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We present an experimental and theoretical study of a scalar atomic magnetometer using an oscillating
field-driven Zeeman resonance in a high-density optically pumped potassium vapor. We describe an experi-
mental implementation of an atomic gradiometer with a noise level below 10 fT Hz−1/2, fractional field
sensitivity below 10−9 Hz−1/2, and an active measurement volume of about 1.5 cm3. We show that the fun-
damental field sensitivity of a scalar magnetometer is determined by the rate of alkali-metal spin-exchange
collisions even though the resonance linewidth can be made much smaller than the spin-exchange rate by
pumping most atoms into a stretched spin state.
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I. INTRODUCTION

High-density hot alkali-metal vapors are used in such vital
metrology applications as atomic clocks �1� and magnetome-
ters �2–4�. In these applications the resolution of frequency
measurements of the hyperfine or Zeeman resonance can be
improved by increasing the density of alkali-metal atoms un-
til the resonance begins to broaden due to alkali-metal spin-
exchange �SE� collisions. Such broadening can be com-
pletely eliminated for Zeeman resonances near zero magnetic
field �5–7�. The broadening of the hyperfine and Zeeman
resonances at a finite magnetic field can be reduced by opti-
cally pumping the atoms into a nearly fully polarized state
�8–10�. These techniques have been used to demonstrate
clock resonance narrowing �9� and have led to significant
improvement in the sensitivity of atomic magnetometers �11�
and to their application for detection of magnetic fields from
the brain �12� and nuclear quadrupole resonance signals from
explosives �13�. However, the effects of SE collisions on the
fundamental sensitivity of magnetometers operating in a fi-
nite magnetic field and on atomic clocks have not been ana-
lyzed in detail. Here we study experimentally and theoreti-
cally the effects of SE collisions in an atomic magnetometer
operating in geomagnetic field range. It was shown in �8–10�
that in the limit of weak excitation the Zeeman and hyperfine
resonance linewidths can be reduced from ���Rse, where
Rse is the alkali-metal SE rate, to ����RseRsd�1/2, where Rsd
is the alkali-metal spin-destruction rate, by pumping most of
the atoms into the stretched spin state with maximum angular
momentum. Since for alkali-metal atoms Rsd�Rse �for ex-
ample, for K atoms Rsd�10−4Rse�, this technique can reduce
the resonance linewidth by a factor of 10–100. However, the
frequency measurement sensitivity depends not only on the
linewidth but also on the amplitude of the spin precession
signal, and the optimal sensitivity is obtained for an excita-
tion amplitude that leads to appreciable rf broadening. In this
paper, we study rf broadening in the presence of nonlinear
evolution due to SE collisions and find that the fundamental
limit on sensitivity is determined by Rse even when most
atoms are pumped into the stretched spin state and the reso-
nance linewidth is much narrower than Rse. We derive a
simple relationship for the ultimate sensitivity of a scalar
alkali-metal magnetometer, which also applies qualitatively

to atomic clocks. We find that the best field sensitivity that
could be realized with a scalar alkali-metal magnetometer is
approximately 0.6 fT /Hz1/2 for a measurement volume of
1 cm3.

Scalar magnetometers measure the Zeeman resonance fre-
quency proportional to the absolute value of the magnetic
field and can operate in Earth’s magnetic field. They are
important in a number of practical applications, such as min-
eral exploration �14�, searches for archeological artifacts
�15�, and unexploded ordnance �16�, as well as in fundamen-
tal physics experiments, such as searches for a CP-violating
electric-dipole moment �2�. Some of these applications re-
quire magnetometers that can measure small ��fT� changes
in geomagnetic-size fields with a fractional sensitivity of
10−10–10−11. Existing sensitive scalar magnetometers use
large cells filled only with alkali-metal vapor and rely on a
surface coating to reduce relaxation of atoms on the walls
�2–4�. Here we use helium buffer gas to reduce diffusion of
alkali-metal atoms to the walls, which also allows indepen-
dent measurements of the magnetic field at several locations
in the same cell �11�. We present direct measurements of the
magnetic field sensitivity in a gradiometric configuration and
demonstrate noise level below 10 fT Hz−1/2 in a 10−5 T
static field �1 part in 109� using an active measurement vol-
ume V�1.5 cm3. A small active volume and the absence of
delicate surface coatings open the possibility of miniaturiza-
tion and batch fabrication �17� of ultrasensitive magnetome-
ters. The best previously reported direct sensitivity measure-
ment for a scalar magnetometer, using a comparison of two
isotopes of Rb occupying the same volume V=180 cm3, had
Allan deviation that corresponds to sensitivity of
60 fT Hz−1/2 and fractional sensitivity of 5�10−8 Hz−1/2

�18�. Theoretical estimates of scalar magnetometer sensitiv-
ity based on photon shot-noise level on the order of
1 fT Hz−1/2 have been reported in cells with V�1000 cm3

