
Theory of Auger decay by laser-dressed atoms

Christian Buth* and Kenneth J. Schafer
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA

�Received 22 May 2009; published 11 September 2009�

We devise an ab initio formalism for the quantum dynamics of Auger decay by laser-dressed atoms which
are inner-shell ionized by extreme ultraviolet �xuv� light. The optical dressing laser is assumed to be suffi-
ciently weak such that ground-state electrons are neither excited nor ionized by it. However, the laser has a
strong effect on continuum electrons which we describe in strong-field approximation with Volkov waves. The
xuv light pulse has a low peak intensity and its interaction with the atom is treated as a one-photon process.
The quantum dynamics of the inner-shell hole creation with subsequent Auger decay is given by equations of
motion �EOMs�. For this paper, the EOMs are simplified in terms of an essential-states model which averages
over magnetic subshells and is solved analytically. We apply our theory to the M4,5N1N2,3 Auger decay of a 3d
hole in a krypton atom. The orbitals are approximated by scaled hydrogenic wave functions. A single attosec-
ond pulse produces 3d vacancies which Auger decay in the presence of an 800 nm laser with an intensity of
1013 W cm−2. We compute the Auger electron spectrum and assess the convergence of the various quantities
involved.
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I. INTRODUCTION

The inner-shell ionization of atoms leads to a fascinating
array of many-electron effects. Such vacancies decay on an
ultrafast time scale by fluorescence or electronic decay. Elec-
tronic decay refers to Auger decay �1� and its special variant,
Coster-Kronig decay �2�. For low energy transitions in, e.g.,
light elements or high-lying inner shells in heavier elements,
Auger decay is the dominant relaxation process �3,4�. For
deep inner-shell holes, the ion relaxes via cascades of fluo-
rescence and electronic decay processes. All atomic electrons
are involved either directly in the photoionization with sub-
sequent electronic or fluorescence decay or indirectly due to
a rearrangement of the atomic electrons in the presence of
newly formed holes, so-called core relaxation �5�. Further-
more, at photon energies near the ionization threshold, the
outgoing photoelectrons are slow and may interact signifi-
cantly with the ionic remnant. If the subsequent electronic
decay process is fast, outgoing photo- and Auger electrons
even repel each other appreciably. This phenomenon is
dubbed postcollision interaction �5–8�. Generally, we will
refer to electronic decay and Auger decay and will not ex-
plicitly distinguish Coster-Kronig decay. They are fundamen-
tal processes that are pure manifestations of electron corre-
lations. In this way, electronic decay processes are ideal for
an investigation with the methods of attosecond science
�9–13� which aim to measure and control the motion of elec-
trons on their natural time scale, which is the attosecond.

Attosecond light was first used to measure the Auger de-
cay time of 3d vacancies �M shell� in krypton atoms �14,15�.
Such vacancies undergo M4,5N1N2,3 Auger decay which has
been studied experimentally in the frequency domain
�16–19�. The time-domain study of Auger decay represents a
seminal experiment in several ways. On the one hand, it
demonstrates the power of the newly created attosecond

methodology by comparing its results with existing data. On
the other hand, the study of transient electron motion with
attosecond science has so far been restricted to mostly one-
electron processes, e.g., Refs. �13,20,21� and references
therein. However, the most profound goal of attosecond sci-
ence remains the study of electron correlations.

