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The dynamical properties of partially coherent Bose-Einstein condensates in double wells are investigated in
three typical regimes. In the extreme Fock regime, the time evolution of the degree of coherence is shown to
decay rapidly. In the Rabi regime, a relation between the amplitude of Rabi oscillation and the degree of
coherence is obtained, which is expected to determine the degree of coherence by measuring the amplitude of
Rabi oscillation. The study on the self-trapping phenomena in the Josephson regime exhibits that both the
degree of coherence and the initial relative phase can affect the final particle distribution.
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I. INTRODUCTION

Quantum tunneling through a barrier, as a paradigm of
quantum mechanics, has been observed in different systems,
such as two superconductors separated by a thin insulator
�1�, two reservoirs of superfluid helium connected by nano-
scopic apertures �2,3�, and Bose-Einstein condensates
�BECs� trapped in double wells �4�. Comparing with the
former two systems, BECs in double wells offer a versatile
tool to study the quantum tunneling phenomena due to the
fact that almost each parameter, such as the interwell tunnel-
ing strength, the interparticle interaction, and the energy bias
between the two wells, can be tuned experimentally. The
competition between those parameters makes BECs in
double wells exhibit several fascinating phenomena, like
Rabi oscillation, self-trapping, and Josephson oscillation,
which have been extensively studied �5–8�. When a conden-
sate is expected to be employed as a qubit, the first obstacle
attempted to be avoided is the decoherence, which was stud-
ied in experiment through the interference between BECs
�9,10�. Theoretically, the effect of decoherence on the dy-
namics of BECs in double wells was recently discussed with
the help of single-particle density matrix �11�. The problem
of decoherence in qubit measurement was recently investi-
gated �12� with a BEC in double wells. In current literature,
the most of authors paid more attention on the time evolution
of the atom distribution but less attention on the relative
phase between the condensates in two wells. Meanwhile, the
systems were mostly assumed to be completely coherent at
the initial time. Since both relative phase and degree of co-
herence are believed to affect the dynamical properties of
BECs in double wells, it is worthwhile to study the coher-
ence dynamics with attention to the relative phase and the
degree of coherence.

In this paper, we study a BEC system in double wells with
different degrees of coherence. In mean-field approximation,
we study the dynamical properties of the system in different
regimes with the help of the single-particle density matrix
and show that, in comparison to the completely coherent
case, partially coherent BECs in double wells can exhibit
richer physics. In the next section, we model the partially
coherent system and give the mean-field dynamical equation
for the elements of single-particle density matrix. In Sec. III,
we study the evolution of the degree of coherence and dis-
cuss the dynamical property of the partially coherent system
in Fock regime. In Sec. IV, we study the system in Rabi

regime and discuss the influence of degree of coherence on
the Rabi oscillation. In Sec. V, we study self-trapping phe-
nomenon for the partially coherent system. Then brief sum-
mary and discussion are given in Sec. VI.

II. MODELING PARTIALLY COHERENT SYSTEMS

We consider a Bose-Einstein condensate confined in a
double-well potential, where atoms can tunnel between the
two wells. The Hamiltonian of such a system in the second-
quantization form is given by

Ĥ =
�

2
�n̂1 − n̂2� − T�â1

†â2 + â2
†â1� +

U

4
�n̂1 − n̂2�2, �1�

where the bosonic operators â�
† and â� ��=1,2� create and

annihilate an atom in the �th well, respectively; and n̂�

= â�
† â� is the particle number operator. Here the parameter �

denotes the energy bias between the two wells, T is the in-
terwell tunneling strength, and U is the interaction strength
between atoms. The Hamiltonian �1� can describe not only
the BEC in double wells but also that in two hyperfine states
�13,14�. This model was conventionally studied in a mean-
field approach by replacing the expectation values of annihi-
lators in two different wells with two complex numbers a1
and a2, respectively �15,16�. In those works, the system is
essentially assumed to be of complete coherence, i.e., the
condensate stays in a completely coherent superposition state
��coh�= 1

N! �a1â1
†+a2â2

†�N�vac�. Whereas, a realistic system of
condensates may be not always in complete coherence for
various situations. It is therefore worthwhile to study the
dynamical properties of partially coherent BECs in double
wells.