�3,4�.
We rely on a simple magnetometer arrangement using op-

tical pumping with circularly polarized light parallel to the
static magnetic field Bz, excitation of spin coherence with an
oscillating transverse magnetic field 2B1, and detection of
spin coherence by optical rotation of a probe beam orthogo-
nal to the static field. rf broadening of magnetic resonance is
usually described by the Bloch equations with phenomeno-
logical relaxation times T1 and T2 �19,20�. Since SE colli-
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sions generally cause nonlinear spin evolution, such a de-
scription only works for small spin polarization �21�. To
study the general case of large polarization and large rf
broadening we performed measurements of resonance line
shapes in K vapor for a large range of SE rates, optical
pumping rates, and rf excitation amplitudes. We also devel-
oped a program for numerical density-matrix modeling of
the system. To understand the fundamental limits of the mag-
netometer sensitivity, we derive an analytical result that
gives an accurate description of magnetometer behavior in
the regime Rse�Rop�Rsd, where Rop is the optical pumping
rate, applicable to high-density alkali-metal magnetometers
with high spin polarization. In the limit of high polarization,
we find an implicit equation for the transverse spin relaxation
time T2 that can be solved to calculate polarization P as a
function of rf field detuning and other parameters. In this
limit, the system is well described by the solutions to the
familiar Bloch equations, with T2 varying as a function of
polarization and rf field detuning. This modified Bloch equa-
tion model reproduces the non-Lorentzian resonance line
shape from the full density-matrix simulation and the experi-
mental rf broadening data and allows us to set analytical
limits on the magnetometer sensitivity. The same approach
can also be easily applied to other alkali-metal atoms with
different nuclear-spin values and to hyperfine clock transi-
tions.

This paper is organized as follows: Section II describes
the experimental setup and presents measurements of mag-
netic field sensitivity and other experimental parameters.
Section III presents a theoretical description of the magneto-
meter signals. Section IV gives expressions for the funda-
mental sensitivity of the magnetometer and compares this
theoretical result to our high-sensitivity magnetometer mea-
surements.

II. EXPERIMENTAL MEASUREMENTS

A. Measurement apparatus

The scalar magnetometer, diagrammed in Fig. 1, is built
around a Pyrex cell containing potassium in natural abun-
dance, 2.5 amg of 4He to slow atomic diffusion, and 60 Torr
of N2 for quenching. For characterization, the cell was
heated to varying temperatures using a hot air oven. For the
most sensitive magnetometry measurements, the cell was
heated with pairs of Ohmic heaters �wire meander in Kapton
sheet� oriented to cancel stray fields and driven at 27 kHz. A
circularly polarized pump beam at the D1 resonance polar-
izes the K atoms along the z direction. The x component of
atomic spin polarization is measured using optical rotation of
a linearly polarized beam as determined by a balanced polar-
imeter. Two-segment photodiodes were used in each arm of
the polarimeter to make a gradiometer measurement. A
constant bias field Bz is applied parallel to the pump laser.
An oscillating rf field 2B1 is applied in the y direction
with its frequency tuned to the Zeeman resonance given by
�0=�Bz=gs�BBz / �2I+1�	=2
� �700 kHz /G�Bz for potas-
sium atoms. The polarimeter measurement is read through a
lock-in amplifier, tuned to the rf frequency. The lock-in
phase is adjusted to separate the resonance signal into sym-

metric �in-phase� absorption and antisymmetric �out-of-
phase� dispersion components. Exactly on resonance the dis-
persive part of the signal crosses zero. The magnitude of the
local field is determined by the frequency of this zero cross-
ing and changes in the dc magnetic field are registered as
deviations from zero of the dispersive signal.

B. Noise measurements with a high-sensitivity atomic
magnetometer

Magnetometer noise is read on the dispersive component
of the lock-in reading. The conversion of the voltage noise to
magnetic field noise depends on the slope as a function of the
magnetic field or frequency of the dispersion curve. The tun-
able parameters of the experiment were adjusted to maximize
the dispersion curve slope. The pump beam �20–40 mW�
was imaged on an area of roughly 3�1.5 cm2 across the
cell. A probe beam cross section of 1.2�1.2 cm2 was de-
fined by a mask with total power of 10 mW and the wave-
length detuned by about 100 GHz from the D1 resonance.
After passing through the cell and the polarizing beam split-
ter the probe beam was imaged onto two-segment photo-
diodes. For the most sensitive measurements, the amplitude
of the oscillating rf field was about 19 nT. Magnetic field
sensitivity was measured for three values of Bz :1 �T,
10 �T, and 26 �T. The cell was heated to approximately
150 °C, yielding an atomic density of n=6.4�1012 cm−3.
The polarimeter signals were measured with a lock-in ampli-
fier �Stanford Research Systems SR830 for 1 �T and
10 �T measurements, SR844 for the 26 �T measurement�.
The lock-in internal reference generated the rf field and the

