
Coupling internal atomic states in a two-component Bose-Einstein condensate
via an optical lattice: Extended Mott-state–superfluid transitions

Jonas Larson* and Jani-Petri Martikainen
NORDITA, 106 91 Stockholm, Sweden

�Received 27 November 2008; published 9 September 2009�

An ultracold gas of coupled two-component atoms in an optical field is studied. Due to the internal two-level
structure of the atoms, three competing energy terms exist: atomic kinetic, atomic internal, and atom-atom
interaction energies. A novel outcome of this interplay, not present in the regular Bose-Hubbard model, is that
in the single band and tight-binding approximations four different phases appear: two superfluid and two Mott
phases. When passing through the critical point between the two superfluid or the two Mott phases, a swapping
of the internal atomic populations takes place. By means of the strong-coupling expansion, we find the full
phase diagram for the four different phases.
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I. INTRODUCTION

Ultracold atoms in optical lattices provide a test bed of
strongly interacting many-body systems. The advantages of
these systems compared to corresponding models in
condensed-matter physics lie in the high controllability in
terms of purity, parameters, state preparation, and state de-
tection �1�. Since the seminal experiment by Greiner and
co-workers, where the Mott-superfluid phase transition �PT�
was first realized �2�, numerous experimental achievements
have been accomplished. For example, Anderson localization
of matter waves �3�, the Tonks gas characterized by strong
atom-atom interaction �4�, and the Mott phase of two fermi-
onic compounds �5�.

Systems composed of atoms with internal level structure,
such as spinor gases, yield other interesting possibilities. It
has been demonstrated that the additional internal degree of
freedom gives rise to novel phases and quantum phase tran-
sitions �6�. Experiments on spinor condensates include, for
example, coherent transport in optical lattices �7�, spin mix-
ing �8�, inherent spin tunneling �9�, and symmetry breaking
�10�. In these works, as for mixtures of atomic species in
optical lattices �11�, direct coupling between the internal
states is not considered. Coupling between the internal
atomic states may indeed render new phenomena. Krutitsky
et al. studied a � configuration for the atoms, coupled by two
optical lattices �12,13�. They particularly showed that the
Mott-superfluid PT may be of first order and that ferromag-
netic and antiferromagnetic types of superfluid states can ex-
ist in such coupled models. Later in Ref. �14�, Garcìa-Ripoll
and co-workers considered individual lattice configurations
for internal �dressed� atomic states. Coupling between atoms
in these two lattices was induced by atom collisions. In an
earlier contribution �15�, we demonstrated an inherent topo-
logical phase transition in fermionic systems originating
from the interplay between internal and external atomic de-
grees of freedom rather than kinetic and atom-atom interac-
tion energies as is normally the case for cold atoms in optical
lattices.

In this paper, we examine a gas of ultracold interacting
bosonic � atoms in a one-dimensional optical lattice. The
two atomic transitions are driven by one laser field rendering
the optical lattice and another external laser lacking any spa-
tial dependence in its mode profile. The largely detuned ex-
cited atomic level is adiabatically eliminated resulting in an
effective coupled 2�2 model. An essential point of the re-
sulting Hamiltonian is that decoupling of the two equations
into two separate Schrödinger �or Gross-Pitaevskii� equa-
tions is only possible in adiabatic or diabatic regimes. The
novel physics, however, is found in the intermediate regime,
which will be analyzed in this work. In the next section, we
show that the spectrum of the single-particle Hamiltonian
possesses several interesting features, such as anomalous dis-
persions with multiple local minima. The many-body Hamil-
tonian is derived in Sec. III using an expansion of the atom
field operators in the lowest band Wannier functions. The
magnitudes of the Hamiltonian parameters, obtained from
overlap integrals containing the numerically computed Wan-
nier functions, allow us to collect the significant terms. In the
parameter regimes studied in this contribution, we end up
with a Bose-Hubbard Hamiltonian, where the boson opera-
tors create or annihilate atoms in certain superpositions of
their internal states. Utilizing the strong-coupling expansion,
we are able to find the system phase diagram in Sec. IV A.

In contrast to the usual tight-binding Bose-Hubbard
model, our system possesses four different phases: two su-
perfluid states and two Mott states characterized by different
collective atomic population inversions. Moreover, the two
superfluid phases have either zero or � phase modulation
between neighboring sites, giving them a ferro- or antiferro-
magnetic property. It is demonstrated that time-of-flight mea-
surements would provide the information needed to distin-
guish between the two superfluid states as well as between
the Mott states and the superfluids, while the two Mott states
can be identified via state-dependent detection.