As we know, it is convenient to introduce the single-
particle density matrix �̃ with entities �̃���t�= �â�

† �t�â��t��,
where the expectation value is taken for the initial state of
the system. Clearly �11 and �22 represent the population in
the first and in the second well, respectively. With the help of
Heisenberg equation of motion for operators, one can derive
the dynamical equations for the elements of the aforemen-
tioned density matrix by the mean-field approach in the
semiclassical limit,

i
d�11

dt
= − i

d�22

dt
= − T��12 − �21� ,
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i
d�12

dt
= − ��12 + T��22 − �11� − UN��11 − �22��12,

i
d�21

dt
= ��21 − T��22 − �11� + UN��11 − �22��21, �2�

where � is set to unit and ���= �̃�� /N. The conservation of
particle number requires that �11+�22=1.

As the 2�2 density matrix can be expanded as �

= �I+ P� ·�� � /2 with �’s the Pauli matrices, and P� a vector
inside the so-called Bloch sphere. Since �P� �=1 refers to a
pure state �completely coherent superposition� while �P� �	1
refers to a mixed state �partial coherence�, one can measure
the degree of coherence by �P� �2�
. Thus a natural definition
of the degree of coherence is given by �17�


 = 2 Tr �2 − 1, �3�

which is an important quantity that affects the dynamical
features, such as Rabi oscillation, self-trapping, etc. With the
help of the mean-field dynamical Eqs. �2� for the single-
particle density matrix, the dynamics of the system can be
investigated. We know that the ratio of the interaction
strength U to the tunneling strength T determines three dis-
tinct regimes, namely, the Rabi regime, UN /T�1, the Jo-
sephson regime, 1�UN /T�N2, and the Fock regime, N2

�UN /T. The system manifests different dynamical features
in different regimes, which will be given in the following
sections.

III. EVOLUTION OF THE DEGREE OF COHERENCE
IN THE FOCK REGIME

To study the evolution of the degree of coherence, we can
conveniently introduce the pseudospin operators,

Ĵz =
1

2
�â1

†â1 − â2
†â2� ,

Ĵx =
1

2
�â1

†â2 + â2
†â1� ,

Ĵy = −
i

2
�â1

†â2 − â2
†â1� ,

which obey commutation relations for the angular momenta

�Ĵj , Ĵk�= i� jklĴl, and fulfill

Ĵ2 = Ĵx
2 + Ĵy

2 + Ĵz
2 =

N

2
	N

2
+ 1
 ,

for systems of N bosons. In terms of these pseudospin opera-
tors, the Hamiltonian �1� can be written as

Ĥ = �Ĵz + UĴz
2 − 2TĴx. �4�

This implies that the dynamical properties are determined
only by the direction of the pseudospin J since its magnitude
is fixed on N /2.

We know that the eigenvalue of Ĵz is �n1−n2� /2, which
refers to the population imbalance between the two wells.
For convenience, let us introduce the canonically conjugated

operator ̂ of Ĵz to characterize the relative phase, which can

be regarded as the angle of Ĵ in the x-y plane in the angular-
momentum picture. According to Ref. �17�, the operator ̂

can be defined through Ê�exp î, where

Ê = ��N/2 − Ĵz��N/2 + Ĵz + 1��−1/2�Ĵx + iĴy� . �5�

Such a definition satisfies �Ĵz , Ê�=exp î, which is consistent

with the condition �Ĵz , ̂�=−i, so that Ĵz and ̂ are canoni-

cally conjugated to each other. Then, in terms of Ĵz and ̂,
Eq. �4� can be rewritten as

