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We examine very high energy Compton scattering on bound electrons, comparing cross sections obtained
using relativistic impulse approximation �RIA� to the extreme relativistic �ER� limit of the exact Coulomb �EC�
results for the 1s electron. For this purpose, in the case of an initial bound s state, we establish analytic
expressions, valid within RIA, for the triply differential cross section �TDCS�, corresponding to the detection
of photons and electrons in coincidence, and for the ER limit of TDCS and of photon double-differential cross
section �DDCS�. We find that the RIA-ER expression for DDCS is the product of a simple factor, depending
only on the ratio of initial and final photon frequencies, and a function of a single kinematic variable. Since the
same structure is displayed by the EC-ER cross section, we present a compact representation of the ER results,
in which the main differences between RIA-ER and EC-ER are displayed as a shift of the peak position of the
frequency distribution and an asymmetry about that position. The comparison shows to what extent RIA, which
becomes exact for vanishing nuclear charge Z, remains a good approximation for low and medium values of Z
in the peak region of high-energy Compton scattering.
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I. INTRODUCTION

In this paper, we study the relativistic high-energy regime
of Compton scattering on bound electrons, comparing results
from more approximate approaches to exact results in the
high-energy limit. An overview of the theories used in
Compton scattering from bound electrons at intermediate en-
ergies can be found in Ref. �1�. The most precise calculations
�2� of Compton scattering on atoms are based on a numerical
evaluation �3� of the second-order S matrix of quantum elec-
trodynamics describing the process. The independent-particle
approximation �IPA� is used for the electrons bound by a
fixed nucleus. Based on this, doubly differential cross sec-
tions �DDCSs� are available for several elements at incident
photon energies up to several hundred keV; the calculation
was extended �4� to the triply differential cross sections
�TDCSs�, for which predictions were given for subshells.
However, the case in which the photon energies are much
larger than the electron rest mass energy is not accessible to
these existing realistic calculations. The highest photon en-
ergy at which the S-matrix code has been used is 900 keV
�5�. With increasing energy, there are difficulties connected
with the poor convergence of the partial-wave series and
multipolar expansion used in the numerical evaluation of the
amplitude of the process. Having in mind these difficulties,
an analytic expression for the extreme relativistic �ER� limit
of the exact Coulomb �EC� matrix element of inelastic scat-
tering by K-shell electrons was derived �6� and numerical
calculations based on it were performed for both DDCS �6�
and TDCS �7�. As we shall see in Sec. II, where the ER
regime is defined in detail, this approach assumed that both

the incident and the scattered photon frequencies �1 and �2
and the ejected electron momentum are extremely large, with
a finite ratio �2 /�1, and that the momentum transfer to the
nucleus is finite. Up to now, these EC-ER results have not
been compared to any other predictions. One of the purposes
of our paper is to make such a comparison. The only some-
what reliable existing approximation at these energies ap-
pears to be the impulse approximation �IA�, in its relativistic
version �RIA�, and we will compare EC-ER to RIA-ER.

IA is the most used approximation for Compton scattering
on various targets. Introduced a long time ago, its nonrela-
tivistic version was analyzed by Eisenberger and Platzman
�8�; RIA was obtained by Ribberfors �9�. IA is argued, at
least in the nonrelativistic case, to be valid for photon mo-
mentum transfer larger �or much larger� than the average
momentum of the initially bound electron. The validity of
impulse approximation has been the subject of recent studies
�10�, but only considering energies well below the electron
rest mass energy. In view of the interest in using Compton
scattering experiments to study atomic electron charge den-
sity, the relation of relativistic DDCS to the relativistic
Compton profile �CP� was carefully investigated by Ribber-
fors �9�, going beyond the first study of Eisenberg and Reed
�11� who focused on the particular case of the 180° photon
scattering angle and made further approximations.

The quantitative study we present later in our paper refers
to the simple case of scattering from the 1s electron bound in
a hydrogenlike atom. In order to confront predictions coming
from EC-ER and RIA, we have found it is necessary to de-
rive an ER limit of RIA. Because the further energy depen-
dence of DDCS in RIA for �1 ,�2�1 �photon energies much
larger than the electron rest mass energy�, beyond the 1 /�1
decrease predicted by ER, persists for photon energies of
tens of MeV, we will only compare the ER case, for which*flor@barutu.fizica.unibuc.ro
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EC-ER results are available. One of our main findings is a
useful way to compare the two sets of predictions, RIA-ER
and EC-ER, by using appropriate variables that make clear
the similarities and differences.

In discussing the behavior of the cross sections in the
high-energy regime, we find it helpful to start from the be-
havior of Compton scattering on free electrons. For free elec-
trons, both TDCS, describing the photon distribution in fre-
quencies and angles in coincidence with the final electron
direction, as well as DDCS for the scattered photon, obtained
by integrating over final electron directions, are characterized
by � functions �two � functions for TDCS and one � function
for DDCS�. Only the singly differential cross section �the
Klein-Nishina formula�, obtained by integrating over either
the direction or the frequency of the scattered photon, is
finite. The presence of a potential in which the electrons
move makes all the cross sections finite, peaked instead of �
function in character, affecting the position of their maxima
and determining their widths. In the case of the point Cou-
lomb potential of a fixed nucleus with charge Z, the transi-
tion from the initial free electron �Z=0� to the initial bound-
electron cases can be followed in the Z dependence of the
cross sections. However, in contrast with the nonrelativistic
�NR� case, in the relativistic case an exact closed-form ex-
pression for the Coulomb Compton scattering amplitude is
not available.

In IA, a bound electron is treated as a distribution of free
electrons having the momentum distribution of the electron
in the bound state. In the Coulomb case, this introduces the Z
dependence of the cross sections. Being based on the free-
electron Compton cross section, IA is unable to describe �i�
the soft-photon limit ��2→0� behavior of the true cross sec-
tions, which display an infrared divergence, and �ii� the ex-
istence of resonances, which are present for any atomic
states, except the ground state. Since it ignores the Coulomb
effects in the propagator and in the final electron state, RIA
accuracy may be expected to diminish with increasing �Z ��
the fine-structure constant�, but unlike in the nonrelativistic
case, the error will still be present in the ER limit, of some
significance for high Z. We may expect this effect to be less
important than in the case of photoeffect, a process which
requires the initial electron to be bound, as a free electron
cannot absorb a photon, while Compton scattering occurs for
the free-electron case, and the effects of binding diminish at
high energies.

The paper is organized as follows. In Sec. II, we give our
notations and define the relevant cross sections. In particular,
we relate the usual TDCS to a cross section describing the
distribution of the magnitude of the total momentum transfer,
its azimuthal angle, and the scattered photon frequency and
direction. At the end of the section, we give the conditions
that define the ER regime.

Section III is devoted to a brief review of the free-electron
case. The most differential cross section for an initial elec-
tron in motion is needed for RIA, while other cross sections,
for an initial electron at rest, are useful for a qualitative
understanding of the high-energy behavior of the cross
sections.

In Sec. IV, we present the basic equations of RIA, particu-
larly the expression of TDCS, not obtained in �9�. Revisiting

RIA also gives us the opportunity to establish two new for-
mulas, one for TDCS and the other for DDCS, describing the
extreme relativistic limit of these RIA cross sections, denoted
as RIA-ER. The decrease as 1 /�1 of DDCS, known from the
ER-EC case, appears explicitly. Apart from it, only the fre-
quency ratio appears, in a simple factor F, given by Eq. �72�,
multiplying a function of a specific variable �̃min

ER �see Eq.
�63��. At the end of the section, we refer to the particular case
of scattering from a Coulomb K-shell electron. When, in Sec.
V, we briefly describe the EC-ER results for this case, we
notice a similar structure with that in RIA-ER, with the same
factor F, now multiplied by a function of a variable specific
to the EC-ER results. For our subsequent discussion, we re-
produce from �6� simple analytic results for TDCS and
DDCS, valid for ��Z�2�1. In Sec. VI, we relate the vari-
ables that are specific to DDCS in the two approaches and

we decide that a convenient variable is �̃min
ER . For small �Z,

we compare the specific analytic results which can be ob-
tained in the two approaches.

Section VII exploits the features of the analytic results

found in this work. The use of the variable �̃min
ER in Figs. 1–3

makes transparent the comparison of RIA-ER and EC-ER

results for DDCS. In the peak region, for which �̃min
ER /�Z

�1 �momentum transferred to the nucleus close to the aver-
age momentum of the K-shell electron�, the comparison il-
lustrates both the validity of the ER limit of RIA in the small
�Z regime �relative errors less than 4% for Z�29 for
DDCS� and the Z-dependent effects at high Z �10% for Z
=82�. Figure 4 is devoted to a comparison of DDCS pre-
dicted by RIA-ER to the Compton profile approximation. In
Fig. 5, TDCS are compared in the ER regime. A way to
combine RIA and EC-ER results, which could be useful in
the high-energy regime, is suggested. The Appendix gives
some details of nonrelativistic impulse approximation
�NRIA�, including TDCS, and some equations needed for the
ER limit of RIA.