Clearly, controlling a process on an attosecond time scale
requires extreme ultraviolet �xuv� light for its short cycle
period. Naturally, xuv light targets inner shells for which the
photoabsorption cross section is highest at these wave-
lengths. The degree of control over inner-shell electron mo-
tion is potentially limited compared with valence electrons
because of weak present-day attosecond light sources and the
fact that postgeneration pulse shaping capabilities in the xuv
and x-ray domains are severely limited, e.g., only an ampli-
tude shaping can be accomplished so far with electromag-
netically induced transparency for x rays �22�. However, the
attosecond light can be augmented by an additional optical
laser, a so-called two-color problem. For moderate intensi-
ties, the influence of the optical laser on electrons in the
atomic ground state and hence the two-electron interaction
among them can be neglected, e.g., noble gases can sustain
very high electric fields before ionizing. For all elements, the
impact of the optical laser on inner-shell electrons is negli-
gible. For the optical laser to impact notably inner-shell elec-
trons, its intensity needs to be so high that it would valence
ionize the atom. Yet the laser can be used to structure the
continuum, i.e., have an influence on liberated electrons, and
in that way enable profound control over electronic pro-
cesses �13,22�. A seminal experiment along the above-
mentioned lines—but on a much slower �picosecond� time
scale—is ultrafast laser control, using coherent excitation
with short laser pulses, of the energy and proximity of Ryd-
berg electrons in an atom by Pisharody and Jones �23�. To
demonstrate their ability to control electron dynamics, they
showed that the autoionization of the doubly-excited barium
atoms is due to electron-electron collisions instead of a slow
transfer of energy. Another notable work is the theoretical
investigation of an xuv pump-probe scheme for the study of*Corresponding author; christian.buth@web.de
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the simultaneous two-electron emission in helium by Hu and
Collins �24�.

The time-domain measurement of the Auger decay of the
3d vacancy in krypton atoms �14� has been approached theo-
retically in two different ways �25–27�. First, Yakovlev and
Scrinzi �25� devised a model to support the experimental
study �14�. They made a simple rate equation ansatz to rep-
resent the 3d hole population. This population was used to-
gether with the Auger electron wave function to replace the
transition dipole matrix element in a formula to determine
the laser-streaked photoelectron spectra of xuv-ionized atoms
�28�. Second, Smirnova et al. �26� revisited the question of
Auger decay by weakly laser-dressed atoms in terms of a
fully coherent system of equations of motion �EOMs� formu-
lation for an essential-states model �29� using Hartree prod-
ucts. It is constructed to describe the Auger electron spec-
trum as simply as possible, decoupling the EOMs in terms of
a parametric decay width from Weisskopf-Wigner theory
�30–32� and solving the resulting system of equations ana-
lytically. Based on the ideas in Refs. �25–27� Zhao and Lin
�33� and Wickenhauser et al. �34� studied Fano resonances.
Kazansky and Kabachnik �35,36� developed an ab initio
theory for the solution of the time-dependent Schrödinger
equation for photoionization of inner atomic shells in terms
of a Fano-Feshbach formalism with short pulses that takes
into account near-threshold effects. Finally, Smirnova et al.
�37� applied the theory in Ref. �26� to devise a scheme to use
electron correlations to make attosecond measurements with-
out attosecond pulses.

Our study goes beyond previous work �25–27� and over-
comes many of its restrictions. We develop a nonrelativistic
multideterminantial ab initio formalism for the interaction of
two-color light with atoms. We set out from the Hartree-
Fock-Slater �HFS� approximation for the atomic orbitals.
Such mean-field orbitals are typically a good representation
to describe Auger decay �6�. Using general spin-singlet
configuration-state functions, we derive EOMs. We treat the
interaction with light semiclassically because, in contrast to a
one-electron quantum electrodynamic formalism �38,39�,
bandwidth and pulse duration are treated more easily. Natu-
rally, these play a decisive role in attosecond science. The
general EOMs are subsequently simplified to an essential-
states model �29� and the equations are solved analytically in
this special case considering, in contrast to the work in Ref.
�26�, also the laser dressing of the photoelectrons. Further-
more, the laser dressing is, in our case, not required to be
weak, yet the intensity should remain below the excitation
and ionization threshold of atomic ground-state electrons.
We make a model for the atomic electronic structure in terms
of scaled hydrogenic wave functions �25,27�. Our formalism
is a basis for the study of more complex situations in Auger
decay and its control. In forthcoming papers �40�, we will
investigate the interference between Auger electrons from a
twin xuv attosecond pulse. Further, one can examine what
new avenues for the control of Auger processes open up
when one relaxes the assumption of an essential-states model
to a multichannel treatment.

The paper is structured as follows. In Sec. II, we devise
EOMs to treat the quantum dynamics of Auger decay on an
ab initio level. Volkov waves are introduced in Sec. III to

describe the laser dressing. The EOMs are solved analyti-
cally for an essential-states model in Sec. IV. We devote Sec.
V to the determination of the dipole and two-electron matrix
elements for our formalism. We then apply our theory to the
laser-dressed Auger decay of krypton 3d vacancies; compu-
tational details are given in Sec. VI and results are presented
in Sec. VII. Conclusions are drawn in Sec. VIII.