II. SINGLE PARTICLE HAMILTONIAN

In order to obtain a many-body theory, we first consider
properties of the corresponding single-particle Hamiltonian.
This enables us to systematically derive the many-body*jolarson@kth.se
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counterpart which includes atom-atom interaction in the next
section.

A. Model system

We consider an ultracold three-level � atom with mass m
and internal levels �i�, i=1,2 ,3, where �1� and �2� are the two
lower metastable states and �3� the excited state. The atom
moves in the presence of a one-dimensional optical lattice
which couples the two atomic states 1 and 3 with an effective
coupling �. The states 2 and 3 are coupled via an “external”
field with amplitude �, which is furthermore assumed con-
stant over the extent of the atomic sample. Figure 1 details
the system setup and the laser-atom configuration we envi-
sion. Center-of-mass position and momentum are given by x̂̃
and p̂̃, respectively. Both atomic transitions are presumed
highly detuned, with detunings �1 and �2, respectively, such
that the excited state �3� can be adiabatically eliminated re-
sulting in an effective two-level model of the internal states
�1� and �2�. Following standard procedures �16�, we derive
the effective Hamiltonian

Ĥsp =
p̂̃2

2m
+

��̃

2
	̂z − �Ũ1 cos�2kx̂�	̂11 + �Ũ cos�kx̂�	̂x,

�1�

where �̃= ��1−�2�−�2 /�2−�2 /2�1 is an effective detuning
taking into account for the constant Stark shifts of states 1

and 2, Ũ1=�2 /2�1, Ũ=���1 /2�1+1 /2�2�, k is the wave
number of the optical lattice, and for the 	 operators we have
	̂z= �2��2�− �1��1�, 	̂x= �1��2�+ �2��1�, and 	̂22= �2��2�. Note

that the amplitudes �̃, Ũ1, and Ũ of the last three terms of
Eq. �1� can be tuned independently within the validity re-
gime of the adiabatic elimination. For brevity, in the follow-
ing, we will use dimensionless parameters. Letting k−1 and
Er= �2k2

2m set characteristic length and energy scales, we scale
the variables as

x̂ = kx̂̃, � =
��̃

Er
, U1 =

�Ũ1

Er
, U =

�Ũ

Er
. �2�

In terms of scaled variables and in the �1�= � 0
1 � and �2�= � 1

0 �
nomenclature, Eq. �1� becomes

Ĥsp = −
�2

�x2 + �
�

2
U cos�x̂�

U cos�x̂� −
�

2
− U1 cos�2x̂� 	 . �3�

It is worth emphasizing that with general parameters, this
Hamiltonian cannot be separated into two periodic
Schödinger equations. There is no x-independent unitary ma-
trix that would diagonalize the 2�2 matrix of Eq. �3�.
Thereby, the corresponding matrix will not commute with
the kinetic-energy term, causing nondiagonal couplings of
the transformed Hamiltonian. Indeed, this fact is a funda-
mental property for the results presented in this work. This
nonseparability is different from most earlier works on mul-
ticomponent atoms in optical lattices, e.g., in Ref. �14�, a
rotation decouples the system and it is the atom-atom inter-
action that drives the coupling between two effective equa-
tions, while in Ref. �12� the atoms reside in a dark state.

The Hamiltonian �3� is periodic with period �=2� and

thus the operator T̂=e
i�p̂ is a constant of motion. Moreover,
the simultaneous inversion-displacement operator

Î = 	̂ze

i�/2p̂ �4�

defines another symmetry of the Hamiltonian, where we ex-

plicitly have Î2= T̂ �17�. This additional invariant reveals that
the spectrum is most properly described within an extended
Brillouin zone with quasimomenta between −1 and 1. This
property has been discussed in greater detail in Refs. �15,17�.

B. Spectrum

Labeling the momentum eigenstates by �q� �p̂�q�=q�q��, it
is appropriate to divide the bare basis states into two sets

����q�� = 
�q + ���1� � even

�q + ���2� � odd,
�

���q�� = 
�q + ���2� � even

�q + ���1� � odd,
� �5�

where � is any integer and q� �−1,1�. Due to the symmetry

defined by Î, the Hamiltonian �3� is on block-diagonal form
within these states and consequently does not couple basis

states of different sets �����q���Ĥ���q��=0. This does not
mean that the two-level structure of Eq. �3� has been decou-
pled, but is merely a choice of basis states �5�. The analysis
of Ref. �15� was carried out by taking into account for the
possibility of populating both sets �5� simultaneously. Here
we restrict ourselves to one of the blocks of the Hamiltonian,
namely, discard the states ���q��. Physically this implies
that we assume a particular initial state of the atom. More
precisely, assuming the atom to be ultracold with a momen-
tum within the lowest Bloch band and initial internal state
�1�. Such a constrain on the initial atomic state seems rea-
sonable within experimental feasibility. We point out though
that by limiting our investigation to a single set of Eq. �5�,
we do not overlook the physical phenomena of interest for

FIG. 1. �a� Schematic configuration of system setup and �b�
atom-laser configuration. The optical lattice drives the �1�↔ �3�
atomic transition and the external laser the �2�↔ �3� transition.
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this work. One important observation is that scattering be-
tween atoms may cause the two sets of basis states ����q��
and ���q�� to become coupled, even if they are discon-
nected by the Hamiltonian. We will return to this issue in
Sec. IV A.