II. GENERAL NOTATIONS AND PARAMETERS: TRIPLY
AND DOUBLY DIFFERENTIAL CROSS SECTIONS

In the following, we use units with c=me=	=4
�0=1.
We consider the scattering of photons of definite momentum
�1 on a bound electron of total energy E0. In the units we
use, the magnitude of �1 coincides with the photon energy or
with its frequency, already denoted by �1. The incident pho-
ton energy �1 will be taken, such as the atomic number Z, as
a parameter specifying the initial conditions.

The scattered photon has a momentum �2 �magnitude �2�
and the ejected electron a momentum p. The scattering angle
of the photon is denoted by �. The final electron energy and
momentum are connected by E=�1+p2.

In this paper, we treat only the situation in which the
polarization properties of the initial and final particles �elec-
trons and photons� are not observed. In this situation, the
most differential cross section d4
, specifying the observed
�2 and p for specified �1, and initial energy E0 of the bound
electron being ejected, contains a � function expressing en-
ergy conservation
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d4
 = 
3���2 + E − �1 − E0�d�2d�2dEd�e. �1�

If the scattering takes place on an atomic bound s state,
the function 
3 depends only on the scalars �2 ·�1, p ·�1, and
p ·�2 built from the three vectors �1 ,�2, and p �pseudosca-
lars do not appear due to the invariance under parity of the
electron-photon interaction�. In a system of reference with
the 0z axis along the initial photon direction, i.e., along �1,
and otherwise arbitrary, the scattered photon direction is
characterized by the polar angles �, defined before, and by an
azimuthal angle �� and the electron direction by the polar
angles denoted by �e and �e. The angular variables associ-
ated with the three scalars are � ,�e, and �e−��,

�2 · �1 = �2�1 cos �, p · �1 = p�1 cos �e, �2�

p · �2 = p�2�cos � cos �e + sin � sin �e cos��e − ���� .

�3�

The dependence of the cross section on only the three angles
mentioned above is due to the isotropy of the space ex-
pressed here in an independence of the results on the position
of the plane containing the incident and the scattered photon
momenta.

The momentum transfer of the photon in scattering is

K = �1 − �2. �4�

A basic quantity is the total momentum transfer to the
nucleus

� = �1 − �2 − p = K − p . �5�

These two vectors K and � will be used further.
Integration over the final electron energy, determined by

the � function, leads to a distribution in the electron direction
and the photon frequency and direction, expressed as the
TDCS cross section


3 �
d3


d�2d�2d�e
, �6�

where 
3 depends on four variables: the three angles � ,�e,
and �e−�� mentioned before and the scattered photon fre-
quency.

If only the scattered photon frequency and direction are
observed, one is interested in the DDCS cross section


2 �
d2


d�2d�2
= �

�e,�e


3d�e. �7�

The integration over �e and �e is in fact an integration over
�e and �e−�� and it leads to a cross section 
2 depending
only on two variables, the scattered photon frequency and
the scattering angle �, in agreement with the symmetry no-
ticed before.

In the case of an initially bound electron, where there is
no � function in DDCS, �2 and � are two independent vari-
ables. We shall use in the following two alternative indepen-
dent variables directly related to �2 and �:

� �
�2

�1
, � � �1�1 − cos �� , �8�

in terms of which DDCS may also be written. In these two
sets of variables, the square of the photon momentum trans-
fer is expressed as

K2 = �1
2 + �2

2 − 2�1�2 cos � = �1
2�1 − ��2 + 2�1�� . �9�

Besides the variables � and � �or �2 and �� defined above,
the TDCS depends also on the angles of the electron direc-
tion, specified above in a system of reference 0xyz with the
0z axis along the fixed incident photon momentum. With
respect to an alternative reference system 0XYZ with the 0Z
axis along the photon momentum transfer K, the vector p
will have polar angles denoted by �� ,��. We do not need to
specify the choice of the other axes in either case. This sec-
ond pair of angles is more convenient for expressing the
analytic results obtained in our work. The dependence of
cos � on the angles defined previously is

K cos � = �1 cos �e

− �2�cos �e cos � + sin �e sin � cos��e − ���� .

�10�

The angle � between the ejected electron momentum p and
the photon momentum transfer K will play an important role
in the following.

In the ER calculation in �6�, the scattering was character-
ized by �1 ,�2 and � instead of �1 ,�2 and p. Having in mind
the comparison, we shall make between RIA-ER and EC-ER
results, we find it convenient to replace the angular variable
� of the electron by the magnitude � of the total momentum
transfer, as done in �6�. As

�2 = p2 + K2 − 2pK cos � �11�

and the magnitude of p is given by energy conservation �as
implied by Eq. �1��, the relation between � and � is simple
and direct.

Using � instead of �, we define the multiply differential
cross section

�3 �
d3
ER

d�2d�2d�d�
, �12�

which represents the distribution over the scattered photon
frequency and scattering angle and over the values taken by
the magnitude � and the azimuthal angle � of the total mo-
mentum transfer in the system of reference 0XYZ. In fact, as
according to Eq. �5�, K=p+�, the three vectors are copla-
nar, and as K is taken as the 0Z axis, the two azimuthal
angles � of � and � of p differ by 
 and then d�=d�. The
connection of �3 with the usual triply differential cross sec-
tion 
3 in Eq. �6� is obtained from Eq. �11�, which gives

�d� = pK sin �d� . �13�

In this way, we have d�d�= pK
� d�e and


3 =
pK

�
�3. �14�
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Now we describe the ER regime. This regime involves a
limiting situation in which the photons and the ejected elec-
trons have very large energies, but the ratio �2 /�1=� is
finite. Related situations are met in the high-energy limit of
K-shell photoeffect �12� and of Rayleigh scattering �13�, as
in all cases the incident photon frequency �1 is supposed to
be very large. For Rayleigh and Compton scatterings, a scat-
tered photon of frequency �2 is present �in the Rayleigh case
�2=�1� and this frequency is also very large.

Precisely, the ER regime is defined by the conditions

�1 → �, �� � � � 1 − �, � = finite, �15�

where � is the total momentum transfer defined in Eq. �5�
and � is defined in Eq. �8�; �� and � are positive, sufficiently
small fixed quantities, independent of �1. The second condi-
tion implies both �2→� and p→�. Then, as we shall argue
in the following, the third condition implies finite values for
� and �1 sin � /2, i.e., a behavior such as 1 /��1 for the angle
� and as 1 /�1 for the polar angle of the final electron.

Now we give some explanations of the conditions we
have listed and the justification of their implications. In �6�,
where the case of a initial K-shell electron of a hydrogenlike
atom was considered, it was noted that the amplitude of
Compton scattering goes to zero much faster for very large
values of � than for finite or zero values due to a rapidly
oscillating factor in the integral which determines this ampli-
tude. This is why only this latter domain for � is investigated
in the ER limit. This argument is more general, valid for
other bound states and for other than Coulomb potentials.
For the ratio �, one distinguishes three regions. Two of them,
the soft-photon end �� near 0� and the tip of the spectrum ��
close to 1�, require a separate treatment and we will not treat
them in our discussion. By excluding the region near 0 for �,
we have �2→�, and by excluding the tip of the spectrum,
we deal with very large values of the electron momentum
p��1�1−��→�. The third region, including the position of
the Compton line for scattering from free electrons and the
region of the Compton peak in scattering from bound elec-
trons, as characterized by Eq. �14� of �6�, corresponds to the
second condition in Eq. �15�.

In order to see the implications of Eq. �15�, one has to
analyze the total momentum transfer � of Eq. �11� for �1
→�. We use energy conservation, as implied by Eq. �1� and
the expression �9� for K. As ��1, from energy conservation,
one has

p = �1�1 − �� + E0 + O	 1

�1

 . �16�

This explains how p goes to � as �1.
If now we write for the total momentum transfer magni-

tude

�2 = �p − K�2 + 2pK�1 − cos ��2, �17�

for � to be finite, then both terms have to be finite. From the
first term, we deduce that K has to go to � the same way as
p does, which is possible, as Eq. �9� and �16� show, only if
the photon scattering angle � goes to 0 as 1 /��1, leading to

� = finite. �18�

This is the content of Eq. �24� of �6�, but now we have
obtained it for a more general potential. Using it and the
expression �9� of K2, we get as �1→�,

K = �1�1 − �� +
��

1 − �
+ O	 1

�1

 . �19�

Now, knowing the behavior of p and K, the requirement for
a finite � leads to the conclusion that a new quantity has to
be finite, namely,

� � �1 sin
�

2
= finite. �20�

This shows that a finite momentum transfer implies that the
scattering angle � of the electron momentum goes to 0 as
1 /�1, which is faster than the decrease as 1 /��1 of � re-
quired by Eq. �18�. The dominant cross sections are obtained
at these angles.

Finally, using all the previous information, we get, for
�1→�,

�2 → q2 + 4�2�1 − ��2 � ��ER�2, q �
��

1 − �
− E0.

�21�

One sees that the values taken by �ER are restricted by

�ER � �q� , �22�

a condition that reduces to Eq. �29� of �6� for the K shell in
the Coulomb case. Thus the modulus of q has the meaning of
the minimum value for the magnitude of the total momentum
transfer allowed in the ER regime. This variable �ER will be
used in presenting results for the triply differential cross sec-
tion �3 defined in Eq. �12�.

