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Universal scaling in a strongly interacting Rydberg gas
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We study a gas of ultracold atoms resonantly driven into a strongly interacting Rydberg state. The long-
distance behavior of the spatially frozen effective pseudospin system is determined by a set of dimensionless
parameters, and we find that the experimental data exhibit algebraic scaling laws for the excitation dynamics
and the saturation of Rydberg excitation. Mean-field calculations as well as numerical simulations provide an
excellent agreement with the experimental finding and are evidence for universality in a strongly interacting

frozen Rydberg gas.
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I. INTRODUCTION

The concept of universality appears in many different
fields of physics [1], biology [2], economics [3], and various
other systems. It allows to describe the behavior of a system
without actually knowing all the microscopic details of its
state. A particular class of universal scaling behavior can be
found close to second-order phase transitions. The character-
ization of the corresponding critical points in terms of uni-
versality classes [4] has become crucial for the understanding
of classical as well as quantum phase transitions. Quantum
degenerate gases can serve as a well-controlled model sys-
tem for the exploration of universal scaling behavior and
quantum phase transitions [5] in strongly interacting cold
atomic systems. Here, we show that the experimental data
support the appearance of universal scaling in ultracold Ry-
dberg gases, which is in agreement with the recently pre-
dicted existence of a quantum critical point [6].

The key ingredients of the described experiments are the
combination of a Rydberg gas in the “frozen” regime [7]
with strong interactions among the Rydberg atoms [8] and
the ability to coherently drive the system [9] as a pseudospin.
There exists a variety of interaction mechanisms among Ry-
dberg atoms giving rise to blockade phenomena, which are
intensively studied [8,10,11] experimentally. Recently, sev-
eral groups also focused on the coherent properties of frozen
Rydberg gases in the regime of weak [12-14], as well as
strong interactions [9,15-18]. This unique combination of
strong interactions with long coherence times led to various
proposals for quantum information processing using Rydberg
atoms [19-22].

In this work, we apply the theoretical framework of a
quantum critical behavior in strongly interacting Rydberg
gases [6] to experimental data [see Fig. 1(a)], which has been
previously analyzed with respect to coherent and collective
excitation of Rydberg atoms in the strong blockade regime
[8]. The relevant parameters of the experiment are the den-
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sity of particles n, the coupling strength of the driving laser
field Q [see Fig. 1(b)], its detuning from resonance &;, and
the interaction strength among the Rydberg states determined
in our case by the van der Waals constant Cy¢. On resonance
(8,=0), these parameters can be merged into a single dimen-
sionless parameter a=#%)/Cqn’. We find that all experimen-
tal data taken from [8] collapse to a simple power law as a
function of this parameter « [see Fig. 1(c)], which is in
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FIG. 1. (Color online) Universal scaling of the Rydberg fraction
in the saturated excitation regime (a). The saturated Rydberg
excitation is obtained with a laser coupling strength of
=27 X154 kHz in dense ultracold atomic clouds with densities
n=[3.2x10°(¢),6.6 X10'%(V),2.8x10'¥(0)] m=3 [8]. (b)
Scanned parameter space for the individual excitation curves de-
picted in the n—{) plane. (c) Saturated Rydberg fraction fy as a
function of the dimensionless parameter a=#{)/Cgn® for a three-
dimensional configuration (M) and numerical simulations (@). The
experimental and numerical data are fitted (solid lines) to power
laws of the form fr~ "% from which the critical exponents
1/6=0.45%0.01 (expt.) and 1/6=0.404 (num.) are extracted.

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.80.033422

LOW et al.

agreement with the predicted universal scaling behavior. This
implies that the interpretation in terms of a continuous quan-
tum phase transition [6] is supported by experimental data
and thus provides a firmer theoretical foundation compared
to previous scaling models [8]. While the scaling models
essentially depend on two parameters (Rabi frequency and
ground-state density), there is only one single parameter in
the universal scaling function, which is the length scale di-
verging at the critical point. We also show that these scaling
models can be rigorously derived from the mean-field ap-
proach given in [6].