FIG. 1. Schematic of the experimental apparatus. The cell
�3�3�4 cm3 with the larger dimension perpendicular to lasers� is
heated inside a boron nitride oven and placed in a glass vacuum
enclosure pumped out to 0.5 Torr. Coils inside six-layer magnetic
shields allow application of magnetic fields and gradients. The gra-
diometer measurement is obtained by imaging the probe beam onto
two-element photodiodes. The signals of the two balanced polarim-
eters are subtracted at the lock-in.
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time constant was set to 100 �s. The resonance line shapes
obtained by varying the rf frequency are shown in Fig. 2.
The pump power and rf amplitude are adjusted to optimize
the slope of the dispersion signal for a given probe beam
power. At the parameters that optimized the magnetometer
sensitivity, the resonance curves are well described by
Lorentzian line shapes with similar half-width at half maxi-
mum �HWHM� for absorptive and dispersive components of
�220 Hz for 1 �T and 10 �T and 265 Hz for 26 �T. The
amplitude and width of the optical rotation signal was found
to be nearly independent of the static magnetic field values
over the range of our measurements. The field Bz was gen-
erated using a custom current source, based on a mercury
battery voltage reference and a field-effect transistor input
stage followed by a conventional op-amp or a transistor
output stage �22�. The fractional current noise was less than
2�10−8 Hz1/2 at 10 Hz, about ten times better than from a
Thorlabs LDC201 ULN current source. Low-frequency
��10 Hz� optical rotation noise was reduced by an order of
magnitude by covering the optics with boxes to reduce air
convection that causes beam steering. The oven and laser
beams within the magnetic shields were enclosed in a glass
vacuum chamber to eliminate air currents.

Probe beam position was adjusted to equalize the photo-
diode signals for the two polarimeters within 2%. The gradi-
ometer measurements reduced by more than an order of
magnitude the noise from the Bz current source as well as
pump intensity and light-shift noise. By applying a calibrated
magnetic field gradient, we found the effective distance be-
tween the gradiometer channels to be �3.5 mm, much
larger than the K diffusion length in one relaxation time
�DT2�1/2�0.1 mm, so the two measurements are indepen-
dent.

The magnetic field data were acquired from the dispersive
lock-in signal for 100 s with a sampling rate of 2 kHz. The
fast Fourier transform of the data was converted to a mag-

netic field noise spectrum using a frequency calibration of
the dispersion slope and corrected for the finite bandwidth of
the magnetometer. The bandwidth was found to be close to
the Lorentzian HWHM for all values of Bz. The magnetic
noise spectra at 1 �T and 10 �T are shown in Fig. 3. At
1 �T, single-channel measurements were limited by lock-in
phase noise, while at 10 �T they were limited by current
source noise. The noise in the difference of the two channels
was limited almost entirely by photon shot noise at higher
frequencies and reached below 14 fT /Hz1/2, corresponding
to less than 10 fT /Hz1/2 for each individual magnetometer
channel. With the pump beam blocked, the optical rotation
noise reached the photon shot-noise level. Low-frequency
noise was most likely due to remaining effects of convection.
At 26 �T, the gradiometer had a sensitivity of 29 fT /Hz1/2,
limited by lock-in phase noise and imperfect balance be-
tween gradiometer channels.

C. Magnetic-resonance measurements

To analyze the magnetometer behavior and predict the
theoretical sensitivity of the device, we focus on the shape of
the magnetic-resonance curves. The basic behavior of the
resonance signals can be understood using phenomenologi-
cal Bloch equations �BE�, which predict a Lorentzian reso-
nance line shape. Though the BE cannot describe the whole
physics in the case of rapid spin-exchange collisions, they do
provide a convenient phenomenological framework for
qualitative understanding of the resonance line shape includ-
ing the effects of rf broadening. Using the rotating wave
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FIG. 2. Absorptive �open symbols� and dispersive �closed sym-
bols� components of the magnetic-resonance polarization rotation
signal at 1 �T �squares�, 10 �T �triangles�, and 26 �T �circles�.
Solid lines show Lorentzian fits to the data. These data were re-
corded at the same time and under the same experimental condi-
tions as the high-sensitivity magnetometer measurements.
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FIG. 3. Noise spectra for �a� 1 �T and �b� 10 �T. Shown are
single-channel spectra �black line with crosses�, two-channel differ-
ence �gradiometer� spectra �black solid line�, and the measured
electronic and optical noise �gray solid line� obtained by blocking
the pump beam. The dashed black line marks the 14 fT /Hz1/2 level.
Magnetic field noise increases at higher frequencies due to correc-
tion for the finite bandwidth of the magnetometer.
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approximation, the solution of the BE �see, for example �19��
in a frame rotating about the z axis is

Pi =
���B1T2

2

1 + ���T2�2 + ��B1�2T1T2
P0, �1�

Pj =
�B1T2

1 + ���T2�2 + ��B1�2T1T2
P0, �2�

Pz =
1 + ���T2�2

1 + ���T2�2 + ��B1�2T1T2
P0. �3�

Here we introduce the in-phase Pj and out-of-phase Pi com-
ponents of the transverse polarization in the rotating frame
and the longitudinal polarization Pz. In the laboratory frame,
we measure Px= Pj cos��t�+ Pi sin��t�, and we tune the
lock-in phase to separate the absorptive Pj from the disper-
sive Pi. T1 and T2 are constant phenomenological relaxation
times, P0 is the equilibrium polarization, and B1 is the
amplitude of the excitation field in the rotating frame, given
by By =2B1 cos��t� in the laboratory frame. The detuning
��=�−�0 is the difference between the rf frequency � and
the resonant frequency �0, which is the Larmor frequency in
the applied dc field Bz. The dependencies of Pi and Pj on
frequency are Lorentzian, with the HWHM