As a periodic problem, the eigenstates of Ĥ will be of
Bloch form imprinted with two quantum numbers: band in-
dex �=1,2 ,3 , . . . and quasimomentum q� �−1,1�,

Ĥ����q�� = E��q�����q�� , �6�

where E��q� is the �th Bloch band’s dispersion curve. Due to
the coupled two-level structure, the dispersions may have
anomalous shapes with multiple local minima �15,17�. This
should be compared to regular energy bands, by which we
mean that either dE��q� /dq�0 or dE��q� /dq�0 for
0�q�1. Figure 2 presents several examples of the first
three bands. The atypical forms of the dispersions are clearly
visible. In �15� it was demonstrated how such properties of
the spectrum render a topological PT for fermions and a
first-order PT for bosons. Whenever U�U1 �plots �a�–�d��,
situations similar to the ones presented in Ref. �15� are re-
covered. We remind that here, however, we restrict the spec-
trum to only one subset in Eq. �5�. As was found in �15�, the
lowest dispersion curve can possess several local minima in
this regime, which is shown in Fig. 2�c�. Note that for �
�0, the regular spectrum for the lowest band is recovered,
while for ��0 the spectrum is “shifted” by one unit of
momentum arising from the fact that we assumed the atoms
to be initially in their internal state �1�. The reverse is ob-
tained by considering atoms initially in �2� instead. Observe
further that also the excited bands in the plots for large de-
tuning possess an irregular structure.

The situation is qualitatively different if instead �, U1
�U. Here, the internal states of the atoms are only weakly
coupled and we can approximate the spectrum by consisting
of free particles �atoms in internal state �2�� and atoms in a
potential U1 cos�2x� �atoms in internal state �1��. The corre-
sponding two spectrums may overlap forming unusual ap-
pearances. For large U1, the lowest dispersion curves, corre-
sponding to �1� atoms, are almost flat. Thus, slight nonzero
repulsive interaction between the atoms in such a band
would cause an insulating state. However, the size and sign
of the detuning � determine if the overall lowest band be-
longs to �1� or �2� atoms and therefore if the state is in a
superfluid or a Mott state, provided repulsive atom-atom in-

teraction. These conclusions are verified in Figs. 2�e�–2�h�
where in �e�, the lowest dispersion curve is approximately
parabolic while in �h�, it is almost flat. Similar structure of
the dispersions, mixture of narrow and wide energy bands,
was also encountered in honeycomb lattices �18�. We further
note that anomalous lowest band dispersions can also be
achieved via Bose-Hubbard models in square lattices beyond
the tight-binding approximation �19�.

III. BOSE-HUBBARD HAMILTONIAN

One among many prototype models of many-body phys-
ics and the study of quantum PTs is the Bose-Hubbard model
�20�. The dynamics is driven by two terms representing hop-
ping between sites and on-site interaction between the par-
ticles. For ultracold bosonic atoms in optical lattices, the
analysis is most often restricted to considering only the low-
est band, i.e., single band approximation, and to hopping
only between neighboring sites, i.e., tight binding-
approximation. In this paper, we impose these approxima-
tions and the validity of such assumptions will be discussed
in detail in Sec. IV B.

Second quantization

The many-body Hamiltonian is given by

Ĥ =� �̂†�x�−
d2

dx2 + �
�

2
U cos�x̂�

U cos�x̂� −
�

2
− U1 cos�2x̂� 	

+
1

2
�̂†�x� · g · �̂�x���̂�x�dx , �7�

where �̂�x� and �̂†�x� are atomic spinor annihilation and
creation field operators, respectively, and

g = �g11 g12

g12 g22
� �8�

is the scaled onsite interaction matrix with amplitudes gij.
We will make the approximation of assuming equal scatter-
ing amplitudes between the internal condensate states �1� and
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FIG. 2. Examples of the three lowest energy
bands of Hamiltonian �3�. In �a�–�d� we have U
�U1 �U=0.05 and U1=0.025�, while in �e�–�h�
U�U1 �U=0.1 and U1=2�. The multiple num-
bers of local minima of the lowest band are clear
in �c�. The large detuning case is shown in �a�, in
which the lowest band has the regular form. All
parameters are dimensionless.
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�2�, g11=g22=g, and letting g12=0. The atomic field operator
is conveniently expressed in terms of Wannier functions as