III. SCATTERING ON FREE ELECTRONS

The equations corresponding to scattering from an initial
free electron in motion are directly used in RIA for deriving
the expression of TDCS, which was not written explicitly
before, although predictions for it appear in �4�. The case of
the initial free electron at rest helps to understand the behav-
ior in the ER limit of the bound case results, as has been
calculated in the Coulomb potential �6�.

In Compton scattering from a free electron of momentum
p0, not necessarily at rest, both energy and momentum are
conserved

�1 + E�p0� = �2 + E�p�, �1 + p0 = �2 + p , �23�

employing a notation we shall use systematically hereafter,
for any momentum,

E�p� � �1 + p2. �24�

The most differential cross section d4
KN for Compton
scattering from a moving free electron, summed over the fi-
nal electron spin and scattered photon polarization and aver-
aged over the corresponding observables of the initial elec-
tron and photon, is
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d4
KN = r0
2 X�R1,R2�
2R1E�p��2

��p + �2 − �1 − p0�

���E�p� + �2 − E�p0� − �1�d�2dp . �25�

This expression can be extracted from Jauch and Rohrlich
�14�, Eqs. �11.9� and �11.14�; we use slightly different nota-
tions, namely,

Rj = E�p0�� j − p0 · � j, j = 1,2, �26�

X�R1,R2� �
R1

R2
+

R2

R1
+ 2	 1

R1
−

1

R2

 + 	 1

R1
−

1

R2

2

.

�27�

The Rj satisfy the simple relation R2=R1−�1�2 �1−cos ��.
In Sec. IV, the expression �25� will be used to obtain TDCS
and DDCS in RIA.

Momentum conservation makes the vector � as defined in
Eq. �5� equal, up to a sign, to the initial electron momentum
p0. The two � functions �the first three-dimensional� in Eq.
�25� determine four of the six quantities characterizing the
cross sections. For instance, if one fixes the direction of the
scattered photon, all the other variables are determined.

In the following equations of this section, we shall assume
that the initial electron is at rest, p0=0. This introduces a
symmetry to the problem, making the cross section indepen-
dent on the position of the plane containing the photon mo-
menta; this plane contains also the final electron momentum
and this explains why the azimuthal angles of the final par-
ticles, which differ by 
, do not appear in the factor that
multiplies the � functions in Eq. �25�. So the only variable of
the cross sections is the photon scattering angle �, the other
quantities being determined by the conservation laws ex-
pressed by the � functions, as follows. The scattered photon
frequency given by the well-known Compton formula,

�2 =
�1

1 + �1�1 − cos ��
� �Co, �28�

reads simply in the variables �8�,

� =
1

1 + �
. �29�

The final electron momentum has magnitude

pfree = ���1 − �2���1 − �2 + 2�

= �1�1 − ���1 +
2

�1 − ���1
= �1

�

1 + �
�1 +

2�1 + ��
��1

�30�

and its angle �e
free with the incident photon follows from

cos �e
free =

1 − �

pfree �1 + �1� =
��1 + �1�

pfree�1 + ��
. �31�

Of course, as �1 is the sum of p and �2, in any frame of
reference with the 0z axis along �1, the azimuthal angles of
p and of �2 differ by 
. For our further use, we have ex-
pressed pfree and cos �e

free in terms of either � or alternatively

�, together with �1. Finally, the expression �27� for the func-
tion X reduces to

X0 = � +
1

�
+

2

�1
	1 −

1

�

 +

1

�1
2	1 −

1

�

2

=
1

1 + �
+ 1 + � − 2

�

�1
+

�2

�1
2 . �32�

In order to obtain TDCS, the integral over the final elec-
tron energy is performed using the second � function in Eq.
�25�. The first � function in Eq. �25� remains, but with the
magnitude of the vector p now determined by energy con-
servation, as given in Eq. �30�.

Integration over the electron direction leads to the DDCS.
This cross section can be obtained more easily directly from
Eq. �25�, integrating over the final electron momentum. The
result

d2
KN = r0
2X0

2

���2 − �Co�
�1 + �1�1 − cos ���2d�2d�2, �33�

in which �Co is the Compton frequency in Eq. �28�, still
contains a � function. Finally, integration over the final pho-
ton frequency leads to the Klein-Nishina formula, giving the
distribution in photon directions. If we integrate over the
azimuthal angle �� of the scattered photon, on which the
cross section does not depend, we get

d
KN

d�2
= 
r0

2 X0

�1 + �1�1 − cos ���2sin �d� = 
r0
2 X0

�1�1 + ��2d� ,

�34�

where the final form Eq. �32� for X0 is used, in which, ac-
cording to Eq. �8�, � is a function of �1 and �. As is well
known, this can be alternatively written as a distribution in
the final frequency, using Eq. �29�,

d
 =

r0

2

�1
2 X0d�2. �35�

For further reference, we give the ER behavior of the final
electron-momentum magnitude and scattering angle and for
the quantity X0,

pfree = �1�1 − �� + 1 + O�1/�1� ,

cos �e
free = 1 −

�

�1
+ O�1/�1

2�, X0
ER = � +

1

�
. �36�

IV. TDCS AND DDCS IN IMPULSE APPROXIMATION

In this section, we describe RIA in some detail, obtaining
DDCS via TDCS. This is an alternative procedure to that of
Ribberfors �9�, who studied DDCS only and did the integra-
tion over the final electron momentum before that over the
initial electron momentum; as a consequence, TDCS was not
obtained in his calculation. Apart from the meaning of the
variables involved, the main steps implied by the calcula-
tions are similar as the interchanges p↔−p0 and E↔−E0
reduce one case to the other one.
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The starting point for the IA is the most differential rela-
tivistic cross section discussed in the previous section, given
by Eq. �25�. It corresponds to colliding beams, so it was
obtained by dividing the transition rate by the relative flux
I of incident photon and electron, I=R1 / �V�1E�p0�� �see
Eq. �8-47� of �14�, with V, the space volume, going to �, but
not present in the final equations�. For the impulse approxi-
mation, where one deals with a distribution of initial mo-
menta, this cross section is not useful �9,11�: as in the bound-
state case, we need the ratio of the transition rate divided by
the incident photon flux 1 /V only. This is the same as the
flux I taken for the electron at rest �15�. This leads to a cross
section d4
̂ that we mark by a d
̂ in order to distinguish it
from the cross section d4
KN in Eq. �25� or the RIA cross
section d4
RIA which we will next obtain by averaging over
the initial electron-momentum distribution

d4
̂ = r0
2 me

2

2E�p0�E�p��1�2
X�R1,R2�

���p + �2 − �1 − p0���E�p� + �2 − E�p0� − �1�d�2dp .

�37�

According to the main idea of IA, Compton scattering on
a bound electron is viewed as inelastic photon scattering on
an ensemble of free electrons having the momentum distri-
bution of the bound electron. The relevant relativistic mo-
mentum distribution is

��p0� = �†�p0���p0� , �38�

where the bispinor � is the Fourier transform of the bound-
state bispinor. Then, the relativistic Compton scattering cross
section from a bound electron in this model is

d4
RIA = �
p0

d4
̂��p0�dp0, �39�

with the differential cross section d4
̂ given by Eq. �37�.
The momentum � function in Eq. �37� allows the integral

over p0 to be performed directly, leading to

d4
RIA = r0
2� me

2

2E���E�p��1�2
X�R1,R2��

p0=p−K

���E�p� + �2 − E��p − K�� − �1���p − K�d�2dp .

�40�

Note that the energy conservation � function here differs
from that of the physical case, Eq. �1�, as E��p−K���E0. It
follows, as we shall see in detail in the following, that the
value attributed to the magnitude of the ejected momentum
by the � function is different from the magnitude of the
physical momentum and the same will be true for the mag-
nitude and direction of the total momentum transfer � to the
nucleus. Consequently, we shall use the notation p̃ for the
magnitude of the electron momentum in RIA, p̃ for the cor-

responding vector, and �̃ for the associated momentum
transfer

�̃ � �1 − �2 − p̃ . �41�

The cross section �40� and those following from it by inte-
grating over quantities not observed have to be compared to
the predictions coming from other approaches.

A. TDCS in RIA

In order to get the triply differential cross section with
respect to the final photon energy and direction and final
electron direction, we have to integrate over the magnitude
of the final electron momentum. The � function in Eq. �40�
implies the equation

E�p̃� + �2 − �1 = E��̃� . �42�

This equation can be written in different forms. From its
square, we get the implicit form

p̃K cos � = E�p̃���1 − �2� + �1�2�1 − cos �� . �43�

This shows that cos ��0, i.e., the scattering angle of the
ejected electron in IA cannot be larger than 
 /2 since the
right-hand side is nonnegative, but we shall see in what fol-
lows that the restriction imposed on � is stronger. Of course,
exact results do not have this restriction.

