0,0,0

= g �
i2,i3,i4

zi1
� zi2

� zi3
zi4
 dr	

j=1

4

w0�r − Rij
�

� g�zi1
�4 �

i2,i3,i4


 dr	
j=1

4

w0�r − Rij
�

= g�zi1
�4
 dr w0�r���Ns�0,0�r��3 = �zi1

�4U00� , �D4�

where �iwb�r−Ri�=�Ns�b,0�r� is the Bloch function normal-
ized over a single site, from Eq. �A2�, and �0,0�ri�
�ce0�ri� /ai ,q� �the Mathieu function� is real and periodic
on the lattice. The result takes the same form as above with
U00� substituted for U00, where

U00� � g
 dr w0�r���Ns�0,0�r��3. �D5�

Similar arguments could be used for the terms involving in-
teractions between the condensate and the noncondensate.
The above results are appropriate for the pure thermal gas,
e.g., for finding the critical temperature from above and for
the pure condensate at zero temperature. To quantify the ef-
fect of off-site interactions on the thermal depletion, terms
for interactions between the condensate and the nonconden-
sate would be needed.

2. No-lattice limit

When there is no lattice, the Hamiltonian �35� gives us
Kb�k�=�2k2 /2m and the Bloch states are plane waves. Using
these to evaluate the Wannier functions from Eq. �A1� and
then the all-site interaction coefficients, U00� easily from Eq.
�D5� and Ubb�

� from Eq. �D3�, by splitting the sum into axial
components and recognizing the Riemann zeta sums we get

U00� = U00� = U000,001� = U001,001� = U010,001� =
g

ad . �D6�

So that, if we use all-site interaction coefficients and also
treat nc�r� and ñb�r� as the condensate and the nonconden-
sate densities �rather than as envelope functions, with densi-
ties defined by Eqs. �14� and �16�, although the total conden-
sate and noncondensate numbers do not depend on this
distinction, from Eqs. �15� and �17�� then all of our LDA
equations in Sec. IV would be the same as we would get
from a no-lattice calculation �60�, in spite of our expansion
of the field operators in a Wannier basis. When only on-site
interactions are included, there is a shortfall using Eq. �11�

U =
g

ad�2

3
�d

, U000,00n =
g

a3

5

27
,

U00n,00n =
g

a3

2

9
, U0n0,00n =

g

a3

25

216
�D7�

of, for example, 1− �2 /3�3=70% for the 3D ground-band co-
efficient. For reference in Fig. 18, a /ERas=8a3 /g�.

3. Comparison

The 3D ground-band interaction coefficients are shown in
Fig. 18�a�. Both all-site interaction coefficients, U00� and U00� ,
include their corresponding on-site component, U00, in their
sums �Eqs. �D3� and �D4��. For the noncondensate interac-
tion coefficient, all other terms in the sum are positive �since
we have excluded interference�, so that off-site interactions
always increase the interaction coefficient �relative to U�.

The 3D excited-band interaction coefficients are shown in
Fig. 18�b�. The results all tend to the expected limits at V
=0. The gap between all-site and on-site interaction coeffi-
cients is maintained for higher V /ER than for the ground-
band since the excited-band Wannier functions are less
localized.

V/ER

U
b
b
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/
E

R
a
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FIG. 18. Interaction coefficients in three dimensions. �a� Ground
band. On site �dotted curve�. All sites: noncondensate U� �D3�
�solid curve� and condensate U� �D5� �dashed curve�. No-lattice
limit: all sites �D6� �� � and on site �D7� ���. �b� Excited band. On
site: 000,001 �these integers specify the components bx ,by ,bz of
each band� �solid curve�, 001,001 �dashed curve�, and 010,001
�dashed-dotted curve�; corresponding all sites �dotted curve�.
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