Our equations are formulated in atomic units �41�. The
Bohr radius 1 bohr=1a0 is the unit of length and 1t0 repre-
sents the unit of time. The unit of energy is 1 hartree=1Eh.
Generally, we use the indices h , i , j ,m , . . . to denote occupied
orbitals, a ,b ,c ,d , . . . for unoccupied orbitals, and
p ,q ,r ,s , . . . for orbitals which may be occupied or unoccu-
pied.

II. QUANTUM DYNAMICS OF PHOTOIONIZATION
AND AUGER DECAY

This section forms the core of our theory. In Sec. II A, we
describe the schematic of xuv photoionization with subse-
quent Auger decay. The quantum mechanical foundation is
laid out in terms of an ab initio description in Secs.
II B–II D, where we introduce the Hamiltonian and the states
involved. The full nonrelativistic formalism is simplified us-
ing an approximate Hamiltonian in Sec. II E which com-
prises only those two-electron integrals which are essential
for Auger decay. We correct for our omissions by adjusting
the energies of the involved states appropriately. Finally, we
use the time-dependent Schrödinger equation with the ap-
proximate Hamiltonian to formulate EOMs in Sec. II F for
the quantum dynamics of xuv absorption and Auger decay.

A. Schematic of the processes

Auger decay can be treated theoretically in various de-
grees of sophistication �6,42�. We focus on a description in
terms of a single isolated resonance �no decay cascades�.
Then, in the language of a full scattering process, Auger
decay is a resonance in the double photoionization cross sec-
tion �6,42�. The scattering of an xuv photon � off an atom A
leads to the formation of a dication A2+ and the emission of
two electrons eP

− and eA
− ,

A + � → A2+ + eP
− + eA

− . �1�

Here, we ignore electron correlations among the ground-state
electrons and in the cation and the dication. We also ignore
the interaction between the outgoing electrons and the re-
maining ground-state electrons and the repulsion between the
outgoing electrons, so-called postcollision interactions �5,8�.

Assuming intermediate singly-ionized resonance states,
we break up Eq. �1� into two separate processes: the photo-
ionization of an atomic inner shell with subsequent Auger
decay �6,42� which is depicted in Fig. 1. To begin with, let us
disregard laser dressing. A level scheme of the states partici-
pating in the photoionization and subsequent Auger decay
are shown in Fig. 2. The atom is initially in the ground state
with energy E0. Then, it absorbs an xuv photon with an
energy of �X. This leads to the formation of a singly
inner-shell ionized cation with energy E+ and the ejection of
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a photoelectron. With the Einstein relation, the peak of the
energy distribution of the photoelectron spectrum—the
nominal photoelectron energy �P—is found to be
k�P

2 /2=�P=E0+�X−E+ �3,32�. The inner-shell hole Auger
decays; it is filled by a valence electron and the excess en-
ergy is transferred ultrafast by electron correlations to a sec-
ond valence electron which is expelled. This gives rise to an
Auger line in the electron spectrum at the nominal energy

k�A
2 /2=�A=E+−E2+. Afterwards, the system is in a dicationic

final state with energy E2+. This approximate mechanism of
an ionization step with a following electronic decay step is
frequently referred to as two-step model of Auger decay
�6,42�. Usually, this is a good approximation for atoms and
molecules. However, in condensed matter, rearrangement
processes take place which necessitate treating Auger decay
as a one-step process �6,42�.

Next, we consider the influence of an optical dressing
laser. Its intensity is assumed to be sufficiently low that it
does not excite or ionize atomic ground-state electrons.
However, the presence of the laser has a strong impact on the
outgoing electrons and this has important consequences for
the observed signal. We use Volkov waves �43,44� to de-
scribe continuum electrons and we exclude the possibility
that the initial xuv absorption does not ionize the atom but
induces only an excitation to a Rydberg orbital. This means
that effects such as electromagnetically induced transparency
for x rays �22,38,39,45–47� are not represented in our for-
malism. Always, the laser intensity is assumed to be suffi-
ciently low as not to modify the Auger decay rate noticeably
with respect to the laser-free case. In other words, we neglect
the impact of the laser on the energies E0, E+, and E2+ and
the Auger decay-relevant two-electron matrix elements �three
atomic ground-state orbitals and a continuum electron� be-
cause they are only weakly perturbed.