Our condition �43� resembles Eq. �16� of Ribberfors �9�.
The difference in sign comes from the fact that the same
letters E and � have different meanings in the relations we
compare. As already mentioned, Ribberfors integrated first
over the final electron momentum at fixed momentum of the
incident electron. So, in Ribberfors case, E and � refer to the
initial electron; in our case, they refer to the final electron.
Given the role played by the two electron momenta in the
energy and momentum conservation relations, it follows that
the change from �E ,�� to �−E ,
−�� will transform Ribber-
fors equation �16� in our Eq. �43�, which is the case. Also,
given the different meaning, Ribberfors equation allows his
angle � to have any value.

From the condition �42�, one derives a second-order equa-
tion for p̃,

�K2 sin2 � − 2�1���p̃2 − 2�1��Kp̃ cos �

+ �1
2��2�2 − �1 − ��2� = 0, �44�

or, alternatively, a second-order equation for the associated

energy Ẽ�E�p̃�,

�K2 sin2 � − 2�1���Ẽ2 + 2���1 − ���1
2Ẽ

+ ��2�2�1
2 + K2 cos2 �� = 0. �45�

Both equations are useful in finding the good solution of Eq.
�42�. Equation �45� has one positive solution only if

� � �max, cos �max = �1 − ��
�1

K
� 1. �46�

The corresponding solution for p̃ is
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p̃ =
���1

2�1�� − K2 sin2 �

K cos � + �1�1 − ��

�	1 +
2

�1��
−

K2 sin2 �

�1
2�2�2 
1/2� . �47�

The condition �46� shows that the angular range for the angle
� allowed by RIA is narrower than in the NR case, where �
is allowed to reach values up to 
 /2.

The derivative of p̃ with respect to � is positive; p̃ starts
from a value denoted by p̃min taken for �=0 and increases up
to �, when the angle � reaches the value �max defined in Eq.
�46�. The solution p̃ of Eq. �43�, given by Eq. �47�, repre-
sents a fictitious value attributed to the magnitude of the final
electron momentum in the formalism of RIA. Note that the
value of p̃ depends on both of the angles � and �, which is
not the case for the true outgoing momentum resulting from
energy conservation �see Eq. �1��, depending only on the
energies of the other particles. The corresponding result for p̃
in NRIA �nonrelativistic IA� is Eq. �A3�.

The needed integration on the final electron energy E�p�
to obtain 
3

RIA from d4
RIA in Eq. �40� takes into account that
� depends on p using the identity

�„E�p� + �2 − E��� − �1…

=
E��̃�E�p̃�

���1 − �2�p̃ − E�p̃�K cos ��
��p − p̃� . �48�

The result is


3
RIA � d3
RIA/d�2d�2d�e

= r0
2me

2

2
�

p̃2X�R̃1,R̃2�
���1 − �2�p̃ − E�p̃�K cos ��

��− �̃� . �49�

The expressions of R̃1 and R̃2 are obtained from those of R1

and R2 in Eq. �26� with p0=−�̃, which leads to

R̃1 = �1E��̃� + �̃ · �1, R̃2 = R̃1 − �1�� . �50�

Remember that p̃ depends on the angle �, being the solution
of Eq. �43�, explicitly written in Eq. �47�.

Equation �49� is our result for TDCS in RIA. It is valid for
any electron state if IPA is adopted. The atomic state on
which the scattering takes place enters in the specification of
the momentum density distribution � of its charge density. In
the case of a bound s state, the TDCS depends on the elec-

tron direction through �̃ and the scalar product �̃ ·�1. In a
fixed system of reference 0xyz with the 0z axis along the
incident photon direction, TDCS depends on the polar angle
� of the scattered photon, the polar angle �e of the electron,
and on the difference between their azimuthal angles �e and
��. The last variable is due to cos � with the expression �10�.

B. DDCS in RIA

We describe briefly how the DDCS of Ribberfors emerges
from the expression given above for TDCS. For this purpose,
we calculate


2
RIA �

d2
RIA

d�2d�2
= �

p̃/p̃

3

RIAd�e, �51�

i.e., we integrate over the final electron directions. The inte-
gration over the final electron azimuthal angle is always pos-
sible for a charge density with spherical symmetry and can
be done easily. This calculation is elementary and formally
identical to that Ribberfors performed for the integration on
the azimuthal angle of the initial electron after the integration
over the final electron momentum had been done. We de-
scribe briefly how the calculation proceeds in our case. In
order to do the angular integration, one starts with a refer-
ence system 0xyz denoted as S1, with the 0z axis along the
incident photon momentum and the 0xz plane containing the
scattered photon. Automatically this plane contains also the
vector K. Then one uses a second system of reference 0XYZ,
denoted by S2, with the 0Z axis along K and with the same
0Y axis as S1. These two systems are simply connected by a
rotation around the common 0y axis �17�. In the system of
reference S2, the final electron momentum has � as the polar
angle and an azimuthal angle denoted by �. Integration over
�e and �e can be transformed in to an integration over � and
�. This last angle will now appear in the scalar product

�̃ ·�1 in Eq. �50�. Then we make a change of variable, from

the angle � to �̃, using the definition �41�,

�̃ = �K − p̃� = �p̃2 + K2 − 2p̃K cos � , �52�

in which p̃ satisfies Eq. �43�. One sees that �̃ depends on �
directly and also indirectly via p̃. Taking this into account,

one shows that the minimum value taken by �̃ coincides
with the quantity p appearing in Ribberfors’ exact equation
�16�, which is an implicit expression for p. After this, the
final analytic result for DDCS becomes identical to Ribber-
fors Eq. �39�. We partially reproduce it here using neverthe-
less our notation for the integration variable and its limit


2
RIA = r0

2

�

K
�

�̃min

� �̃

E��̃�
���̃�X̄int��1,�,�;�̃�d�̃ . �53�

The function X̄int, in which we have specified all the vari-
ables, is that in Eq. �37� of Ribberfors, if the following cor-
respondences between Ribberfors’ notation and ours are ob-
served,

� → �1, �� → �2, p → �̃, � → 
 − � . �54�

We reproduce the expression of X̄int in the Appendix �Eqs.
�A10�–�A13��.

The integration limit �̃min, introduced in Eq. �53�, is taken

for �=0, so it is �̃min= �p̃min−K�, with p̃min= p̃��=0� obtained
from Eq. �47�,

�̃min =
1

2
�K − �1�1 − ��	1 +

2

�1��

1/2� . �55�

We note that the value of E��̃min�=�1+ �̃min
2 that follows is

in agreement with the expression given in Eq. �4� of �10�.
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In the nonrelativistic regime, �1�1, the limit �̃min ap-
proaches the expression of pz, with pz defined in Eq. �A7� of
the Appendix, if ��2−�1��2�1�2�1−cos ��; in particular,
this happens near the Compton line �28�. The relation be-
tween the relativistic integration limit used in evaluating
DDCS based on Eq. �53� and the nonrelativistic integration
limit and the dependence on Z due to the relativistic limit on
the numerical results were recently investigated by LaJohn
�18�.

�̃min satisfies the equation

K�̃min = �1��1 − ��E��̃min� − ��� , �56�

identical with Ribberfors’ equation �16�. We remark that, as a
first approximation, Ribberfors used for the solution of this
equation the explicit expression given by his Eq. �40�, which
he called pmin,

pmin =
�1

K
�1 − � − ��� . �57�

This expression follows from the exact equation �56� with

E��̃min� replaced by 1. Although the difference between the

exact �̃min in Eq. �55� and the approximate value pmin is not
important at photon energies around the electron rest energy,

the ER limits of pmin and of �̃min do differ as shown later. We
will always work with the exact solution �55� of Eq. �56�.

In contrast to the NRIA case, where the cross section is
directly connected to the Compton profile, as shown in Eq.
�A5�, in RIA only an approximate result of that form is valid,
given in Eq. �47� of �9� for a spherical symmetric potential


2
RIA � r0

2 �

2K

X̄int��1,�,�;�̃min�

E��̃min�
J��̃min� . �58�

The Compton profile is

J��̃min� = 2
�
�̃min

�

p��p�dp �59�

and the approximation �58� was obtained in Ribberfors �9�
by an integration by parts in Eq. �53�, dropping terms argued
to be small. The validity of the approximation was confirmed
by numerical calculations in the case of low Z atoms, but the
assertions that the approximation is always good for back-
ward scattering fail for high Z �18�, where there are signifi-
cant corrections to all angles. In writing Eq. �58�, we use

�̃min, not pmin of Ribberfors, as we have discussed.

C. ER limit of RIA

Now we obtain the RIA expressions for TDCS and DDCS
in the ER limit, as defined at the end of Sec. II. As mentioned
in Sec. I, we shall use the superscript RIA-ER in referring to
the ER limit of the RIA cross sections.