Ĥ = UĴz
2 + �Ĵz − TN�1 −

4Ĵz

N2 cos ̂ . �6�

In the Fock regime, the tunneling strength is much smaller
than the interaction one between atoms, i.e., U / �NT��1,
hence the last term in Eq. �6� can be neglected. Such a con-
dition can be satisfied in experiment through increasing the
distance between the two wells or enhancing the height of
the potential barrier separating the two wells. Then the dy-
namical equations in this regime become

dĴz

dt
= 0,

d̂

dt
= 2UĴz + � ,

which means that the difference in particle numbers between

the two wells is fixed but the relative phase ̂=2UĴzt+�t
evolves with time. According to Eq. �3� and the definition of
pseudospin operators, the degree of coherence can be written
as


 =
4

N2 ��Ĵz�2 + ��â1
†â2��2� .

From the definition of ̂, one can also get

�â1
†â2� =

N

2
�	1 −

4

N2 Ĵz
2
1/2

exp î .

Since the expectation value of Ĵz is fixed in the extreme Fock
limit T=0, the evolution of the degree of coherence only
depends on that of ̂. For example, if the particle numbers in
the two wells are the same at the initial time, the expectation

value of Ĵz will be always fixed on zero in the extreme Fock
limit. In this case, the degree of coherence becomes 

=4��â1

†â2��2 /N2���exp î��2, which reflects that the evolution
of the degree of coherence is determined by the interaction
strength U, the detuning �, and the initial state of the system.

As we know, the Fock bases �l� composing the
�N+1�-dimensional Hilbert space of the system are

�l� = �N

2
+ l,

N

2
− l, l = −

N

2
,−

N

2
+ 1, . . . ,

N

2
, �7�

where l corresponds to the quantum number of Ĵz denoting
the half of the difference in the particle numbers between the
two wells. Since any initial state can be written as
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���0�� = �
l=−N/2

l=N/2

�l�l� ,

the degree of coherence can be obtained as long as �l is

given. Taking �l=e−�l − ��2/l0
2
/ ��l0

2 /2�1/4 as an example and re-
placing the sum over l by an integral, one can obtain the
degree of coherence. If keeping the lowest-order term in the
Taylor expansion in the calculation of the expectation value

of �1−4 /N2Ĵz
2�1/2exp î, we have


�t� �
4

N2�2 + exp�− l0
2U2t2� . �8�

This expression is valid when the width of the Gaussian
distribution is much smaller than N, i.e., l0�N. Clearly, the
degree of coherence decays with time as long as there is
interaction between atoms. Such result tells us that one can
prepare systems with different degrees of coherence through
changing the evolution time t in the extreme Fock regime.
From Eq. �8�, we can also find that the larger the l0 is, the
faster the degree of coherence will decay. Then one can sup-
press the decay through decreasing the value of l0. Note that

in the above calculation of 
�t�, we used ̂=2UĴzt+�t,
which is valid only for the extreme Fock regime. In the other
regimes, one needs to solve Eq. �2� either analytically or
numerically without any assumption.

IV. INFLUENCE OF DEGREE OF COHERENCE
ON THE RABI OSCILLATION

Rabi oscillation is an important phenomenon reflecting
the coherent property of a system, which has been discussed
recently �8,18,19�. In Ref. �8� the initial state was assumed to
be a pure state, i.e., �11=1, implying 
=1. Whereas, accord-
ing to our formulation in Sec. III, one can prepare states with
different degrees of coherence, which makes Rabi oscillation
worthwhile to be studied from a new angle of view. Now we
study the dynamics of Rabi oscillation in terms of the density
matrix and give the relation between the amplitude of the
Rabi oscillation and the degree of coherence for BECs in
double wells.