B. Atomic electronic structure

We assume a Z-electron atom with a closed-shell spin-
singlet ground state. The ground-state wave function is ap-
proximated by a Slater determinant of one-electron orbitals
�0�r�1�1 , . . . ,r�Z�Z�. Electron coordinates are given by r�i and
spin projection quantum numbers are given by �i for
i� �1, . . . ,Z�. We use the formalism of second quantization

where b̂p� and b̂p�
† are an annihilator and a creator of an

electron in the spin orbital �p��r��, respectively, which is the
tensor product of a spatial orbital �p�r�� and a spinor of pro-
jection quantum number � �41�. We define spin up �= 1

2 =↑
and spin down �=− 1

2 =↓ and make the following ansatz for
the atomic ground state,

��0� = 	
i=1

Z/2

b̂i↑
† b̂i↓

† �0� , �2�

using the vacuum state �0� �41�.
Let the full atomic electronic structure Hamiltonian be

denoted by ĤAT. It consists of the kinetic energy of the elec-
trons, the electron-nucleus attraction, and the electron-
electron repulsion �41�. We determine atomic orbitals within

the HFS approximation �48,49� to ĤAT. In a next step, we

use the HFS orbitals to represent ĤAT. As the HFS approxi-

mation is typically good, ĤAT naturally decomposes into a
part which is large and another which can be treated as a

perturbation. We can rewrite ĤAT as follows:

ĤAT = ĤHFS + ĤCH + Ĥee, �3�

FIG. 1. �Color online� Schematic of laser-dressed xuv photoion-
ization of an inner-shell electron with a subsequent Auger decay.
Only participating electrons are drawn. Photoelectron and Auger
electron lines are influenced by a dressing laser and are observed in
an electron spectrometer. Similar to Fig. 1a in Ref. �14�.

FIG. 2. Energy level scheme of the production of an inner-shell
hole by xuv photon absorption and its subsequent Auger decay. The
xuv photon energy is �X, the atomic ground-state energy is E0, the
singly-ionized state has an energy E+, and the doubly-ionized state
energy is E2+. The photoelectron has a nominal kinetic energy of
k�P

2 /2=�P and the Auger electron of k�A
2 /2=�A.
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assuming a representation in terms of the atomic orbitals. We
discuss these terms in the following paragraphs �41�.

The HFS Hamiltonian in Eq. �3� represented in terms of
HFS orbitals reads

ĤHFS = 

p

�p�b̂p↑
† b̂p↑ + b̂p↓

† b̂p↓� , �4�

with the spin-independent orbital energies �p. For notational
clarity, we assume a countably infinite set of final states in
Eq. �4� and in this entire section, i.e., we assume a finite
volume for box normalization of continuum wave functions
�32� or a �finite-element� basis set expansion of the radial
part of the atomic orbitals times spherical harmonics �38�.
From Sec. IV D onward, we will use continuum wave func-
tions, namely, plane waves and Volkov waves �32,43,44�.

The contribution ĤCH in Eq. �3� allows for the fact that in
the Hartree-Fock-Slater approximation �Eq. �4�� the electron-
nuclear interaction and the electron-electron interaction are
replaced by the one-electron central potential VHFS�r� where
the nucleus is at the origin of a spherical polar coordinate
system and the electron is at radius r �38�. This replacement
is reversed by the corrective term

ĤCH = 

p,q

��p�ĥCH��q��b̂p↑
† b̂q↑ + b̂p↓

† b̂q↓� , �5�

with

ĥCH = − VHFS�r� −
Z

r
�6�

in addition to the explicit treatment of electron correlations
in the next paragraph. There are no mixed terms involving a
spin-up and a spin-down orbital in Eq. �5� because the inter-
action �Eq. �6�� does not depend on the spin.