For TDCS, we need to consider Eq. �49�. First of all, we

have to determine the ER expression �̃ER for the magnitude

of the momentum transfer �̃, the variable of the cross section
�3 in Eq. �12�. We start from the definition �41�, giving for

the magnitude �̃2,

�̃2 = �p̃ − K�2 + 4p̃K sin2�

2
. �60�

In order to see what happens to �̃ in the ER limit, we need
the behavior of the momentum p̃ and K in the ER limit. For
K, the behavior is given by Eq. �19�, where the second term
is finite. The behavior of p̃ follows from Eq. �47� using the
condition �20� according to which �→0 as 1 /�1. As it fol-
lows that the dominant term for p̃ is the same as for K in Eq.
�19�, we have to include also, for both p̃ and K, the terms
that are finite in the ER limit. A straightforward calculation
leads to

p̃ = ��1 − �2� +
1

2
	s +

1

s

 +

1

2s
���ER�2 − q2� + O	 1

�1

 ,

s �
��

1 − �
, q = s − E0. �61�

We have eliminated � from p̃ using the ER expression �21�
of the physical momentum �ER and, as a consequence, �ER

and q appear in the result. We notice that the dominant term,
�1−�2, is the same as that of the physical momentum in Eq.
�16�, whose value follows from the true energy conservation.
Finally, we reach the connection between the ER limit of the
fictitious value of the momentum transfer in Eq. �60�, de-

noted by �̃ER, and the ER limit of the true total momentum
transfer magnitude �ER in Eq. �21�,

��̃ER�2 =
1

4s2 ����ER�2 − q2�2

+ 2���ER�2 − q2��1 + s2� + �s2 − 1�2� , �62�

a connection needed in order to compare results coming from
RIA-ER to exact ER results.

Since, according to Eq. �22�, �ER� �q� and as s in Eq. �61�
is independent of �ER, it follows that the minimum value of
the fictitious total momentum transfer in the ER limit is
reached for �ER= �q� and its expression is

��̃min
ER �2 =

�s2 − 1�2

4s2

or, explicitly,

�̃min
ER = � s2 − 1

2s
� =

��2�2 − �1 − ��2�
2���1 − ��

. �63�

The same result is obtained directly from expression �55�,
taking the ER limit, as it should be. We may also write the
associated energy

E��̃min
ER � = �1 + ��̃min

ER �2 =
�2�2 + �1 − ��2

2�1 − ����
=

s2 + 1

2s
.

�64�

A straightforward calculation, using Eq. �43�, shows that
the dominant term of the denominator in Eq. �49� behaves as
�1��. This leads to the simple expression
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3
RIA-ER = �1

r0
2

2

�1 − ��2

�
X0

ER���̃ER� , �65�

in which X0
ER, obtained by taking the ER limit of R̃1 and R̃2

in Eq. �50�,

R̃1
ER = �1

��

1 − �
, R̃2

ER = �R̃1
ER, �66�

has the expression �36�. Finally,


3
RIA-ER = �1

r0
2

2
�1 − ��21 + �2

��
���̃ER� . �67�

We shall be more interested in the cross section �12�, for
which

�3
RIA-ER =

1

�1

r0
2

2

1 + �2

��
�ER���̃ER� . �68�

We note that in this expression, the first factor is dependent
only on the variables � and �, the second factor is �ER, the
true physical total momentum transfer, and that the third fac-

tor depends only on �̃ER, the argument of the momentum
distribution, defined in Eq. �62� and depending on �ER. The
structure of TDCS will have implications for DDCS, as
shown next.

One notices also the different behavior for extremely large
�1 of the cross section 
3

RIA-ER in Eq. �67�, which increases
linearly with �1, and of �3

RIA-ER, which decreases as 1 /�1.
This is connected with the decrease, with increasing �1, of
the solid angle in which the electron momentum can be emit-
ted �see Eq. �13��.

Now we consider the ER limit of DDCS. We can proceed
in two ways: �i� take the ER limit of the result �53� or �ii�
continue with the integration of the ER limit of TDCS. We
describe the first approach and then mention how the second
approach leads to the same result.

In Eq. �53�, the dependence on �1 is contained in the
photon transfer momentum K in front of the integral, in the

integration limit �̃min, and in the function X̄int under the in-
tegral. According to Eq. �19�, the photon momentum transfer
K goes to infinity as �1�1−��, as the second term is finite.

The ER limit for �̃min was already established in Eq. �63�.
Finally, if the expression for X̄int is analyzed, as indicated in
the Appendix, one finds that in the lowest order in 1 /�1, the

function becomes independent of �̃,

X̄int��1,�,�;�̃� =
1 + �2

�
+ O	 1

�1

 = X0

ER + O	 1

�1

 ,

�69�

and so it can be taken out of the integral. So the ER limit of

X̄int coincides with X0
ER in Eq. �36� valid for scattering on a

free electron.
From the previous equations, one then gets the ER limit

for the DDCS in RIA, displaying the decrease of DDCS as
1 /�1,


2
RIA-ER = r0

2 


�1

1 + �2

1 − �
�

�̃min
ER

� �̃���̃�

E��̃�
d�̃ . �70�

The integration limit vanishes for the free Compton fre-
quency �29� when the ratio s defined in Eq. �62� becomes
equal to 1. In conclusion, Eq. �70� is the ER limit of Eq. �53�.

Before we comment on the result �70�, we mention that
the second approach to get the RIA-ER DDCS involves the
integration of �3 over the magnitude of the physical total
momentum transfer


2
RIA-ER = �

�q�

�

�3
RIA-ERd�ER. �71�

We use the result �68� and make a change of variable from

�ER to �̃ER. The two variables are connected by Eq. �62�.
Based on this and noting that the integration limit changes

from �q� for �ER to �̃min
ER for �̃ER, the expression �71� takes

the form �70�.
The main feature of DDCS multiplied by �1, in the

RIA-ER approach, is the factorization as a product of a func-
tion of � only,

F��� �
1 + �2

1 − �
, �72�

with a function of �̃min
ER only �and of the parameters which

characterize the momentum distribution ��. This is a general
property of RIA that we will exploit in showing results in the
particular case of scattering from the K shell of an electron in
the Coulomb field. Given that the integrand is positive, the
integral in Eq. �70� takes its largest value when the variable

�̃min
ER , with the expression �63�, vanishes. This happens for

s=1, i.e., at the free Compton frequency �29�, which is then
the center point of the Compton peak in IA. We shall find

below that the RIA-ER variable �̃min
ER is also useful in char-

acterizing the EC results.
Finally, we mention that in the high-energy limit Ribber-

fors’ approximate relation �58� becomes


2
RIA-ER � r0

2 


�1
F���

1

2


J��̃min
ER �

�1 + ��̃min
ER �2

� 
2
CP-ER, �73�

still showing the factorization, but now written in terms of
the Compton profile, defined as in Eq. �A6� with the expres-
sion �59� for a central potential.

It is useful to note that the argument of the Compton

profile �̃min
ER with the expression �63� differs from what would

be the ER limit of Ribberfors pmin in Eq. �57�, equal to
�1−s�. This means that the approximate expression pmin
should not be used for very high photon energies. Neverthe-
less, for s=1, the two expressions vanish and for s near 1

�vicinity of the Compton line�, the values of �̃min
ER and pmin

are close. For more details on this aspect, see �18�.

D. Case of the 1s state of a hydrogenlike atom

Up to this point, the equations we have written are general
equations, based on RIA, for a charge density with spherical
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symmetry. In the following, we discuss the case of an elec-
tron bound in the K shell of a Coulomb potential with
nuclear charge Z. Then, the total bound-electron energy is

E0 � � = �1 − a2, a � �Z . �74�

In this case, the cross section �70� depends on a through
the momentum distribution, which has a compact analytic
expression; for a2�1, it reduces to the NR expression in Eq.
�A9�. The integral in Eq. �70� can be performed analytically
if the NR charge distribution is used. Assuming light and
intermediate Z, we neglect terms of the order a2, with the
result

�1
2
RIA-ER = r0

28a5



F���� E��̃min

ER �

6���̃min
ER �2 + a2�3

+
5

32
ln

��̃min
ER �2 + a2

�E��̃min
ER � + 1�2�, a2 � 1, �75�

where �̃min
ER is given by Eq. �63�.

Because, as shown in more detail in Sec. VII, the DDCS

takes its largest values for ��̃min
ER ��a, known as the Compton

peak region, it is of interest to consider the behavior of
DDCS for this case. The dominant term in Eq. �75� for

��̃min
ER �2+a2�1 is the first term, from which one gets

�1
2
RIA-ER =

4r0
2

3

F���

a5

���̃min
ER �2 + a2�3

, ��̃min
ER �2 + a2 � 1,

�76�

an expression which describes the dominant behavior of the
hydrogenic ER limit of DDCS for low and medium values of
the nuclear charge Z. We mention that the same result �76� is
obtained using in the approximate result Eq. �73� the NR
expression �A9� for CP and replacing the square root by 1.

V. EC-ER LIMIT FOR K-SHELL
COMPTON SCATTERING

As mentioned in the Sec. I, for the case of the K shell of
a hydrogenlike atom, it was possible �6� to derive an analytic
expression for the ER limit of the Compton scattering ampli-
tude and from it to obtain TDCS and DDCS. Reference �6�
contains a detailed description of the calculation and also
graphs of DDCS resulting from the numerical evaluation of
the analytic expressions. Some corresponding predictions for
TDCS are given in �7�. There is also �16�, concerned with the
soft-photon limit at high energies, which is handled sepa-
rately because it cannot be included in the general equations
of the ER limit, as we have described them.