In the extreme Rabi limit, U=0, Eqs. �2� are reduced to
Bloch equations that can be solved analytically. For example,
we consider a initial state described by the density matrix
�11�0�=�22�0�=1 /2 and �12�0�=�21�0�=c, we can obtain the
solution of Eqs. �2�,

�11 =
1

2
−

2c�T

�2 +
2c�T

�2 cos��t� ,

�22 =
1

2
+

2c�T

�2 −
2c�T

�2 cos��t� ,

�12 = c −
c�2

�2 +
c�2

�2 cos��t� + i
c�

�
sin��t� ,

�21 = c −
c�2

�2 +
c�2

�2 cos��t� − i
c�

�
sin��t� , �9�

where �= �4T2+�2�1/2 and c is a real number related to the
degree of coherence, i.e., c=�
 /2. From Fig. 1, we can see
that the particle numbers in the two wells both periodically
oscillate with time. The oscillation amplitude c�T /�2 dimin-
ishes with the decrease in the degree of coherence. Here the
relative phase between the condensates in two wells is taken
as zero, i.e., �12�0� is real at the initial time. If the degree of
coherence is fixed but the relative phase is not zero, saying
�12�0�=c exp�i�� and �21�0�=c exp�−i��, we can also solve
Eqs. �2� analytically �the expression of �ij�t� is omitted for
saving space�. One can find that the amplitude of Rabi oscil-
lation is affected by the initial values of the degree of coher-
ence as well as the relative phase. For the sake of compari-
son, we plot a numerical result of the Rabi oscillation in the
presence of interaction �U�0� in Fig. 1�b�. Comparing the
two panels in Fig. 1, we can see that the interaction between
atoms will make both the amplitude and the period of the
Rabi oscillation decrease for the same initial states.

The above discussions tell us that one can obtain the de-
gree of coherence through measuring the amplitude of the
Rabi oscillation in experiment. For example, like in the ex-
periment �20�, prepare a BEC in one hyperfine state and
transfer one half of atoms into the other hyperfine state
through a two-photon pulse; turn off the pulse to allow the
system to evolve freely without the interstate tunneling �i.e.,
T=0� until t=�0. Then turn on a pulse which makes the at-
oms tunnel between the two states and measure the ampli-
tude of the Rabi oscillation. Because the system is in the
extreme Fock regime when t	�0, based on the calculation
given in Sec. III, we can have �11=�22=1 /2 and �12

= 1
2exp�i��0�exp�−l0

2U2�0
2 /2� at the time �0. Such a state can

be actually prepared as the initial state of the subsequent
Rabi oscillation procedure. Note that the expression of �12
can be also rewritten as �12=�
 exp�i��0� /2 considering the
definition of 
. Since the relative phase ��0 is determined,
the amplitude of Rabi oscillation only depends on the degree
of coherence. The analytical result of Eqs. �2� cannot be
obtained due to the existence of interaction terms in the
above example, so one can solve it numerically. The degree
of coherence can be determined through fitting the experi-
mental Rabi oscillation profiles with the theoretical ones as
the degree of coherence is evolved.

V. SELF-TRAPPING FOR THE PARTIALLY
COHERENT SYSTEM

As we know, the most prominent feature of atomic tun-
neling between two wells is the nonlinear dynamics arising

FIG. 1. �Color online� The Rabi oscillation of the particle dis-
tribution with different degrees of coherence for �a� U /T=0 and for
�b� UN /T=4. The parameters are � /T=0.5 and 
=0.5 �dot line�, 1
�solid line�.
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from the interaction of atoms. Whereas, Eqs. �2� cannot be
analytically solved once the interaction terms are taken into
account. In this case, we solve Eqs. �2� numerically. In the
numerical calculation, we adopt a linearly time-dependent
energy bias �=�t, where � is a constant characterizing the
rate of the change of the energy bias �. The initial values are
�11=�22=1 /2 and �12= 1

2
�
 exp i�, where � is the phase

difference between the condensates in the two wells at initial
time. Our results manifest that the initial relative phase and
the degree of coherence affect the dynamical properties of
self-trapping.