� =
1

T2

�1 + ��B1�2T2T1. �4�

The increase in the width due to the presence of excitation
field B1 is the basic phenomenon of rf resonance broadening.
The slope, at resonance, of the dispersive component of the
signal dPi /d����=0� is given by

dPi

d�
=

�B1T2
2

1 + ��B1�2T1T2
P0. �5�

The slope has a maximum at an excitation field B1
=1 / ���T1T2�,

�dPi

d�
�

max
= P0T2

3/2/�2T1
1/2� . �6�

The accuracy of the simple Bloch equation theory de-
pends on the contribution of spin-exchange relaxation to the
linewidth. If the temperature is low, then the broadening due
to optical pumping can exceed SE broadening, and the Bloch
equation theory will be quite accurate. Additionally, if spin
polarization is low, SE broadening will not depend signifi-
cantly on the polarization and the excitation field, so the
transverse relaxation time T2 will be almost constant; in this
case the BE solution is also valid. However, we are primarily
interested in the regime of high spin-exchange rate and high
spin polarization, where the magnetometer is most sensitive.

To understand the effects of SE broadening, we compared
the line shape predicted from the BE to the measured reso-
nance line shape of the magnetometer signal at a frequency
of 80 kHz. We recorded the magnetic-resonance curves for
different values of rf excitation amplitude, pump-laser inten-
sity, and cell temperature. We find that the line shape of the
resonance remains reasonably close to a Lorentzian and the

in- and out-of-phase lock-in data from resonance measure-
ments were fit to the absorptive and dispersive Lorentzian
profiles, allowing for some mistuning of the lock-in phase. It
can be seen from the BE that relative amplitudes of absorp-
tive and dispersive components can differ substantially from
those expected from a complex Lorentzian 1 / �i��−�0�+��
in the regime of large rf broadening. Moreover, due to SE
effects, the absorption and dispersion widths for the same
experimental conditions can also differ. Thus, a total of five
parameters were used for each resonant curve: the resonant
frequency, and the respective amplitudes and widths of the
absorptive and dispersive signal components. An example of
the results for the resonance linewidths as a function of the
magnitude of the rf field is shown in Fig. 4. It can be seen
that rf broadening is greater than what is expected from the
BE. Moreover, the absorptive and dispersive parts of the
resonance have different widths as the rf amplitude is in-
creased. These are signatures of the SE broadening that re-
quire modifications of the BE description.

In the regime of small rf broadening we verified that the
absolute size of the lock-in signal is in agreement with Bloch
equations. The optical rotation signal detected by the lock-in
is given by

 =
lrecfnD���Pi

2�2
, �7�

where D���= ��−�0� / ���−�0�2+��
2� is the optical dispersion

profile of the D1 resonance line with linewidth �� and oscil-
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FIG. 4. The linewidths of Lorentzian fits to the experimental
data for absorption �solid points� and dispersion �open points� com-
ponents of the magnetic resonance in K vapor at 140 °C. The dot-
ted line is the prediction for rf broadening of the linewidth from
Bloch equations with constant T1 and T2, the solid and dashed lines
are results of Lorentzian fits to absorption and dispersion line
shapes obtained using modified BE with variable T2 discussed in
the text. Here Rse=5100 s−1 and Rsd=24 s−1 are fixed from inde-
pendent measurements, while Rop=840 s−1 is adjusted to fit the
measured linewidth at low rf amplitude.
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lator strength f , n is the density of atoms, l is the
length of the cell in the direction of the probe beam, and
re=2.8�10−13 cm is the classical electron radius. Here we
take into account the fact that lock-in output measures the
rms of an oscillating signal. The length l is determined by the
dimensions of polarized vapor illuminated with the pump
beam. Near the edges of the cell the pump beam is distorted,
reducing l below the inner dimensions of the cell. We varied
the width of the pump beam to find that the largest pump
width for which the signal still increases is about 2 cm. For
this value of l the absolute signal size was in agreement with
Bloch equations to within 15%. So the volume of the polar-
ized atomic vapor participating in the measurement for each
channel is about 2�1.2�0.6 cm3�1.5 cm3.

D. Relaxation rates

A number of independent auxiliary measurements were
performed to find the relaxation rates of the alkali-metal
spins to be used for detailed modeling of SE effects. Spin-
exchange and spin-destruction rates can be determined by
measuring the width of the Zeeman resonance in a very low
field using low pump and probe-laser intensity �7�. For these
measurements, the magnetic field was perpendicular to the
plane of the lasers and the pump-laser intensity was modu-
lated near the Zeeman resonance. The signal as a function of
modulation frequency was fit to a sum of two Lorentzians
taking into account the counter-rotating component of pump
rate modulation �23�. At low magnetic field, when the Zee-
man frequency is much smaller than the SE rate, SE broad-
ening depends quadratically on the magnetic field. The spin-
destruction rate is obtained from extrapolation of the width
to the zero-field limit. From these fits of the resonant fre-
quency and linewidth we determined the spin-exchange rate
Rse and the spin-destruction rate Rsd, which are listed in
Table I for the same cell at several temperatures. The error
bars are estimated from fits to different sets of the data. In
addition, we determined the density of K atoms by scanning
the distributed feedback probe laser across the optical-
absorption profile of the D1 resonance. The alkali densities
calculated from the integral of the absorption cross-section
using known oscillator strength �f =0.34� and cell length
�l=3 cm� are also shown in Table I. The density is approxi-
mately a factor of 2 lower than the density of saturated K
vapor at the corresponding temperature, as we find is com-
mon in Pyrex cells, probably due to slow reaction with glass
walls. The alkali-metal SE rate can be calculated from the
measured density using known K-K spin-exchange cross sec-