�̂�x� = �
i

ei�iwi�x�b̂i, �9�

where wi�x�= �w1�x−xi� w2�x−xi��Tis the lowest band’s two-
component Wannier function located at xi and i runs over all

lattice sites, b̂i is the bosonic annihilation operator for the
lowest band at site i, and the �i’s are phases that will be
determined later. We remind that we consider a one-
dimensional lattice so that the Wannier functions have a
single spatial coordinate. From our definition of the

boson operators b̂i
†, it is clear that these have the meaning

of creating an atom with wave function �atom�x−xi�
=w1�x−xi��1�+w2�x−xi��2�. In general, both the states �1�
and �2� are populated in such a state and the populations
depend highly on the system parameters. Using Eq. �9�, we
derive the second-quantized Hamiltonian

Ĥsb = − �
i,j

Jijb̂i
†b̂je

i��j−�i� +
1

2�
ijkl

Gijklb̂i
†b̂j

†b̂kb̂l − ��
i

n̂i.

�10�

Here we have introduced the chemical potential � and

Jij = −� wi
†�x�Ĥsp · w j�x�dx ,

Gijkl = g� wi
†�x��w j

†�x� · wk�x�� · wl�x�dx �11�

are the overlap integrals determining the strength of hopping
and atom-atom interaction as function of the system param-
eters �, U1, and U. So far, no tight-binding approximation
has been applied. However, imposing the single band ap-
proximation normally motivates the use of the tight-binding
approximation �21�, in which case one obtains a Bose-
Hubbard Hamiltonian

ĤBH = − J1�
�i,j�

b̂i
†b̂je

i�ji +
G0

2 �
i

n̂i�n̂i − 1� − ��
i

n̂i,

�12�

where � ji=� j −�i. The first sum runs over nearest neighbors,

the coefficients J1�Jii+1 and G0�Giiii, and n̂i= b̂i
†b̂i. The

phases � ji are chosen such that the total energy is minimized,
giving

� ji = 
0, J1 � 0

� , J1 � 0.
� �13�

The positions xi of the ith Wannier function are not a
priori given in the present model. In general, the xi’s are
taken to coincide with the minima of the effective potential.
Here, however, the coupled dynamics provide a situation
where well-defined potentials cannot be ascribed single in-
ternal atomic states. These issues were analyzed in more de-
tail in �15� and it was in particular found that xi=n� for any
integer n renders Wannier functions having familiar shapes,

which for a deep lattice approximate, the harmonic-oscillator
eigenstates. This finding may be motivated by the following
argument. For positive detuning and ��U�U1, the lowest
dispersion has the regular form �see Fig. 2�a�� and since the
initial atomic states are chosen to be �1�, the effective lattice
potential is in the adiabatic regime Uef f�x�� cos2�x� which
possesses its minima for xi=n�. Assuming a deep lattice, the
Wannier functions then attain, to a good accuracy, the forms
of the corresponding harmonic-oscillator eigenfunctions in
this limit. Note, however, that our Wannier functions are still
spinors, but in this limit, the �1� internal state is predomi-
nantly populated. We have found that the Wannier functions
preserve their typical forms even for decreasing detunings �
provided we pick xi=n�. By this we mean that both constitu-
ent Wannier functions have an approximate Gaussian shape
for relatively strong lattices. This is indeed only true for
xi=n� once we have restricted the analysis to the basis set
����q�� of Eq. �5�. Any other choice of xi results in Wannier
functions with atypical shapes and being less localized.
Therefore, in the following, we will choose xi=n�.

The anomalous form of the lowest dispersion curve im-
plies that the nearest-neighbor hopping parameter J1 can at-
tain both positive and negative values �12�. The coupling
parameters, given by the various overlap integrals �11�, are
calculated using the spinor Wannier functions obtained nu-
merically from diagonalization of the Hamiltonian �3�. We
display, as a function of �, Ji�i=1,2 ,3� in Figs. 3�a� and
3�c�, while Figs. 3�b� and 3�d� show G0 and G1, where
G1=Gijji and j= i
1. The coefficients J2�Jii+2 and
J3�Jii+3 describe the next- and next-next-nearest-neighbor
tunneling strengths. The parameters are U=1 and U1=0.5 in
�a� and �b� and U=0.5 and U1=1 in �c� and �d�. In these two
examples, �J1�� �Ji�1� outside the neighborhood where
J1=0. We note that G1 is considerably smaller than G0 for
any �.
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FIG. 3. Two examples of the first three hopping parameters J1