II. UNIVERSAL SCALING THEORY

Textbooks on statistical mechanics [1] often introduce
universal scaling as a critical phenomenon, which can be
found near the critical point of a second-order phase transi-
tion. When approaching the critical point, the system be-
comes scale invariant. This means that microscopic details of
the system become irrelevant, and the macroscopic behavior
is dominated by its long-range physics associated with a di-
verging length scale & Mathematically, a function f(s) is
called scale invariant, if f(\s)=cf(s). Using a series expan-
sion, one can see that solutions to this equation are given by
power laws of the form f(s)s”. Hence, near the critical
point all observables can be described by power laws of the
diverging scale . Since the critical properties are dominated
by long-range physics, many different systems show the
same critical behavior. This leads to the classification of criti-
cal exponents in terms of universality classes, which are de-
termined by the spatial dimension, the symmetries of the
Hamiltonian, and the long-range behavior of the interactions.

Phase transitions occur when the free energy of a system
shows nonanalytic behavior. In classical systems, this is al-
ways related to a change in temperature. However, in quan-
tum systems at 7=0, there is another possibility: the ground-
state energy can become nonanalytic in the case of an
avoided crossing with vanishing gap or an actual level cross-
ing [23]. Analogously to their classical counterparts, one can
classify quantum phase transitions into first-, second-, and
infinite-order transitions.

A. Universal scaling in a ferromagnet

The most prominent example of a second-order phase
transition is a ferromagnet close to the Curie temperature 7.
For T> T, the system is completely demagnetized and ro-
tationally invariant. Lowering the temperature below 7T, the
system enters the ferromagentic phase characterized by a fi-
nite magnetization M, which breaks the rotational symmetry.
The appearance of the magnetization can be described in
terms of an order parameter. Above 7, the magnetization M
is simply zero and exhibits a linear magnetization in the
presence of an external magnetic field H. The equation of
state close to the critical point at T, is shown in Fig. 2(a) in
terms of the reduced temperature t=1-7/T and the external
magnetic field H. Then the system is described in terms of
universal scaling laws of the form M ~t? for H=0 and
M ~ H"? for t=0, indicated by the curves @ and (), while
the diverging length satisfies §~ 1/¢".
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FIG. 2. Equation of state of a ferromagnet in comparison to a
strongly interacting Rydberg gas (a) magnetization M of a classical
ferromagnetic Ising model: the system exhibits a critical point at
t=1-T/T.=0 and H=0. The magnetization M is given by a power
laws @ M ~1# and ® M~ H"?. The exponents have been calcu-
lated with the Ising model to be 8=0.31 (measured: 0.32-0.39) and
=5 (measured: 4-5) [1]. (b) Excited-state fraction fj of a strongly
interacting Rydberg gas. The universal scaling laws are given by
power laws of the rescaled detuning A of the driving field (©
fr(@=0)~ AP and the rescaled coupling strength « as depicted by
@ fr(A=0)~ a"%. Within the mean-field theory, the plotted param-
eter f is given for a three-dimensional cloud with van der Waals
interaction by a=f1‘3|1—A/f11e/B\ with 6=5/2 and B=1/2.

B. Universal scaling in a strongly interacting Rydberg gas

Now we want to draw the analogy of the magnet close to
the Curie point to a strongly interacting Rydberg gas driven
by a laser field. The frozen atomic gas is assumed to consist
of an ensemble of spatially fixed pseudospins with two elec-
tronic states, one being the ground state and the other a
highly excited Rydberg state. The coupling () between the
two states is achieved by a monochromatic light field with a
detuning o; with respect to the energy splitting of the two
states. The Rydberg states interact strongly with a general
interaction potential C,/r”, which in the present experimen-
tal situation is dominated by the van der Waals interaction
with p=6. The corresponding N-particle Hamiltonian then
reads as

hé . KO . pWpl)
H:__LE O'EZ)‘F_E Uiz)+cp2 eel ee ’ (1)
25 27 j<i v = f”