tion �SE=1.78�10−14 cm2 �24� and is in good agreement
with direct measurements. The spin-destruction rate Rsd can
also be calculated using previously measured spin-
destruction cross sections for K-K, K-He, and K-N2 colli-
sions �25� and gas composition in the cell �2.5 atm of 4He
and 60 torr of N2�. We also include relaxation due to diffu-
sion to cell walls. Errors on the rates calculated from the
densities are estimated from uncertainty in the cross section
and in the gas pressures in the cell. Our direct measurements
of the spin-destruction rate are reasonably consistent with
these calculations.

III. MODEL OF MAGNETOMETER DYNAMICS

We first model the dynamics of the system using numeri-
cal evolution of the density matrix to accurately describe the
effects of SE relaxation. To provide more qualitative insight
and estimate the fundamental limits of sensitivity we also
develop a semianalytical description, a modification of the
BE, that provides a good approximation to the numerical
solutions in the regime of high spin-exchange rate.

A. Density matrix equations

The spin evolution can be accurately described by the
solution of the Liouville equation for the density matrix. The
time evolution of the density matrix ��t� includes hyperfine
interaction, static and rf field interactions, optical pumping,
spin-relaxation processes, and nonlinear evolution due to
alkali-metal spin-exchange collisions. In the presence of
high-density buffer gas when the ground and excited-state
hyperfine structure of the alkali-metal atoms is not resolved
optically, the density-matrix evolution is given by the follow-
ing terms �26�:

d�

dt
=

Ahf

i	
�I · S,�� +

�BgS

i	
�B · S,�� +

� − �

Tsd

+
��1 + 4	S
 · S� − �

Tse
+ Rop���1 + 2s · S� − �� . �8�

Here, Ahf is the hyperfine coupling, I is the nuclear spin, and
S is the electron-spin operator. The Bohr magneton is �B and
gs is the electron g factor, B is the external magnetic field
including static and oscillating components, � is the purely
nuclear part of the density matrix �26�, and s is the spin
polarization of the pump beam. We evaluate the density ma-
trix in the �F ,m
 basis and focus on the regime of relatively

TABLE I. Comparison of the measured SD rates Rsd
m and SE rates Rse

m from fits of the resonance linewidth
at low field with corresponding rates Rsd

cal and Rse
cal calculated from collision cross sections and the density of

K metal determined by optical absorption.

Temp. �°C� Rsd
m �s−1� Rsd

cal �s−1� Rse
m �ms−1� Rse

cal �ms−1� K density �1012 cm−3�

130 28�3 21�2 2.3�0.2 2.5�0.1 2.2

140 22�2 22�2 4.2�0.2 4.5�0.2 3.8

150 43�6 23�2 10�0.5 8.1�0.2 6.7

160 31�3 25�2 14�1.0 13.9�0.2 11.4
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low static magnetic field, where the nonlinear Zeeman split-
ting given by the Breit-Rabi equation is small. To simplify
numerical solution of the nonlinear differential equations we
neglect hyperfine coherences and make the rotating wave
approximation for Zeeman spin precession,

	F,m���t��F�,m�
 = �F,F�	F,m����t��F,m�
ei��m�−m�t. �9�

Here � is the frequency of rf excitation field tuned near
the Zeeman resonance and 	F ,m����t��F ,m�
 is the
density-matrix element in the rotating frame, evolving on a
time scale on the order of spin-relaxation rates that are much
slower than the Zeeman spin precession frequency. With this
approximation it is necessary to consider only 21 elements of
the density matrix for I=3 /2 using the symmetry of the
off-diagonal components. In the rotating frame without
loss of generality we parameterize the density matrix as
���t�=�ST� �� ,� ,�+�1�. Here �ST� �� ,� ,� is a spin-
temperature distribution 	F ,m��ST� ����F ,m�
�e�m that is ro-
tated by an angle � from the z axis into the j direction of the
rotating frame and an angle  around the z axis. �1� is a
density matrix describing deviations from spin-temperature
distribution, which are small because the spin-exchange rate
is much larger than all other rates. For a given value of the
spin temperature � and angles � and  the expectation value
of 	S
=Tr�S�ST� �� ,� ,�� is used in the spin-exchange term
of the density-matrix evolution equations, reducing them to a
set of linear first-order differential equations for the pertur-
bation matrix �1�. The steady-state solution for �1� is obtained
symbolically in MATHEMATICA. To obtain a self-consistent
solution, �, �, and  are adjusted until the steady-state solu-
tion for �1� satisfies Tr�S�1��=0. The self-consistency iteration
is performed numerically for various values of the optical
pumping rate and the rf excitation strength and detuning.