�solid line�, J2 �dashed line�, and J3 �dotted line� as function of � in
�a� and �c� and G0 �solid line� and G1 �dashed line� in �b� and �d�. In
both examples, J1 changes sign. The dimensionless parameters are
g=1, U=1, and U1=0.5 in �a� and �b�, and g=1, U=0.5, and
U1=1 in �c� and �d�.
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Let us comment on the elaborate structure of the system.
For large detunings, ��1��� and ����� ,�, atoms in state �1�
move in an effective potential Uef f�x�� cos2�x�. This is the
common adiabatic dispersive situation utilized in most ex-
periments. The effective potential in such case is obtained
via adiabatic diagonalization of the Hamiltonian. It is known
that such approach gives rise to nonadiabatic corrections,
which can be expressed in terms of effective gauge fields
�22�. However, in the dispersive regime, the nonadiabatic
corrections are vanishingly small and can be neglected. On
the other hand, in the intermediate regime, which we are
interested in, these corrections cannot be overlooked and
must be taken into account. In fact, only in the adiabatic
limiting situations ���→ 
� can an effective potential be
assigned to the internal states of the atoms �15,23�. Only in

this limit will the boson operator b̂i
† create an atom in

a bare state �atom�x−xi�=w1�x−xi��1� or in a bare state
�atom�x−xi�=w2�x−xi��2�, otherwise both internal states are
populated. Three different energy contributions drive the sys-
tem, internal and kinetic atomic energies, and atom-atom in-
teraction energy. This is not evident in the second-quantized
formalism �12�, containing only two parameters J1 and G0.
However, the internal atomic energy is indirectly embodied
in these two parameters, since the internal state greatly influ-
ences the spinor Wannier functions and consequently also J0
and G0.

IV. MOTT-SUPERFLUID PHASES

In the previous section, we found that the hopping coef-
ficient may change sign as � is varied. Thus, the effective
hopping, J1 /G0, can be tuned from large negative to large
positive values. As will be described below, the change of
sign of J1 is an outcome of a first-order PT. Across this
critical point, the internal atomic state changes and thus de-
fines two different phases. In addition, in the superfluid
phase, the sign of J1 affects the character of the many-body
atomic state due to the phase matching between the Wannier
functions in the expansion �9�.

For the phase diagrams, the sign change in J1 implies that
both positive and negative regimes for the hopping should be
considered and not restricted to only positive as in the regu-
lar Bose-Hubbard model �20�. We will present typical ex-
amples of the phase diagrams in the �−� plane rather than
in the �−J1 plane, since experimentally � is an easily con-
trollable parameter. The phase diagrams are achieved by ap-
plying the strong-coupling expansion �24�, which has turned
out to reproduce accurate results for the Mott boundaries of
the Bose-Hubbard �BH� model in one dimension.

A. Phase diagrams

The parameters are derived from the numerically obtained
spinor Wannier functions. Moreover, U and U1 are chosen in
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FIG. 4. Upper two plots �a� and �b� display the phase diagrams �showing the first four Mott lobes� corresponding to Figs. 3�a� and 3�c�.
The vertical dashed lines are the phase boundary between antiferromagnetic �a-sf� or ferromagnetic superfluid states �f-sf� and between + and
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such a way that we can safely impose the above-discussed
approximations �see also the following section�.

The phase diagrams obtained for the parameters of Figs.
3�a� and 3�c� are displayed in Figs. 4�a� and 4�b�, respec-
tively. The plot only shows the first four Mott lobes. The
vertical dashed line gives the crossover between positive and
negative J1; left of the line J1�0 and right of it J1�0. We
note the asymmetry of the Mott zones on each side of the
dashed line. This irregularity originates from the Stark shift
term U1 cos�2x� appearing in the Hamiltonian �3�, which ef-
fectively shifts the resonance condition that defines the criti-
cal detuning �c. Without this term �25�, the Mott lobes are
symmetric with respect to the dashed line.

In order to identify the different phases of Figs. 4�a� and
4�b�, we first need to understand the underlying physics of
the single-particle Hamiltonian �3�. In Ref. �15�, we demon-
strated that a first-order PT is obtained in an ideal gas of
coupled two-component bosonic or fermoinic atoms, when
the detuning is varied across a critical value. In the case of
fermions, this describes a topological PT, as the Fermi sur-
face changes topology across the critical point; each atom
changes its momenta by either 
1. Changing the internal
states of the atoms also shift the atomic momenta by a mul-
tiple of the unit momentum. This yields a competition be-
tween the two terms; for certain parameters, it is more favor-
able to lower the internal atomic energies, while in other
situations, it is rather the atomic kinetic energy that should
be minimized. When crossing the critical point for this PT,
which occurs exactly when the hopping changes sign, each
atom shifts their momenta by 
1 and their internal state
populations are swapped. Thus, the collective atomic inver-
sion, which gives the population imbalance between the in-
ternal atomic states, works as an order parameter �15�.