Electron correlations in Eq. �3� are described by

Ĥee =
1

2 

�,��,	,	�=↓

↑



p,p�,q,q�

Vp�p���q	q�	�b̂p�
† b̂p���

† b̂q�	�b̂q	,

�7�

which is the only two-particle operator �32,41� in the total
Hamiltonian of the atom. The two-electron integrals in Eq.
�7� are defined in terms of HFS spin orbitals by

Vp�p���q	q�	�= ��p��p����ĥee��q	�q�	��. The Coulomb interac-
tion is

ĥee =
1

�r� − r���
, �8�

where r� and r�� represent the coordinates of two electrons in
the atom.

C. Atom in xuv light

We assume that the xuv light is linearly polarized along
the direction e�X and the wavelength is sufficiently large for
the electric dipole approximation to be adequate �50�. Then,
the Hamiltonian for the interaction of electrons with xuv
light �50� reads

ĤX = 

p,q

Dpq�t��b̂p↑
† b̂q↑ + b̂p↓

† b̂q↓� , �9�

using the matrix element Dpq�t����p�ĥX��q� in terms of
atomic orbitals of the spin-independent one-electron interac-
tion with xuv light in length form,

ĥX = r� · E� X�t� . �10�

We use for the electric field of the xuv light

E� X�t� = �X�t�e�X cos��Xt� , �11�

with the pulse envelope �X�t� and the angular frequency �X.
With Eqs. �10� and �11�, we can rewrite the light-electron
interaction as follows:

Dpq�t� = dpq
�X�t�

2
�ei�Xt + e−i�Xt� , �12�

where the atomic dipole matrix elements are given by
dpq���p�r� ·e�X��q�.

The complete Hamiltonian consists of the atomic elec-
tronic structure �Eq. �3�� and the interaction with the xuv
light �Eq. �9�� and reads

Ĥ = ĤAT + ĤX. �13�

It will serve as the basis to treat the quantum dynamics of
xuv absorption and subsequent Auger decay.

D. Excited states

Having formulated the Hamiltonian of the problem �Eq.
�13�� and having specified the ground state �Eq. �2��, we
need to incorporate singly- and doubly-excited states in our
description to represent photoabsorption and Auger decay.
We use a single configuration-state function �CSF�, which is
a linear combination of singly- and doubly-excited determi-
nants, to stand for a singly- and a doubly-excited state, re-
spectively. Generally, singly-excited determinants are a sat-
isfactory approximation to singly-excited wave functions
which is the reason for the success of Koopmans’ theorem
�41�. However, doubly-excited states are not so well repre-
sented by doubly-excited determinants because of hole-hole
repulsion effects and continuum electron interaction. To
overcome this approximation, one needs to allow for con-
figuration interaction �41�.

Spin-singlet singly-excited states are represented by
�41,32�

�1�h
a� =

1
2

�b̂a↑
† b̂h↑ + b̂a↓

† b̂h↓���0� =
1
2

���h
a� + ��

h̄

ā�� .

�14�

Here, b̂h� creates a hole in the orbital h with spin projection

number � by destroying the electron and b̂a�
† creates an elec-

tron in the orbital a with spin projection number �. The hole
orbital indices h which are taken into account form the set
H; the indices for virtual �unoccupied� orbitals are a


Z
2

�Z is even because we consider only closed-shell atoms�.

CHRISTIAN BUTH AND KENNETH J. SCHAFER PHYSICAL REVIEW A 80, 033410 �2009�

033410-4



After the second equals sign in Eq. �14�, we introduce a
concise determinantial notation �41�. The bar over spatial
orbital indices indicates a spin orbital with spin down; no bar
refers to a spin orbital with spin up.