The basic result of EC-ER is the analytic expression Eq.
�91� of �6� for the multiply differential cross section �3, de-
fined in Eq. �12� here, which gives the distribution in the
scattered photon observables �frequency and direction� and
in the magnitude of the total momentum transfer. In our pa-
per, we have already introduced a distinct notation �ER for �
in the ER limit; the meaning of � in �6� and of �ER here is

the same. According to Eq. �22�, this is a variable restricted
by �ER� �q� and its connection with the electron-scattering
angle � follows from Eqs. �21� and �20�. In agreement with
the more general expression in Eq. �21�, for the Coulomb K
shell, the variable q is now

q =
��

1 − �
− � = s − � , �77�

with � given by Eq. �74� and s defined in Eq. �61�.
The cross section �3

EC-ER decreases as 1 /�1 and does not
depend on the azimuthal angle � of the total momentum
transfer in a reference frame with the third axis along the
photon momentum transfer. This leads to the ER result for
DDCS,


2
EC-ER �

d2
EC-ER

d�2d�2
= 2
�

�q�

�

�3
EC-ERd�ER. �78�

We emphasize that, according to the ER equations, due to the
behavior of the cross section �3

ER, the initial photon energy
�1 appears only as the factor 1 /�1 in DDCS; this is the same
behavior found in RIA in the previous section.

As derived in �6�, the analytic expression for �3
EC-ER is not

simple: it involves three Appell functions F1, with the depen-
dence on a appearing both in the parameters of the functions
and also in the two of the three variables of these functions.
The integration over �ER for DDCS has to be done numeri-
cally. We express the factor 1 /� in Eq. �91� of �6� in terms of
q and �, using Eq. �77�, and we rewrite this equation in the
form

�3
EC-ER =

r0
2

�1

1 + �2

1 − �

�ER

q + �
T . �79�

The function T depends only on a, q, and �ER. As a result,
we now identify one of the main features of the EC-ER limit,
not discussed or exploited in �6�. If one takes as variables �
and q, instead of � and �, then the structure of the analytic
results reveals the factor �1+�2� / �1−�� �the same factor Eq.
�72� as in RIA-ER� that multiply a function of a, q, and �ER

for TDCS and a function of a and q only for DDCS, corre-
sponding to what we have found in RIA-ER.

The correspondence between the variables in EC-ER and
RIA-ER and the consequences of the structure described
above are discussed in Sec. VI. In particular, one is led to a
more compact representation of the EC-ER results, as illus-
trated in Sec. VII. We conclude this section by mentioning
some simple expressions derived from EC-ER analytic re-
sults for small values of a.

For a2�1, the analytic expression of T in Eq. �79� dras-
tically simplifies and the following expression of �3 follows:

�1�3
EC-ER = r0

2 a5


2F���S�a�e2a� �ER

1 + q
� 4�1 + q�

���ER�2 + a2�4

+
4q + 3q2

�q2 + a2����ER�2 + a2�3

+
1

�q2 + a2����ER�2 + a2�2�, a2 � 1, �80�
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with S�a� following from Eqs. �101� and �108� and � from
Eq. �106� of �6�, as

S�a� =
22�

�1 + ����1 + 2��
2
a

1 − e−2
a

����2 + � − ia�
��3 − ia�

�2	 a2

q2 + a2
�−1

, �81�

tan � = − a/q, − 
 � � � 0. �82�

In fact, S�a� depends also on q. Strictly, for a=0, both S and
e2a� become equal to 1, but as the last exponential, as well as
the factor e−2
a in S�a� have quite large exponents, they de-
part quickly from 1, so they are kept in Eq. �80�.

The result given in Eq. �80� was not written explicitly in
�6�. The integration over �ER of this expression leads to Eq.
�109� of �6� that we reproduce here

�1
2
EC-ER = r0

2 a5

6

F���

S�a�e2a�

�q2 + a2�3

8 + 20q + 15q2

1 + q
, a2 � 1.

�83�

A simple calculation shows that, with the neglect of terms of
the order a4, the maximum of the approximate cross section
�83� is located at q=7a2 /12.

If ��ER�2+a2�1 then �q��1 and the EC-ER result �80�
reduces to

�1�3
EC-ER � r0

24a5


2 F���S�a�e2a� �ER

���ER�2 + a2�4 . �84�

Taking into account all the approximations made, the last
formula is valid for �q��1 and ��ER�2+a2�1.

Integration on �ER and multiplication with 2
 �for the
integration on �� gives

�1
2
EC-ER � r0

24a5

3

F���S�a�e2a� 1

�q2 + a2�3 . �85�

This result follows also directly from Eq. �83�, neglecting q
and q2.

VI. COMPARISON OF THE ANALYTIC
RESULTS OF RIA-ER AND EC-ER

Now we want to compare in more detail RIA-ER and
EC-ER results for DDCS and also for TDCS. At the level of
analytic equations, comparison can be made only in the
small a case, as the EC analytic results �6�, valid for any Z,
are known only in terms of Appell functions for TDCS.

We refer first to DDCS. In the ER regime, in both RIA
and EC cases, we have already noticed the factorization of
the function F��� defined in Eq. �72� in the expression of
DDCS. In the EC-ER case, as noticed in Sec. V, the variables
in the factor multiplying F are q, defined in Eq. �77�, and a.
In the RIA-ER case, the only variables in the corresponding

factor are �̃min
ER , defined in Eq. �63�, and �, defined in Eq. �74�

and hidden in the momentum charge distribution. The vari-

ables of the two approaches, q and �̃min
ER , are connected, as

shown in the following, a property that will be exploited in
this section and in the presentation of numerical data. Using

the expressions of Eqs. �63� and �77�, one finds that �̃min
ER

follows from q as

�̃min
ER =

��q + ��2 − 1�
2�q + ��

. �86�

For a2�1 and �q��1, we get �̃min
ER ��q�.

Solving the second-order equation in Eq. �86� for q+�,
one finds the explicit expression of the two values of q that

correspond to a given value of �̃min
ER ,

q� = − � � �̃min
ER + �1 + ��̃min

ER �2, 0 � �̃min
ER � � . �87�

The first sign corresponds to the region −��q�1−�; the
second sign to q�1−�. Note that to q=0 corresponds to the

positive value �̃min=a2 / �2��.
From Eq. �86�, we also get the exact relation,

��̃min
ER �2 + a2 = �q2 + a2�

�2� + q�2 + a2

4�� + q�2 , �88�

that will be used in the comparison of analytic results valid
in the small a case.

The comparison of the results coming from the two ap-
proaches can be done if we use the same variable. Our option
for the variable used in comparing RIA-ER and EC-ER is

�̃min
ER . Even more convenient is to let this variable to take also

negative values. In this case, the limit of integration for

RIA-ER DDCS in Eq. �70� is ��̃min
ER �, transforming 
2

RIA-ER in
an even function of the new variable. The extension of the

range of �̃min
ER allows the two relations �87� to be written in a

single one

q = − � + �̃min
ER + �1 + ��̃min

ER �2, − � � �̃min
ER � � . �89�

The negative values of �̃min
ER cover the region −��q�1−�.

In a representation of DDCS as a function of �̃min
ER , the

EC-ER cross section is not symmetric with respect to �̃min
ER

=0, unlike the extended RIA-ER cross section; the two val-
ues �q− ,q+� of the variable q associated to a pair of values

�−��̃min
ER � , ��̃min

ER �� are different and so are the corresponding
values of the EC-ER cross sections. One has q+−q−

=2��̃min
ER �. The asymmetry of EC-ER results increases with Z.

Figures 1–3 in next section illustrate the previous discus-
sion. Here we focus on the analytic expressions. As men-
tioned before, a comparison at the level of analytic results
can be done only in the small a case. More precisely, we can
compare the approximate results �76� and �85�. It follows an
expression for the ratio of the approximate cross sections in
RIA-ER and EC-ER


2
RIA-ER


2
EC-ER �

e−2a�

S�a� 	 q2 + a2

��̃min
ER �2 + a2
3

. �90�

Using the relation �88�, we get
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2
RIA-ER


2
EC-ER � 	 �

� + q
+

a2 + q2

4�� + q�2
3

→ 1, a2 � 1, �q� � 1.

�91�

The factors S�a� and e−2a� were replaced by 1 in the last step.
Given the approximations made in order to get the same
analytic expressions from the two approaches, it is to be
expected that their predictions will not differ much in the
peak region for small and intermediate values of the nuclear
charge Z.

Now we refer to the comparison of analytic results for
TDCS. If we compare first the structures of the EC-ER and
RIA-ER results, we now show that the factor F��� defined in
Eq. �72� is present in both cases. For the EC-ER case, this
factor is already visible in the expression Eq. �79� of the
cross section �3

EC-ER, where the remaining factor depends on
a ,q and the variable of the angular distribution, �ER in Eq.
�21�. The RIA-ER result for TDCS is given by Eq. �68� and,
in order to see F���, it needs to be transcribed using Eq. �77�,
with the result

�1�3
RIA-ER =

r0
2

2
F���

�ER

� + q
���̃ER� . �92�

The variables �ER �the physical momentum transfer in the

ER regime� and �̃ER, which appear in the charge distribution,
are connected by Eq. �62�, where in the present case, s and q
are related as in Eq. �77�.