B. Modified BE

Though the numerical solutions to the density-matrix
equations give an accurate treatment of the spin dynamics, it
is convenient to develop an analytical model that can de-
scribe the asymptotic behavior of the system in the regime of
high spin-exchange rate. Here we focus on the regime of
light narrowing �8,10�, with Rse�Rop�Rsd, which also im-
plies that P is close to unity. For weak rf excitation an ana-
lytic expression for T2 under these conditions has been ob-
tained in �8,10,26�,

1

T2
=

Rop

4
+

Rse

5
�1 − Pz� . �10�

The coefficients in this expression depend on the nuclear
spin I and on the size of the nonlinear Zeeman splitting rela-
tive to the spin-exchange rate �10�. Equation �10� describes
the case of I=3 /2 and large spin-exchange rate relative to
the nonlinear Zeeman splitting, so all Zeeman resonances
overlap. It is clear from this equation that spin-exchange re-
laxation can be suppressed by maintaining Pz close to unity.

To extend this solution to arbitrary rf excitation we ob-
serve that the relaxation due to spin exchange and optical
pumping is independent of the direction of spin polarization.

Therefore, we can apply Eq. �10� in a rotating frame with z�
axis tilted by an angle � from the laboratory z axis and ro-
tating together with P in the presence of a large rf excitation
field. In doing so we introduce an error due to inaccurate
treatment of transverse spin components in the F=1 state.
Spin precession in F=1 state occurs in the direction opposite
to the precession in F=2 state and hence will not be station-
ary in the rotating frame. However, this error is small in the
light-narrowing regime because of two small factors: �a� the
population in F=1 state is small since P is close to unity and
most atoms are pumped into the stretched state with F=2
and �b� ��1 for rf fields that provide optimal sensitivity to
maintain P close to unity and hence the transverse compo-
nents of spin are small.

Using this approximation we then solve BE �Eqs. �1�–�3��
in combination with an equation for T2 as a function of po-
larization,

1

T2
=

Rop

4
+

Rse

5
�1 − �Pi

2 + Pj
2 + Pz

2�1/2� . �11�

The longitudinal spin-relaxation time is not affected by spin
exchange and is given by T1=4 / �Rop+Rsd� in the limit of
high spin polarization �8,10�. The equilibrium spin polariza-
tion in the absence of rf excitation is equal to P0=Rop /
�Rop+Rsd�. The resulting algebraic equations can be easily
solved for arbitrary parameters. However, the solution is
only expected to be accurate when P remains close to unity.
In Fig. 5 we compare the resonance line shapes obtained
with a full numerical density matrix and the analytical cal-
culation using modified BE. It can be seen that for this case
which is well into the asymptotic regime Rse�Rop�Rsd the
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FIG. 5. Comparison of transverse polarization components
�Pi , Pj� using full numerical density-matrix evolution �solid
points—absorption, open points—dispersion� and modified BE
�solid line—absorption, dashed line—dispersion� for Rse /Rsd=104,
Rop /Rsd=200, �B1 /Rsd=100. Lorentzian line shapes are shown
with dotted lines for comparison.
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analyticalresults agree very well with exact calculations. The
line shapes are significantly different from a simple Lorent-
zian.

C. Comparison of experimental measurements with theory

The results of the simple BE, numerical calculations with
the full density-matrix equations, and analytical results from
the modified BE were compared to a large set of measure-
ments in various parts of the parameter space. One such
comparison is shown in Fig. 4. The experimental data com-
pare well to the BE when a variable T2 �from Eq. �11�� is
used. Note that not only is the measured width greater than
that predicted by the simple BE �with constant T2� but also,
as correctly predicted from the analytical theory, the half-
width of the absorption curve differs from the half-width of
the dispersion curve. At higher excitation amplitudes, even
the modified Bloch analysis begins to deviate from the mea-
sured half widths because the polarization begins to drop.
The absorbtivity of the vapor also changes as a function of
the rf excitation and the pumping rate at the location of the
probe beam is not a constant. This can be taken into account
by considering the propagation of the pumping light through
the polarized vapor. Though the width of the resonance is a
good metric for comparing experiment to theory, it is the
slope of the dispersive component at resonance that is most
important for the magnetometer sensitivity. In Fig. 6 is
shown a comparison of the measured slopes �from the same
data as Fig. 4� to those predicted by the analytical theory.
The agreement is generally good since there are no free pa-
rameters in the model. In Fig. 7 we show one example of a fit
of the measured resonance profile to that predicted from the
modified BE. As these data show, in the parameter space of
interest, the modified Bloch analysis provides a good de-
scription of the slope and the width of the resonance, as a

function of Rop, B1, Rsd, and Rse. Thus we can use these
equations to determine the best achievable sensitivity of the
scalar magnetometer.

IV. MAGNETOMETER SENSITIVITY

For a given slope of the dispersion curve, unavoidable
noise sources in the system determine the fundamental sen-
sitivity of the scalar magnetometer. The calculation of the
sensitivity follows closely that for an rf atomic magnetome-
ter, derived in �10�. For a given polarization noise �Pi, the
resulting field noise �B is

�B =
�Pi

��dPi/d��
. �12�

There are many sources of technical noise which contribute
either directly to the scalar magnetometer noise as in the case
of low-frequency magnetic field noise from the current
source, or indirectly as in the cases of voltage noise of an
amplifier, magnetic field noise at high frequency, vibrations
of the optical detection system, and pump-laser noise. Tech-
nical noise can be removed in principle, so it is important to
understand the fundamental limits that determine the best
achievable sensitivity.