In Fig. 2, we plot the time evolution of the population �11
for different initial values of the degree of coherence and
relative phase. From this figure, we can see that the system
exhibits the phenomenon of self-trapping if the system is
coherent, i.e., 
�0, but the atoms do not tunnel between the
two wells for the incoherent system, i.e., 
=0. We can also
find that most of the atoms favorite to stay in the right well
�i.e., �22��11� at the final time for �=� /3, which is contrast
to the case for �=�. The difference between the two panels
of Fig. 2 implies that the initial relative phase can affect the
phenomenon of self-trapping. It depends on the energy bias
and the initial relative phase that in which well the atoms
prefer to stay at the final time. When the initial relative phase
is fixed, Fig. 2 shows that the larger the degree of coherence
is, the larger the population difference between the two wells
at the final time will be. This is confirmed by Fig. 3 where
the final population probability versus the degree of coher-
ence is plotted for three different values of �. In Fig. 4, we
plot the relation between the final population probability and
the initial relative phase for different degrees of coherence.

This figure confirms that the initial relative phase can affect
the final distribution of atoms.

The emergence of the self-tapping phenomena is depen-
dent on the initial state and the systems parameters, e.g., the
interaction strength U, the interwell tunneling strength, and
the energy bias � between two wells. Such a phenomenon
was investigated in a symmetric double-well potential �5�,
i.e., �=0, and also in a double-well potential with a periodic
modulation, i.e., ��sin �t �21�. According to Ref. �5�, we
can find that the self-trapping phenomena occur only when
the interaction strength is larger than the critical value Uc

� ��1−z�0�2 cos ��0�+1�T / �Nz�0�2� in the case of �=0,
where z�0� refers to the initial population difference �11�0�
−�22�0� and ��0� the initial relative phase between the con-
densates in the two wells. Therefore, for the initial states we
considered afore, if there is no energy bias, the system can-
not exhibit the self-trapping phenomena due to the critical
interaction strength Uc→� for z�0�=0, ��0��� �22�. For
the initial states with population imbalance �i.e., z�0��0�,
we plot the numerical solutions of Eqs. �2� for a symmetric
double-well potential with different degrees of coherence in
Fig. 5. Such a figure shows that the degree of coherence
affects the critical interaction strength Uc above which the
system can exhibit the self-trapping phenomena in a sym-
metric double-well potential. The system investigated in Ref.
�5� corresponds to the case when the degree of coherence

=1 in our discussion �see the dot line in Fig. 5�.

FIG. 2. �Color online� Time evolution of the population prob-
ability �11 for different degrees of coherence and initial relative
phases ��=� /3 for the top panel and �=� for the bottom panel�.
The other parameters are UN /T=4 and � /T2=5.

FIG. 3. �Color online� The dependence of the final population
probability on the degree of coherence. The parameters are the same
as in Fig. 2.

FIG. 4. �Color online� The dependence of the final population
probability on the initial relative phase �. The parameters are the
same as in Fig. 2.
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VI. SUMMARY AND DISCUSSION

In the above, we considered Bose-Einstein condensates in
double wells with different degrees of coherence. With the
help of single-particle density matrix, we studied the dy-
namical properties of partially coherent Bose-Einstein con-
densates in double wells and showed that the degree of co-
herence is a useful parameter that affects the dynamical

features. We investigated the system in different regimes and
found that the degree of coherence can affect the dynamical
properties of the system significantly. In the Fock regime, we
mainly studied the time evolution of the degree of coherence
by introducing the pseudospin operators and showed that the
degree of coherence decays in exponential form of the square
of time. In the Rabi regime, we studied the effects of the
initial relative phase � and degree of coherence 
 on Rabi
oscillation and showed that the amplitude of Rabi oscillation
is in proportional to the square root of 
 in the case of �
=0. According to the relevant result, the degree of coherence
is expected to be determined through measuring the ampli-
tude of Rabi oscillation. Because the existence of nonlinear
terms of interaction makes the dynamical equations in the
Josephson regime not solvable analytically, we solved those
equations numerically and found that the self-trapping phe-
nomenon also exists for partially coherent BEC systems in
double wells. A more fascinating feature is that which well
the particles will stay in at the final time largely depends on
the initial relative phase. This result is different from that in
the previous works �11�, where the particles are in the same
well at the initial time such that the initial relative phase
between BECs in two wells does not affect the dynamical
property of systems explicitly.
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