For a2�1, the previous expression �92� can be compared
to the EC-ER expression �84�. We get

�3
RIA-ER

�3
EC-ER �


2

8a5

���ER�2 + a2�4

���̃ER�
, ��ER�2 + a2 � 1. �93�

The factors S�a� and e2a� have been replaced by 1, which we
have noted as a poor approximation even for small a.

If the relativistic momentum distribution is replaced by its
nonrelativistic limit �A9�, we get

�3
RIA-ER

�3
EC-ER � 	��ER�2 + a2

��̃ER�2 + a2
4

, ��ER�2 + a2 � 1. �94�

In general, the variable �̃ER is not identical with the variable
�ER, as shows the connection �62� of the two variables. Only
for small values of �ER, which imply also small values of �q�
already used in the EC-ER expression, these variables coin-
cide. But, as these conditions are satisfied in the region near
the Compton maximum for the corresponding angular distri-
butions, the ratio �94� will be near 1.

From this section, we keep two conclusions: �i� it is useful
to work with the same variables in presenting and comparing
the EC and RIA results in the ER limit; �ii� we expect good
agreement near the Compton peak, for not too high values of
Z, for both DDCS and TDCS.

VII. NUMERICAL RESULTS AND DISCUSSION

The numerical results which we present refer to the
Coulomb 1s electron. The analytic results displayed in the

previous sections show that it is useful to study the scaled
cross sections

�3
sc �

�3

F���
0
, 
2

sc �

2

F���
0
, �95�

where


0 =
4r0

2

3
a�1
. �96�

They are dimensionless due to the scaling factor 
0 already
used in �6�. From these functions, one can obtain the triply
and doubly differential cross sections in their dependence on
the variables with physical significance.

We first focus on DDCS. At fixed Z, the scaled function

2

sc, as given by the analytic formulas established in �6�, de-
pends only one variable q in Eq. �77�. But, from Sec. IV, we

know that we can use as variable �̃min
ER defined in Eq. �63�.

All the EC-ER data shown in the figures are based on the
analytic expression given in Eq. �91� of �6�.

We begin by presenting now the EC-ER results in Fig. 1.
In order to see the difference between the two possible

choices for the variable, we use q /a in Fig. 1�a� and �̃min
ER /a

in Fig. 1�b�. Both variables are dimensionless. We remind

that the variables q and �̃min
ER are given by Eqs. �77� and �63�,

respectively. The use of the factor 1 /a in the two variables
leads to a better presentation of the features of the results.
Six values of Z ranging from 13 to 137 are considered in
Fig. 1.

The vicinity of the limit q=−� corresponds to values of �
near 0, not covered by the ER approximation. In this limit,
the cross section increases. However, this increase, while
showing the proper infrared rise tendency, is not quantita-
tively correct. In order to get the correct result in the infrared
region, one must proceed as in �16�. The increase is visible in
Fig. 1�a� only in the cases of large Z �82, 100, and 137�. For
Z=137, the limit for q /a is near 0, for Z=100 it is −0.94, and
for Z=82, this limit −1.34. All the other graphs would also
show this increase near their corresponding minimum value
for q, which means large negative q /a for small Z.
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FIG. 1. �Color online� Scaled EC-ER DDCS for several values

of Z, as function of the variable q /a in �a� and of �̃min
ER /a in �b�. The

variables are dimensionless �see Eqs. �63�, �74�, and �77��.
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We also mention that, according to Eq. �77�, the value q
=−� is also reached for �=0, a special point not included in
the ER-EC results because there a change of the order of
magnitude of the amplitude from O�1 /��1� to O�1� arises,
as discussed after Eq. �84� in �6�.

In Fig. 1�b�, the same results are presented using the vari-

able �̃min
ER /a. The finite region �−� ,1−�� on the q scale is

shifted in the infinite region �−� ,0� on �̃min
ER /a scale and a

slight asymmetry about �̃min
ER =0 becomes visible as Z is in-

creased, in contrast to RIA-ER case, shown in Fig. 2. Now,
due to the choice of the variable, not only the curves for low
Z are almost symmetric, but also the region of increase is not
seen, being shifted far to the left.

We remark that Figs. 1�a� and 1�b� represent different and
more compact ways than that used in �6� for presenting the
EC-ER results. In the quoted paper, data were displayed us-
ing the variables � and � in Eq. �8�, either as function of � at
fixed � or as function of � at fixed �. Now, we can say that
all the information contained in the graphs of �6� are concen-
trated in either Fig. 1�a� or 1�b�, as from a curve which gives,
for given Z, the dependence of DDCS as a function of q /a

or, alternatively, of �̃min
ER /a, the photon spectral distributions,

i.e., 
2 as function of � at fixed values of �, and the photon
angular distributions, i.e., 
2 as function of � at fixed values
of �, can be both obtained using the expression �77� or �63�.
Of course, the factor F��� must be included.

The maximum of the graphs in Fig. 1�b� is located near

�̃min
ER =0. This position corresponds to a value 1−� for q

which implies ��=1−�. This is exactly the condition �29�
which corresponds to the Compton line in the free-electron
case. But, in fact, as already mentioned in Sec. V, for low Z
the maximum is located at q=7a2 /12. In the variable used in

Fig. 1�b�, this corresponds to �̃min
ER =a2 /12. This is the shift of

the EC-ER DDCS maximum for small a2 compared to the
free-electron and RIA-ER cases.

In Fig. 2, which presents RIA-ER results, the dashed
curve represents the scaled cross section associated with the

approximation �76�, which is simply �1+ ��̃min
ER /a�2�−3, a

function independent of Z when the variable �̃min
ER /a is used.

The curve for Z=13 is not shown because on our figure, it
would be hard to distinguish it from the dashed curve.

In order to compare quantitatively EC-ER and RIA-ER
results, we show in Fig. 3 the ratio 
2

RIA-ER /
2
EC-ER, as a

function of �̃min
ER /a, for various Z. In the region �−0.5,0.5� of

the variable, we have found relative differences less than 2%
for Z=13, less than 4% for Z=29, up to 6% for Z=50, and
up to 12% for Z=82. Outside this region, the relative error
increases for negative values of the variable, but not for posi-
tive values. Based on all these, we conclude that RIA-ER is
a good approximation of the EC-ER results for low Z values
and it is handling fairly well high Z effects in the Compton
peak region.

In Fig. 4, we test in the ER regime the validity within the
relativistic impulse approximation of the approximate rela-
tion that connects DDCS with CP. We plot the ratio of the
quantities 
2

CP-ER in Eq. �73� and 
2
RIA-ER. We see that the

approximation works quite well for ��̃min
ER � /a�1.

We have also calculated TDCS, for which �6� did not give
numerical results. Only in �7� one can find several graphs for
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FIG. 2. �Color online� Scaled RIA-ER DDCS for several values

of Z as function of the dimensionless variable �̃min
ER /a �see Eqs. �63�

and �74��.
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the quantity �3 in Eq. �12�, as a function of � �identical with
�ER here�, for Z=13, 29, 50, and 82, in the vicinity of the
Compton peak. Our Figs. 5 and 6 illustrate the behavior of
EC-ER results and the comparison of EC-ER and RIA-ER
predictions for TDCS. In the upper panels, the scaled EC-ER
TDCS is shown as function of �ER /a for fixed values of

�̃min
ER /a, taken near the maximum of DDCS, and for five val-

ues of Z. In the lower panels, the ratio of the cross sections

3

RIA-ER /
3
EC-ER is represented. In Fig. 5, the left panels and

right panels correspond, respectively, to the values −0.05 and

0 for and �̃min
ER /a. In Fig. 6, the values for the last quantity are

0.05 in the panels on the left and 0.1 in the panels on the
right. The starting point of each curve is fixed by the restric-
tion �22�. We see that in all cases we have shown, the values
of TDCS coming from the two approaches have the same
behavior as the DDCS, namely, they agree better as Z be-
comes smaller.

More work is needed in order to analyze the TDCS in
RIA, in both ER limit and at finite photon energies, as the
first studies at finite energies show that in many cases, IA

describes well the DDCS but not the TDCS �4,10,19�. The
results of the present work, in which the ER of RIA for the
1s-Coulomb electron was compared to ER-EC results, to-
gether with the studies at photon energies in the range com-
parable to or larger than the electron rest energy �5�, give
support to the view that RIA is a reasonable approximation at
high photon energies, at least for small and medium values
for Z. In order to see how soon the actual ER limit results
become adequate, we have computed RIA results with Eq.
�53�, valid at any photon energy, and we have compared
them to RIA-ER results obtained from Eq. �70�. In this com-
parison, not shown here, we have found that the photon en-
ergy has to be very high �at least 50 times the electron rest
mass energy� in order to approach the ER limit, i.e., the
asymptotic 1 /�1 behavior is reached slowly. Given this situ-
ation, we suggest a possible procedure to use RIA and
EC-ER results to predict DDCS at finite energies �where
EC-ER results are not valid� and high Z �where RIA starts to
become incorrect�, having in mind that the terms neglected
by EC-ER are of the order 1 /�1, and are important, and
those neglected by RIA are of the order ��Z�2. Given the
parameters Z and �1, and the values of � and �2 for which
one wants to predict DDCS, one calculates first 
2

RIA using
the Ribberfors formula �53�. Then one determines the corre-
sponding variables � and �, according to Eq. �8�, and using
them, one calculates the ER cross sections, 
2

RIA-ER and

2

EC-ER. Then, with an error of order ��Z�2 /�1, the proposed
value for the cross section will be


2 = 
2
RIA 
2

EC-ER


2
RIA-ER . �97�

We note that given � and �, as the corresponding �2 and
�,

 2 = ��1, cos � = 1 − �/�1, �98�

depend also on �1, the same 
2
EC-ER and 
2

RIA-ER are needed
for various pairs of �2 and � and different �1. This is not true
for 
2

RIA in Eq. �97�. The larger the �1 will be, the better will
be the prediction.