The atomic structure of the different phases becomes
clearer by thinking of the two-level atoms as spin-1

2 particles.
The single-particle wave function is written as

��x� = �1�x��1� + �2�x��2� , �14�

giving the Bloch vector components

u � �	̂x� = 2 Re�P12� ,

v � �	̂y� = − 2 Im�P12� ,

w � �	̂x� = P11 − P22, �15�

where Pij =��i
��x�� j�x�dx. The last component of the Bloch

vector, w, is simply the atomic inversion. From the decou-
pling of the two basis sets �5�, it follows that whenever only
one basis set is populated, Pij =0 unless i= j. Thereby,
u=v=0 in the “+” Mott and the “−” Mott states and the
corresponding atomic Bloch vector points either toward the
north or the south pole of the Bloch sphere, respectively, as
schematically shown in Fig. 4�c�. The fact that the length of
the vector is in general smaller than unity reflects the en-
tanglement shared between internal and motional atomic de-
grees of freedom.

The same type of PT exists also for incommensurate fill-
ings �superfluid states�. However, contrary to atoms in the
Mott state, the superfluid states possess as well an inherent
coherence within the atoms and one finds that the PT mani-
fests itself in this coherence. In particular, such transition
corresponds to going from an antiferromagnetic �a-sf� to a
ferromagnetic superfluid state �f-sf� or vice versa. The terms
antiferro- and ferromagnetic come from phase matching be-
tween site wave functions in the expansion �9�. For the anti-
ferromagnetic state, there is a �-phase sign flip between
neighboring Wannier functions. We term these superfluid
states a-sf or f-sf in Fig. 4. Note that the terminology of
antiferro- and ferromagnetic states originates from the phase-
matching between Wannier functions and not from the spin
orientation �Bloch vectors� between neighboring sites.

The analysis has been carried out by restricting the atomic
states to the set �����q��� of Eq. �5�. For the many-body
system, one must take atom-atom scattering into account.
These contributions break the symmetry defined by the op-

erator Î given in Eq. �4� and consequently cause coupling
between the two sets of Eq. �5�. The approach utilized in this
work does not include such population transfer processes.
We will now argue that these are indeed very small even at
very large effective scattering amplitudes g �and g12�. To do
so, we solve the corresponding Gross-Pitaevskii equation �7�
obtained by replacing the atomic operators by mean-field
wave functions. We start from an ansatz wave function for
��x� which completely resides in one of the basis sets
�����q��� or ����q���. Given any set of parameters U, U1, �,
and g, the ground state is obtained via imaginary time evo-
lution. If g=0, no population transfer occurs between the two
basis sets and the obtained ground state populates only one
basis set. For the field amplitudes U and U1 of Fig. 4 and
various �, effective couplings g=100 and g12=0 give a
population imbalance between the bases sets for the ground
state of �5 /1000. That is, even for effective scattering am-
plitudes as large as 100 recoil energies, more than 99.5% of
the ground-state population resides in one of the basis sets. It
turns out that the amount of coupling between the two bases
sets is more sensitive to the strength of g12 than to the one of
g. For g12=100, about 10% may populate the orthogonal
basis set �population imbalance 1/9�. On the other hand, we
find that w does not depend on g12 and therefore a nonzero
g12 leaves the order parameter w unchanged. We may con-
clude that in terms of the Bloch vector, scattering between
the atoms induces only a small deviation of the vector from
the z axis, but the projection onto the z axis is very insensi-
tive to these scattering processes. We should point out that
solving the Gross-Pitaevskii equation is only justified deep in
the superfluid regime, but nonetheless, we believe that the
above analysis utilizing very large scattering amplitudes
demonstrates the robustness of the assumption of neglecting
coupling between the two bases sets �see also �26��.