where the 0'({’)y are Pauli matrices, r; is the position of the
atom i, and P£§=(1+o'zi))/2 is the projector on the excited
Rydberg state. It has been recently shown [6] that this Hamil-
tonian features a quantum critical point at Q=6=0 for
p>d, where d is the dimensionality of the system. In con-
trast to the above classical example, the critical point appears
even at zero temperature by varying the detuning &;. Conse-
quently, the role of the reduced temperature 7 is now taken by
the dimensionless detuning A=76; / E, with the characteristic
energy E.=C pnp/ 4 For A<O0, all atoms remain in the ground
state for 1 — 0, while for A>0 a finite number Ny of atoms
are excited into the Rydberg state. The fraction of excited
Rydberg atoms fr=Np/N then plays the analog role of the
magnetization M in the example of a ferromagnetic phase
transition discussed above. In analogy, we can draw the frac-
tion of excited Rydberg atoms f close to the critical point as
a function of the detuning A and the parameter a=h{)/E,
[see Fig. 2(b)]. Note that the continuous behavior of f5 at the
critical point is a special property of the long-distance
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behavior of the interaction potential. The coherence length &
is determined by the characteristic length scale of the corre-
lation function <(P§2— fR)(PEQ— fr)), which gives rise to a
diverging length scale close to the critical point. This quan-
tity corresponds to the blockade radius in the system, i.e., the
radius around a Rydberg atom, up to which an additional
Rydberg excitation is strongly suppressed.

It remains to identify the critical exponents 3 and 1/ for
the universal scaling of the observable parameter fz ~ A® and
fr~ a'%. For @=0, the Hamiltonian (1) is classical and by
minimizing its energy one obtains S=d/p. The correlation
length ¢ is determined by the averaged spacing between the
Rydberg atoms via é~a/ f,le/d (here, a~'={n denotes the av-
eraged interparticle distance of a d-dimensional system). To
obtain a value for 1/, it is useful to take a closer look at the
excitation dynamics of a strongly interacting Rydberg system
(a<t1) driven at resonance (A=0), which also complies with
the experimental situation [8]. When a approaches zero, the
system enters the strongly blocked regime with fr<<1.
Within the blockade radius &, only one excitation is shared
over a large number of atoms N, ~né& resulting in a collec-
tive state |1//e>=\+ﬁh2ﬁ”l|g1 182+832 1€ .. ,ng>, which
shows an accelerated temporal evolution with a collective
Rabi frequency VN, [8,16,24]. In this so-called superatom
model, the blockade radius can be evaluated by equating the
interaction energy with the collective coupling strength as
C,/ &=\N,). Note that ¢ diverges for a— 0. This procedure
determines 1/6 to be 1/6=2d/(2p+d) and the case for
d=3 and p=6 is carried out in some more detail in [25]. The
same result for 1/ is obtained using standard the mean-field
theory [6]. In addition, the mean-field solution leads to a
description of the full behavior of f; in terms of a general
scaling function

A
_ 2d/I(2p+d -
fr=a @p+ )X( a2p/(2p+d))' (2)

This is the inverse of the exact mean-field result
a=f2|1-A/f}P| shown in Fig. 2(b). As the system turns
classical in the limit a— 0, the behavior of the unknown
function x(y) in the limit y — = oo can exactly be determined
to be x(v) ~y?¥? and x(y)=1/y?, respectively. It is important
to note that the mean-field result for & is the only consistent
scaling exponent with these limits. This indicates that the
classical behavior of the system at =0 fixes the exponent &
to its mean-field value even for low dimensions. In contrast
to a classical critical point, for a quantum critical point, the
dynamical behavior is coupled to the static properties via the
dynamical critical exponent z, i.e., 7~ &, where 7 describes
the characteristic time scale close to the critical point. Here,
we find the dynamical critical exponent to be z=p, which
implies that the relaxation is domitated by the frequency
VN, ) in agreement with the above superatom picture.