There are five classes of doubly-excited spin-singlet
configuration-state functions �Table 2.7 in Ref. �41��. We fo-
cus on the two classes in which all four spatial orbitals are
distinct. Using the concise notation of Eq. �14�, we have

�A
1 �ij

ab� =
1

12
�2��ij

ab� + 2��
ī j̄

āb̄� − ��
ī j

b̄a�

+ ��
ī j

āb� + ��i j̄
ab̄� − ��i j̄

bā�� , �15a�

�B
1 �ij

ab� = 1
2 ���

ī j

b̄a� + ��
ī j

āb� + ��i j̄
ab̄� + ��i j̄

bā�� . �15b�

The pairs of orbital indices �i , j� of double vacancies with
i� j, which are considered, constitute the set F. With the
restrictions a�b and a ,b


Z
2 for the virtual orbital indices,

we enumerate all distinct doubly-excited configurations.
The energy of the ground state �Eq. �2�� is found with the

electronic Hamiltonian �3� as follows:

E0 = ��0�ĤAT��0� = 2

i=1

Z/2

�i + ��0�ĤCH + Ĥee��0� . �16�

The first term on the right-hand side is twice the sum of
occupied Hartree-Fock-Slater orbital energies dubbed E0
�41�. The singly-excited states �Eq. �14�� have an energy of

Eh
a = �1�h

a�ĤAT�1�h
a� = E0 − �h + �a + �1�h

a�ĤCH + Ĥee�
1�h

a�

�17�

and the doubly-excited states �Eq. �15a�� have an energy of

Eij
ab � Eij,A

ab = Eij,B
ab = �A

1 �ij
ab�ĤAT�A

1 �ij
ab�

= E0 − �i − � j + �a + �b + �A
1 �ij

ab�ĤCH + Ĥee�A
1 �ij

ab� .

�18�

We have Eij,A
ab =Eij,B

ab because both doubly-excited CSFs con-
sist of determinants with excitations from the same spatial
orbitals into the same spatial orbitals, only the spinors
change. As our nonrelativistic Hamiltonian �3� does not de-
pend on spin, specifically, it does not contain spin-orbit cou-
pling, the energies are the same for all the excited determi-
nants and thus also for the configuration-state functions A
and B.

E. Simplified Hamiltonian

We have formulated a full ab initio description of the
problem with a truncated excitation manifold �41�. Our
framework represents an ideal starting point for further sim-
plifications. Eventually, it will be reduced to an essential-
states model in Sec. IV that contains only the absolutely
necessary energies and matrix elements to still describe the
physics of the processes. We form a matrix representation of

the Hamiltonian Ĥ �Eq. �13�� in terms of the orthonormal
basis,

B = ���0�, �1�h
a�, ��

1�ij
ab��h � H,�i, j� � F,a,b


 Z/2,a � b,� � �A,B�� . �19�

We decompose the representation of Ĥ into an exactly solv-

able part Ĥ0, given by the diagonal elements of Ĥ, and a

perturbation Ĥ1, given by the off-diagonal elements of Ĥ.
This is a so-called Epstein-Nesbet partitioning �51–53�. The
exactly solvable diagonal part is written compactly in first
quantization as

Ĥ0 = ��0�E0��0� + 

h�H



a
Z/2

�1�h
a�Eh

a�1�h
a�

+ 

�i,j��F



a,b
Z/2

a�b



���A,B�

��
1�ij

ab�Eij,�
ab ��

1�ij
ab� , �20�

where we use the energies from Eqs. �16�–�18�. These ener-
gies are well suited to be treated as �experimental� param-

eters �see Sec. VI�. Here, ĤX makes no contribution to the

diagonal matrix elements of Ĥ because it consists only of
off-diagonal elements.

The perturbation is given by Ĥ1. We do not use all off-

diagonal elements of Ĥ for Ĥ1 and, additionally, we make
approximations to the ones we retain. We use

Ĥ1 = 

h�H



a
Z/2

���0���0�ĤX�1�h
a��1�h

a�

+ �1�h
a��1�h

a�ĤX��0���0��

+ 

h�H

�i,j��F



a,b
Z/2

a�b



���A,B�

��1�h
a��1�h

a�Ĥee��
1�ij

ab���
1�ij

ab�

+ ��
1�ij

ab���
1�ij

ab�Ĥee�
1�h

a��1�h
a�� . �21�

Here, ĤHFS �Eq. �4�� makes no contribution because it con-

sists only of diagonal elements. The impact of ĤCH �Eq. �5��
is neglected totally and we consider the energies in Eq. �20�
to be parameters which shall compensate for this and the
other omissions that influence the energies of the involved

states. Similarly, electron correlations Ĥee are only included
when they cause transitions between singly- and doubly-
excited states, i.e., they are taken into account when they are
responsible for Auger decay which cannot be understood in a
mean-field picture. In principle, the neglected matrix ele-
ments can be incorporated allowing one to carry out a full ab
initio treatment of the problem.