In Ref. �15�, we showed that the anomalous structure of
the dispersions is also encountered in a two-dimensional lat-
tice. Furthermore, in �26� we studied the dynamics of the
mean-field PT deriving from the atypical dispersions in both
one and two dimensions and proved its persistence in two
dimensions. Thereby, it is clear that our findings are not re-
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stricted to the special case of a one-dimensional lattice, but
apply also to higher dimensions. However, in the present
work, studying higher dimensions would be considerably
more cumbersome as the Hamiltonian cannot be written as a
simple sum of lattice potentials in the different spatial direc-
tions and consequently calculation of the corresponding
Bloch and Wannier functions are not as straightforward as
for a regular dispersive square or cubic lattice. Moreover, the
strong-coupling expansion used for determining the phase
diagrams in the proceeding section only provides quantita-
tively accurate results in one dimension, while in two and
three dimensions, it reproduces only qualitative results.

B. Validity of approximations

Various approximations have been imposed in order to
derive the phase diagrams: tight-binding and single-band ap-
proximations and truncating the strong-coupling expansion
at third order. In this section, we systematically discuss the
justification of such assumptions. A rule of thumb is that
these approximations are all related in the regular Bose-
Hubbard model and share more or less the same validity
regimes �21�. It is not deducible that this holds also for our
two-component model where for instance the Wannier func-
tions are spinors.

Already Fig. 2 justifies the application of the tight-binding
approximation. This, of course, is due to our choice of pa-
rameters. As a second check of the tight-binding approxima-
tion, we have modified the strong-coupling expansion to in-
clude tunneling processes beyond nearest neighbors and
recalculated the phase diagrams of Fig. 4 and found only
minimal corrections. Note that when J1=0, the tight-binding
approximation in general fails. In this regime, however, the
hopping terms beyond nearest neighbor are, for the examples
presented in this paper, very small such that the dynamics is
predominantly driven by the onsite interaction and therefore
the system must be in a Mott state.

The justification for the use of the single band approxima-
tion has been investigated by evaluating overlap integrals
between spinor Wannier functions of the first and the second
bands. For Fig. 4, we found that these coupling elements are
everywhere much smaller than J1 and G0 except for ��0 in
�b�. Thus, tuning � nonadiabatically across resonance, when
U=0.5 and U1=1, may cause population of excited bands.
Finally, in order to discuss on what grounds the third-order
strong-coupling expansion may be applied, we have com-
pared the phase diagrams of Fig. 4 to the ones obtained by
utilizing second-order perturbation theory instead of third or-
der and found only slight modifications.

V. CHARACTER OF DIFFERENT PHASES

As pointed out in Sec. I, coupled two-level atoms in op-
tical lattices were first studied in Ref. �12�, considering two
optical lattices driving a Raman transition in � atoms. By
tuning the relative phase between the two lattices, it was
demonstrated that the hopping coefficient in the correspond-
ing Bose-Hubbard Hamiltonian could attain negative as well
as positive values. Furthermore, due to the phase factor in

the Wannier expansion �9�, it follows that the coherence in a
superfluid state is different depending on the sign of the hop-
ping coefficient. In particular, if the phase difference between
consecutive Wannier functions in Eq. �9� is �, the superfluid
state was termed antiferromagnetic, while a zero phase dif-
ference characterizes ferromagnetic superfluid states. In Ref.
�12�, it was also predicted that ballistic expansion of an an-
tiferromagnetic or ferromagnetic superfluid state would ren-
der dissimilar time-of-flight measurements. Although, in
principle, measuring the atomic population inversion will de-
termine the character of the superfluid states, in this section
we analyze the corresponding time-of-flight scenario in our
model. In other words, we investigate if the different phase
modulation of the superfluid states is sufficient for separating
between the two possible states.

A. Effect of positive and negative hopping coefficients

In the internal ��1� , �2�� basis, the spinor Wannier function
at site j is decomposed as

w j�x� = �wj,1�x�
wj,2�x� � . �16�

Figure 5 visualizes two examples of the neighboring Wannier
functions. In �a�, the nearest-neighbor tunneling coefficient is
positive, J1�0.1, while in �b� it is negative but with the
same amplitude, J1�−0.1. The figure evidences the swap-
ping of internal state populations between positive and nega-
tive hoppings. Consequently, an internal state selective mea-
surement distinguishes between antiferromagnetic or
ferromagnetic states and between Mott + and Mott − states.
Nonetheless, in the next section, we also show how a time-
of-flight detection can tell apart the two different superfluid
states.