III. EXPERIMENT
A. Universal scaling in an inhomogeneous sample

In the actual experiment, the atoms are well described as
a thermal gas trapped by a harmonic potential. Then, the
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three-dimensional density distribution of the N ground-state
atoms has a Gaussian shape with radii given by the standard
deviations o, , .= VkgT/ 2mwy, ., which are determind by the
trapping frequencies w, , ., the mass m, the temperature T of

the cloud, and Boltzmann’s constant kg

()= ( S Zz) ()
nr)=——=—exp|l-—S5-—"—S5-—"— |
(277)3/20',60'yoz P 207 20'5 205

Note that the temperature 7 associated with the kinetic en-
ergy of the atoms is decoupled from the dynamics of the
Rydberg excitations in the frozen Rydberg gas. Within the
local-density approximation, we can describe the properties
of the system by a local parameter a(r)=%A£/Cg¢n(r)> and
the total Rydberg fraction f is given by (d=3, p=6),

_L

Tr=7

1
f dr’fp(r)n(r) ~ ch”‘s. (4)

Here, « is the peak value in the trap center a=%)/C¢n(0)>.
Consequently, we find that the critical exponent & is not
modified by the harmonic trapping potential within the local-
density approximation and reduces to the value given in the
thermodynamic limit.

B. Experimental setup and procedure

A detailed description of the experimental setup can be
found in [8,26] and here only a rough outline of the experi-
mental procedure is given. First, we prepare a magnetically
trapped cloud of rubidium atoms spin polarized in the 5,
state. The atomic cloud has a temperature of 3.4 uK and
peak densities n, close to 10 m~3. This corresponds to
phase-space densities below quantum degeneracy to avoid a
bimodal density distribution [25] of a Bose-Einstein conden-
sate. To alter the atomic density without changing the size of
the cloud, we use a Landau-Zener sweep technique [9] to
alter the number of trapped atoms from N=1.5X10" to
N=5X%10°. In this process, the temperature remains un-
changed and, consequently, the physical dimensions of the
cloud. With the known harmonic-oscillator potential of the
Ioffe-Pritchard-type trap, all parameters of the atomic clouds
are known. The excitation to the 43S;,, Rydberg state is done
with a resonant two-photon transition via the 5P5), state. To
avoid population of the intermediate 5P, state, the light is
detuned with respect to this state by &,=27 X478 MHz to
the blue. The coupling strength () of this effective two-level
system is altered from 27X 31 kHz to 27X 154 kHz by
adjusting the laser intensity. The excitation dynamics are in-
vestigated by a variation in the excitation time from 100 ns
to 20 us, which is short compared to the excited-state life-
time of 100 us. After excitation, the Rydberg atoms are field
ionized and the emerging ions are detected with the help of a
multichannel plate. The resulting strongly blockaded
excitation dynamics is determined by the strong repulsive
interaction among Rydberg states, which is in our case
given by the isotropic van der Waals interaction with
Ce=—1.7x10" a.u. for the 43S state.
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FIG. 3. (Color online) Universal scaling behavior of the excita-
tion rate. The rescaled excitation rate gp for a three-dimensional
density distribution is shown for experimental data (M) and the
corresponding numerical simulation (®). A linear fit to a power law
gr~— a” results in a critical exponent of y=1.25%+0.03 (expt.) and
1.15 (num).

C. Experimental results

In the experiment, « is changed nonadiabatically by
switching on abruptly the coupling laser field (). Then, the
number of excited Rydberg atoms Ng(f) undergoes a dynami-
cal evolution, which saturates in Ny as shown in Fig. 1(a).
The inital increase in the number of Rydberg atoms is well
described by a rate R, and this relaxation time is experimen-
tally deduced by a fit of the time evolution of the Rydberg
excitation Ng(f) by an exponential saturation function
Ng(1)=Ng(1—e~R"Nr), which allows to extract both the initial
excitation rate R and the saturation level Ng. In the strongly
blocked regime (a<<1), the rate R is determined by the col-
lective Rabi frequency V’MQ and the saturation level N,
which is close to that of the ground state of the system.
Previously, we have examined the data and its dependence
on the ground-state density n and the Rabi frequency () us-
ing a general expression R~ n“kRQM and Ng~ n“vNQM [8].
The scaling behavior for a variation in the ground-state den-
sity n and the coupling strength () gave a strong evidence for
a coherent collective excitation dynamics in the strong
blockade regime.