A. Photon shot noise

In a balanced polarimeter the polarization rotation noise
per unit bandwidth due to quantum fluctuations of the num-
ber of photons received by photodetectors with quantum ef-
ficiency � is given by

� = 1/�2�pr� , �13�

where �pr is the number of photons per second in the probe
beam. The noise has a flat frequency spectrum and � is
measured in units of rad /Hz1/2. The same level of noise per
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FIG. 6. Slope of the dispersive part of the resonance curve,
given as polarization per angular frequency dPi /d�. Experiment:
Open circles—Rop=220 s−1, open triangles—Rop=625 s−1, solid
squares—Rop=1450 s−1. Theory: dash-dotted line—Rop=220 s−1,
solid line—Rop=625 s−1, dashed line—Rop=1450 s−1. Tempera-
ture T=140 °C, Rsd=24 s−1, Rse=5100−1.
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unit bandwidth will be measured in each phase of a lock-in
amplifier calibrated to measure the rms of an oscillating sig-
nal. The optical rotation measured by the lock-in amplifier is
given by Eq. �7�.

It is convenient to express the photon flux �pr in terms of
the pumping rate of the probe beam Rpr,

Rpr =
recf�pr���/A�
�� − �0�2 + ��

2 , �14�

where A is the cross-sectional area of the probe beam. If the
probe laser is detuned far from resonance, ��−�0����, then
one can express photon-atom interactions in terms of the
number of absorption lengths on resonance Nab=recfnl /��.
Using Eq. �12� and magnetometer volume V= lA we find the
magnetic field noise due to photon shot noise is given by

�BPS =
2

��dPi/d���NabRprnV�
. �15�

B. Light-shift noise

The ac Stark shift �light shift� is induced by the probe
beam, which is tuned off-resonance from the atomic transi-
tion, when it has a nonzero circular polarization. If the probe-
laser detuning is much larger than the hyperfine splitting, the
action of the light on atomic spins is equivalent to the action
of a magnetic field parallel to the light propagation direction.
This light-shift field is given by �see Eq. �9� of Ref. �10��,

Bx
LS =

recf�prsxD���
�2I + 1��A

, �16�

where sx is the degree of circular polarization of the probe
beam. Light-shift noise can occur as a result of fluctuations
of intensity, wavelength, or sx. If the probe beam is perfectly
linearly polarized, fluctuations of the circular polarization are
due to quantum fluctuations resulting in an imbalance be-
tween the number of left and right circularly polarized pho-
tons in the probe beam. The spectral density of the probe
beam spin-polarization noise is given by �sx=�2 /�pr. Sub-
stituting this value of sx and excluding �pr by using the
pumping rate of the probe beam Rpr in the limit ��−�0�
��nu we get

�Bx
LS =

�2RprNab

4��nV
. �17�

This effective field noise �Bx
LS�B1� causes polarization noise

by rotating the Pz component into the direction of the pri-
mary signal Pi. The amount of polarization noise in Pi in-
duced by the light-shift field is proportional to the spin co-
herence time T2. Using simulations of BE with noise terms
one can verify that

Pi
LS = �Bx

LST2Pz/�2, �18�

where a factor 1 /�2 appears because only the component of
the light-shift field that is co-rotating with the spins contrib-
utes to the noise. We get the following contribution of the
light shift to the noise of the magnetometer:

�BLS =
Pz

�RprNabT2
2

4��nV�dPi/d��
. �19�

In most cases of interest here one can assume that Pz�1.

C. Spin-projection noise

The spin-projection noise occurs as a result of quantum
fluctuations in the components of atomic angular momen-
tum. We consider the case when the polarization is close to
unity and most atoms are in the F=2 state. Using the
fundamental uncertainty relationship �Fx�Fy �	Fz /2 with
	Fz
�2 one can show �10� that the polarization noise per
unit bandwidth is given by

�Pi = �T2/N , �20�

where N is the total number of atoms. The spin-projection
noise depends only weakly on absolute spin polarization; for
K atoms with I=3 /2, it increases by �3 /2 for unpolarized
atoms. The resulting magnetic field noise in the scalar mag-
netometer is given by

�BSP =
�T2/N

��dPi/d��
. �21�

D. Optimization of fundamental sensitivity

Combining all the noise contributions we obtain the fol-
lowing equation for the magnetometer sensitivity:

�B =
�dPi/d��−1

��nV
�T2 +

T2
2RprNab

16
+

4

RprNab�
. �22�

The first term describes spin-projection noise, the second, the
light shift of the probe beam, and the third, photon shot
noise.