B. Time-of-flight detection

Our idea is to study the different interferences induced by
having 0 or � phase correlation between neighboring sites.
Thus, we have a matter wave function as

�SF�x,0� = �
j

ei�j�wj1�x�
wj2�x� � �17�

and study the impact of having

FIG. 5. Neighboring constituent Wannier functions wj,1�x� �dot-
ted� and wj,2�x� �solid�. In �a� J1�0.1 corresponding to U=1,
U1=0.5, �=−11.5, while J1�−0.1 in �b� obtained by choosing
U=1, U1=0.5, �=11.5. Note that the dashed but not the solid line
flips phase between neighboring sites. All parameters are
dimensionless.
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� j = 
0, J1 � 0

j� , J1 � 0
� �18�

when the wave function is freely evolving. The ballistically
expanded wave function reads

�SF�x,ttof� = e−ip̂2ttof�SF�x� , �19�

where ttof is the time-of-flight time between release of the
superfluid state until measurement of it. The total probability
distribution

Ptot�x,ttof� = ��SF�x,ttof��2 �20�

or its constituent probability distributions Pi�x , ttof��i=1,2�
for the atomic internal states are assumed being detected af-
ter the ballistic expansion. For ttof→�, the momentum dis-
tribution PSF�p , t=0� corresponding to �SF�x ,0� in Eq. �17�
is encoded into the distribution �SF�x , ttof=��. In Fig. 6, we
display the square root of the momentum distributions of
�SF�x ,0�. In �a� we use the parameters of Fig. 5�a� �and thus
a constant phase between the Wannier functions�, while in
�b� the parameters are as in Fig. 5�b� �� phase modulation
between the neighboring Wannier functions�. For J1�0, the
even numbers of momenta are more strongly populated; the
peaks around 
2 are more distinct in Fig. 6�a� than in Fig.
6�b�. Note that for this example, J1 has the same strength in
both cases, but the corresponding Wannier functions �see
Fig. 5� are different. Thus, it is not only the phase � j which
distinguishes the two cases.

The difference in momentum distributions will also mani-
fest itself in the position distributions Ptot�x , ttof� and
Pi�x , ttof� for finite times ttof. The results for the total prob-
ability distribution �20� and the distribution for the internal
state 1, P1�x , ttof�, are depicted in Figs. 7�a� and 7�b� respec-
tively. The time-of-flight ttof=4, guaranteeing that the inter-
ference has been well established. Noticeable from the figure
is that for positive hopping, the distribution shows a super-
structure with two local maxima for each period, not seen for
J1�0. The great difference in probability amplitude between

the internal atomic states in �b� derives from the fact that the
two internal states are unequally populated due to the differ-
ent detunings: �=11.5 and �=−11.5.

VI. CONCLUSIONS

In this work, we have presented an analysis of a gas of
coupled two-level bosonic atoms in a one-dimensional opti-
cal lattice. The spectrum of the single-particle Hamiltonian
was found to possess peculiar characteristics originating
from the coupled dynamics. In an earlier work, we demon-
strated that PTs can be obtained both for fermionic and
bosonic atoms in the current model in the absence of atom-
atom interaction �15�. Including scattering between the at-
oms, as in this paper, we identified the PT of Ref. �15� as a
sign change in the site-hopping parameter. The correspond-
ing PT was shown to be between distinguishable Mott or
superfluid states, characterized by an imbalance of the popu-
lation of internal atomic states. Moreover, a thorough analy-
sis about the effect of a positive or a negative nearest-
neighbor tunneling coefficient was given, focusing on time-
of-flight detection of the condensate. The model can be
generalized to two and three dimensions and due to the
anomalous dispersions found also in higher dimensions
�15,26�, the corresponding phase diagrams are believed to
show similar structures. However, in higher dimensions, the
strong-coupling expansion method utilized in this work is
supposed to give less reliable results and other approaches
would then be preferable.

The imposed approximations and their validity regimes
were studied. The present paper restricts the analysis to re-
gimes where these approximations are justified. However, it
is expected that new phenomena will occur beyond such
limitations not encountered in the regular Bose-Hubbard
Hamiltonian. For example, the nearest-neighbor hopping
may vanish and consequently long-range or semi-long-range
interaction might become important. We are currently inves-
tigating regimes outside single band and tight-binding ap-
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FIG. 6. The momentum distributions of the state �17� with �a�
�=−11.5 and �b� �=11.5. The other dimensionless parameters are
as in Fig. 5. The peaks at p= 
2 are more pronounced in �a� than in
�b� giving different interference patterns of the freely expanding
atomic condensates.

FIG. 7. Atomic distributions �a� Ptot�x , ttof� and �b� P1�x , ttof�
after a time-of-flight spreading ttof=4. For solid lines, �=11.5,
while for dotted lines, �=−11.5, and in both cases, U=1 and
U1=0.5. This set of parameters gives J1=0.1 and J1=−0.1, respec-
tively. The difference between solid and dotted lines derives from
the different Wannier functions of the two cases, but also from the
phase factor ei� j in the Wannier expansion �9�.
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proximations by using different methods. These results are
left for future publications. We are also studying the dynam-
ics of the condensate as the system is driven through the
critical point J1=0 �26�.
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