In the following, we analyze these results in terms of a
universal scaling behavior at resonance (A=0) by rescaling
the measured quantities to a dimensionless rate g, and and a
dimensionless saturation level f as

AR 2(p+d)

8R=" pa @ Y= , (5)
NCn"! 2p+d
N 2p+d
fR=WR~a”‘S o=——T (6)

First, we would like to point out that the data collapse in to
algebraic relations, as shown Figs. 1(c) and 3, is in agree-
ment with the predicted scaling laws. It is worth to mention
that the numerical simulations based on only 10 pseu-
dospins scales up to the experimental situation with atom
numbers of up to 107. For a more quantitative analysis of the
experimental data, it is important to point out that the radial
Gaussian radius of the cigar shaped cloud is o, ,=8.6 um.
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TABLE 1. Comparison of the different results for the critical
exponents y and 1/6 for a three-dimensional (3D) as well a one-
dimensional (1D) density distribution. The theoretical values are
given in Egs. (5) and (6). The results of the numerical simulation
have been achieved by integrating the Hamiltonian (1) for up to 100
particles [6]. The experimental results are obtained by fitting power
laws to the data shown in Figs. 1 and 3.

y (gr~”) 176 (fr~a'’?)
Experiment (1D) 1.08 =0.01 0.16+0.01
Theory 14/13~=1.08 2/13=0.15
Numerical simulation 1.06 0.150%
Experiment (3D) 1.25+0.03 0.45+0.01
Theory 6/5=1.2 2/5=04
Numerical simulation 1.15 0.404%

Reference [6].

This width is comparable to the blockade radius between
two Rydberg atoms of roughly 5 um and places by this
the geometry in a crossover regime between one and three
dimensions. Therefore, we analyze the data whether the
experimental setup is better described in one dimension with
a line density (a=%Q/Cgn®) or in three dimensions
(a=h{Q/ Cgn?). Fitting the observed power laws of the form
In gg~yIn a+c, and In fr~1/51n a+cp, we extracted the
individual exponents. The results are summarized in Table I
and compared to the expected theoretical values as well as to
numerical simulations; the procedure for the numerical
analysis is described in detail in [6]. The relatively small
error bars of the fitted exponents 1/6 show the excellent
agreement with power laws over a large range in «. Never-
theless, the dimensionality cannot unambiguously assigned,
although there is a better agreement for the one-dimensional
case. Here the exponent is dominated by the variation in
density, which scales to the sixth power. In future experi-
ments, it might be possible to create better defined dimen-
sionality by adjusting the shape of the atomic cloud and/or
the strength of the interaction by choosing adequate Rydberg
states.

IV. DISCUSSION AND OUTLOOK

In summary, we have shown that the experimental results
presented in [8] can be described with universal scaling theo-
ries. This result confirms that the description with the effec-
tive spin Hamiltonian given in this paper is correct to a large
extent. Therefore, the observation of a quantum critical point
in this system should be within experimental reach. This
could be done by measuring the excited Rydberg fraction
when approaching the quantum critical point adiabatically
starting from a noncritical region in the a—A parameter
space. Another way would be the observation of a crystalline
correlation function of the excited Rydberg atoms by either a
spatial-dependent observation of the Rydberg atoms or in the
Fourier space by a Laue diffraction experiment with a four
wave mixing technique [27]. The measurement of the critical
exponent is not in complete accordance with a one-

033422-4



UNIVERSAL SCALING IN A STRONGLY INTERACTING...

dimensional or three-dimensional situation, which is most
likely due to finite-size effects. The general form of the scal-
ing exponents allows also to apply the simple model to di-
polar systems, which are widely realized in frozen Rydberg
gases and are also feasible in the context of ultracold dipolar
molecules [28].
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