To find the fundamental limit of the sensitivity we assume
that Nab can be adjusted separately, for example by increas-
ing the length of the sensing region in the probe direction
while keeping the volume constant, or changing the buffer
gas pressure. We find that the optimal optical length is equal
to Nab=8 / ���T2Rpr�. It is always beneficial to reduce Rpr
and increase Nab, which will result in longer T1 and T2 until
Rpr�Rsd. Under optimal probing conditions the fundamental
magnetometer sensitivity reduces to

�B =
�dPi/d��−1

��nV
�T2�1 + �−1/2� . �23�

The best sensitivity is obtained by maximizing
dPi /d� /�T2. For a given Rse and Rsd we vary Rop and B1 and
calculate dPi /d� and T2 using modified BE with variable T2
given by Eq. �11�. We find that for Rse�Rsd the maximum
value of dPi /d� /�T2 is given by dPi /d� /�T2 �max=kRse

−1/2,
where k=1.3. This result is also verified with the full numeri-
cal density-matrix model. With Rse=nv̄�se, the optimal sen-
sitivity of a scalar alkali-metal magnetometer is given by

�Bmin =
0.77

�
� v̄�se�1 + �−1/2�

V
. �24�
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Hence we find that for a scalar magnetometer the
fundamental sensitivity is limited by the rate of spin-
exchange collisions even though the resonance linewidth can
be much smaller than the spin-exchange rate. Numerically
for �se=1.8�10−14 cm2 and �=0.8 we find that
�Bmin=0.9 fT /Hz1/2 for an active volume of 1 cm3. Using
back-action evasion techniques it is possible to make the
light shift and photon shot-noise contributions negligible, but
this only improves the sensitivity to 0.6 fT /Hz1/2 for 1 cm3

volume.
If total noise is limited by photon shot noise or by tech-

nical sources of rotation noise, as was the case in our experi-
ment �see Fig. 3�, the sensitivity is optimized by maximizing
the slope on resonance dPi /d�. Using the same optimization
procedure using modified BE and varying Rop and B1 one
can obtain dPi /d� �max=1.2Rse

−3/4Rsd
−1/4. In this case the maxi-

mum slope is increased from Rse
−1 scaling that one would

obtain with a spin-exchange-broadened resonance from Eq.
�6�. Therefore, light narrowing is useful in reducing the noise
in scalar magnetometers limited by photon shot noise or 1 / f
noise, with a maximum sensitivity gain on the order of
�Rse /Rsd�1/4, which is equal to about 10 for K atoms.

One can also use Eq. �22� to estimate the best sensitivity
possible under our actual experimental conditions. In this
case the number of absorption length on resonance Nab is not
optimal and the spin relaxation of K atoms has additional
contribution from collisions with buffer gas and diffusion to
the walls. For our parameters corresponding to Fig. 3
�Nab=2.5, Rse=8700 s−1, Rpr�100 s−1, Rsd+Rpr�130 s−1,
V�1.5 cm3, and �=0.24, including losses in collection of
probe light after the cell�, we get optimal sensitivity from Eq.
�22� of 7 fT /Hz1/2, dominated by photon shot noise. This
compares well with the measured photon shot-noise level
corresponding to 7 fT /Hz1/2 in each channel. The sensitivity
could be improved by increasing the resonance optical depth
of the vapor.

V. CONCLUSION

In this paper we have systematically analyzed the sensi-
tivity of a scalar alkali-metal magnetometer operating in the
regime where the relaxation is dominated by spin-exchange
collisions. We demonstrated experimentally magnetic field
sensitivity below 10 fT Hz−1/2 with an active volume of

1.5 cm3, significantly improving on previous sensitivities
obtained for scalar atomic magnetometers and opening the
possibility for further miniaturization of such sensors.

We considered the effects of rf broadening in the presence
of SE relaxation and developed a simple analytic model
based on Bloch equations with a T2 time that depends on rf
excitation. The results of the model have been validated
against a complete numerical density-matrix calculation and
experimental measurements. We showed that the fundamen-
tal sensitivity limit for a scalar alkali-metal magnetometer
with a 1 cm3 measurement volume is on the order of
0.6–0.9 fT Hz−1/2. In this case a reduction of resonance line-
width by optical pumping of atoms into a stretched state does
not lead to an improvement of fundamental sensitivity limit.

It is interesting to compare the scaling of the optimal
magnetic field sensitivities in various regimes. It was shown
in �11� that near zero field in the spin-exchange relaxation-
free regime the sensitivity scales as �sd

1/2, while for an rf
magnetometer operating in a finite field it scales as
��se�sd�1/4 �10�. In contrast, here we find that the fundamen-
tal sensitivity limited by spin-projection noise for a scalar
magnetometer in a finite field scales as �se

1/2, i.e., there is no
significant reduction in SE broadening for optimal condi-
tions. Since �se is similar for all alkali metals, one can expect
a similar sensitivity for a Cs or Rb magnetometer. On the
other hand, if one is limited by the photon shot noise or
technical sources of optical rotation noise, which is often the
case in practical systems, the magnetometer sensitivity is de-
termined by the slope of the dispersion curve. In this case it
is improved in the light-narrowing regime because the slope
of the dispersion resonance scales as �se

−3/4�sd
−1/4, instead of

�se
−1 for the case of spin-exchanged broadened resonance. We

expect similar relationships, with different numerical factors,
to hold for atomic clocks operating on the end transitions,
since T2 in that case is given by an equation similar to Eq.
�11� �9�. The analytical approach developed in this paper can
be easily adapted to other alkali atoms by modifying the
coefficients in Eq. �11�.
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