VIII. CONCLUSIONS

In summary, in this paper devoted to very high-energy
Compton scattering on a bound electron, we have investi-
gated the ER limit of RIA and compared to exact Coulomb
results valid in the ER limit. The paper contains two contri-
butions to RIA general equations for Compton scattering
from a s state: �i� the analytic expression of the TDCS in
RIA, for any photon energy, Eq. �49�, and �ii� a high-energy
limit of TDCS and DDCS, Eqs. �67� and �70�, respectively,
obtained applying the same rules as in the ER calculation of
�6� for the Coulomb K-shell case.

We have noticed the similar structures of RIA-ER and
EC-ER analytic expressions of TDCS, in which, apart from
the 1 /�1 factor, the dependence on photon frequencies is
contained in the simple function �72� depending on the pho-
ton frequency ratio �2 /�1 only. The function left after fac-
torization depends on �Z, on an angular variable �ER and on
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another variable, which is different in the two cases, �̃min
ER in

Eq. �55� for RIA-ER and q in Eq. �77� for EC-ER. This
structure is transferred to DDCS, where the variable �ER

disappears by integration. The specific variables, q of EC-ER

and �̃min
ER of RIA-ER, are connected by Eq. �86�.

We have exploited these remarks, using the variable �̃min
ER ,

the variable proper to ER of RIA, in displaying the results
for DDCS. In particular, Fig. 1�b� is a more compact way of
presentation than in �6�. The use of the same variable allows
to see in a better way how the EC-ER and RIA-ER results
coincide in the peak region in the limit Z→0 and how the
departure from RIA manifests in the asymmetry of the
graphs about the maximum and in the maximum shift which
become larger with increasing Z.

We have established by comparison to EC-ER numerical
results the error introduced by RIA in the ER limit; the rela-
tive difference increases with Z, but, in the peak region it
stays below 15% for Z�100. So RIA-ER handles the high Z
case fairly well.

We have suggested how to use RIA and EC-ER results to
make predictions at finite energies and not necessarily low Z.
An extended analysis of TDCS is needed in order to under-
stand more deeply their properties.

The conclusion of our work is that RIA is a reliable ap-
proximation in describing the peak region in the high-energy
regime of Compton scattering by K-shell bound electrons,
but small deviations, growing with Z, persist in the high-
energy limit.
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APPENDIX: DETAILS ON IA

In the first part of this appendix, we review the basic
equations of NRIA, which are to be compared to the corre-
sponding relativistic equations of our text. In the second part,
we give some details of the RIA case. All the cross sections
are averaged/summed over the initial/final particle �electron
and photon� polarizations.

1. NRIA results

In the nonrelativistic case, the most differential cross sec-
tion for the scattering on a free electron, averaged on initial
and summed-over final polarizations of the electron and pho-
ton, is

d4
NR =
1 + cos2 �

2

�2

�1
��p − p0 − K�

��	 p2

2
−

p0
2

2
− �1 + �2
d�2d�2dp , �A1�

from which the impulse-approximation result follows by in-
tegrating over a distribution of initial momenta p0,

d4
NR-IA =
1 + cos2 �

2

�2

�1
��NR�p − K��2

��	 p2

2
−

�p − K�2

2
− �1 + �2
d�2d�2dp ,

�A2�

with �NR�p�= ���p��2 and � the Fourier transform of the ini-
tial wave function of the bound electron. The fictitious mo-
mentum magnitude attributed by the � function to the final
electron is

p̃NR =
K2/2 + �1 − �2

K cos �
, �A3�

where � is the angle between p and K. This relation is the
nonrelativistic analog of Eq. �43� and �47�.

Integrating over the magnitude of the momentum in Eq.
�A2� leads to the nonrelativistic triply differential cross sec-
tion


3
NR-IA =

1 + cos2 �

2

�2

�1

p̃NR
2

K cos �
��NR�p̃ − K��2, � � 
/2,

�A4�

where the vector p̃ has the magnitude p̃NR.
The DDCS follows by integrating over the electron-

momentum direction. This leads to


2
NR-IA =

1 + cos2 �

2

�2

�1

1

K
JNR�pz� , �A5�

where J is the Compton profile, with the general definition

JNR�pz� � 2
�
−�

� �
−�

�

�NR�px,py,pz�dpxdpy �A6�

and

pz =
K

2
−

�1 − �2

K
. �A7�

For a charge density with spherical symmetry, one is left
with the single integral

JNR�pz� � �
pz

�

p�NR�p�dp . �A8�

In the case of the K shell of a hydrogenlike atom, the NR
charge density and the Compton profile are

�NR
K �p� =

8a5


2�p2 + a2�4 , JNR
K �pz� =

8a5

3
�pz
2 + a2�3 .

�A9�

2. RIA results

The quantity X̄int in Eq. �53� is given by Eq. �37� of �9�,
which we give here for the sake of completeness, with
slightly different notations
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X̄int��1;�,�;�̃� = 2 + C	 1

�A0
2 − B2�1/2 −

1

�A2 − B2�1/2

+

C

�1
2	 A0

�A0
2 − B2�3/2 +

A

�A2 − B2�3/2
 ,

�A10�

where

C = W −
2

�1
−

2

�1
2W

, W = ��, A0 = A − W , �A11�

A =
�1

K2����1�1 − �� + �1 + ��E��̃� + ��� , �A12�

B =
2�1 − �

K2 ���̃2 −
�1

K2 ��1 − ��E��̃� − ���� . �A13�

The significance of the variables is found in the main text: �

and � are defined in Eq. �8�. For K and �̃, we use Eqs. �9�
and �52�, respectively. The behavior in the ER limit is simply

C → W, K → �1�1 − ��, A →
��

1 − �
,

A0 →
�2�

1 − �
, B → 0 �A14�

and leads to the result �69� in Sec. IV.

�1� P. M. Bergstrom, Jr. and R. H. Pratt, Radiat. Phys. Chem. 50,
3 �1997�.

�2� P. M. Bergstrom, Jr., T. Surić, K. Pisk, and R. H. Pratt, Phys.
Rev. A 48, 1134 �1993�.

�3� T. Suric, P. M. Bergstrom, Jr., K. Pisk, and R. H. Pratt, Phys.
Rev. Lett. 67, 189 �1991�.

�4� Z. Kaliman, T. Suric, K. Pisk, and R. H. Pratt, Phys. Rev. A
57, 2683 �1998�.

�5� L. LaJohn �private communication�.
�6� V. Florescu and M. Gavrila, Phys. Rev. A 68, 052709 �2003�.
�7� V. Florescu and M. Gavrila, Rom. J. Phys. 48, 639 �2003�.
�8� P. Eisenberger and P. M. Platzman, Phys. Rev. A 2, 415

�1970�.
�9� R. Ribberfors, Phys. Rev. B 12, 2067 �1975�; 12, 3136 �1975�.

�10� R. H. Pratt et al., Nucl. Instrum. Methods Phys. Res. B 261,
175 �2007�.

�11� P. Eisenberger and W. A. Reed, Phys. Rev. B 9, 3237 �1974�.

�12� R. H. Pratt, Phys. Rev. 117, 1017 �1960�.
�13� V. Florescu and M. Gavrila, Phys. Rev. A 14, 211 �1976�.
�14� J. M. Jauch and F. Rohrlich, The Theory of Photons and Elec-

trons �Springer-Verlag, New York, 1976�.
�15� When the quantized radiation field corresponds to one photon

in the volume V, which is the case in deriving Eq. �25�, the
incident photon flux is c /V, which becomes 1 /V in the units
we use.

�16� V. Florescu and M. Gavrila, Radiat. Phys. Chem. 59, 127
�2000�.

�17� In fact, the reference systems S1 and S2 are in correspondence
with those used by Ribberfors. Only the role of the incident
electron in his case is played by the final electron in our case.

�18� L. LaJohn �unpublished�.
�19� R. H. Pratt, L. A. LaJohn, V. Florescu, T. Suric, B. K. Chatter-

jee, and S. C. Roy, Radiat. Phys. Chem. �in press�.

VIORICA FLORESCU AND R. H. PRATT PHYSICAL REVIEW A 80, 033421 �2009�

033421-16