F. Equation of motion formulation of photoionization
and Auger decay

To describe a photoionization process with subsequent
Auger decay, we solve the time-dependent Schrödinger equa-
tion
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Ĥ��,t� = i
�

�t
��,t� �22�

for an atom in xuv light. In terms of the states in the basis B
�Eq. �19��, a general state ket �or wave packet� is given by

��,t� = c0�t�e−iE0t��0� + 

h�H

a
Z/2

ch
a�t�e−iEh

at�1�h
a�

+ 

�i,j��F

���A,B�



a,b
Z/2

a�b

cij,�
ab �t�e−iEij,�

ab t��
1�ij

ab� , �23�

which we insert into the time-dependent Schrödinger equa-

tion �Eq. �22��. Exploiting Ĥ0��=E�� for states ���B
with energies E, we arrive at the EOM for the expansion
coefficients c0�t�, ch

a�t�, and cij,�
ab �t� by projecting on �� for

all ���B. The atom is initially in the ground state which
implies the initial conditions c0�0�=1 and ch

a�0�=cij,�
ab �0�=0.

We get the first EOM for ��= ��0� which represents the
rate of change of the ground-state amplitude,

ċ0�t� = − i2 

h�H



a
Z/2

Dha�t�ei�E0−Eh
a�tch

a�t� . �24�

We consider here the weak absorption limit, i.e., c0�t��1 for
all times. The rate of change will, nevertheless, prove highly
beneficial in determining the cross section in Sec. IV E and
the photoelectron spectrum in Sec. IV F.

The second EOM results from ��= �1�h
a� and describes

the inner-shell hole amplitude for h�H,

ċh
a�t� = − i2Dah�t�ei�Eh

a−E0�t

− i 

�i,j��F



b
Z/2
a�b

�−3

2
vhb�ij�

� ei�Eh
a−Eij,A

ab �tcij,A
ab �t�

−
1
2

vhb�ij�
� ei�Eh

a−Eij,B
ab �tcij,B

ab �t�� . �25�

The first term on the right-hand side of the equation repre-
sents hole production due to absorption of xuv light; the
second term describes the loss of hole amplitude caused by
Auger decay. In this equation, the two-electron matrix ele-
ment in terms of spatial �e.g., Hartree-Fock-Slater� atomic
orbitals is denoted by

vpp�qq� = ��p�p��ĥee��q�q�� . �26�

Further, we define the antisymmetrized two-electron matrix
element vpp��qq��=vpp�qq�−vpp�q�q and the symmetrized two-
electron matrix element vpp��qq��=vpp�qq�+vpp�q�q which con-
sist of a direct matrix element vpp�qq� and an exchange matrix
element vpp�q�q.

The third EOM is obtained setting ��= ��
1�ij

ab�; it de-
scribes the Auger decay amplitude

ċij,A
ab �t� = i3

2 

h�H

vhb�ij�e
i�Eij,A

ab −Eh
a�tch

a�t� , �27a�

ċij,B
ab �t� = i

1
2



h�H

vhb�ij�e
i�Eij,B

ab −Eh
a�tch

a�t� . �27b�

We can reduce the EOMs �Eqs. �25� and �27a�� further by
ignoring the electron exchange matrix element vhbji and ex-
ploiting the fact that the energies of the doubly-excited states
�Eq. �18�� are the same, Eij

ab�Eij,A
ab =Eij,B

ab . Then, the second
EOM �Eq. �25�� for the inner-shell hole amplitude simplifies
to

ċh
a�t� = − i2Dah�t�ei�Eh

a−E0�t

+ i22 

�i,j��F



b
Z/2
a�b

vhbij
� ei�Eh

a−Eij
ab�tcij

ab�t� �28�

for h�H with the definition cij
ab�t��cij,B

ab �t�. Again ignoring
electron exchange and using Eij

ab leads us to the relation
cij,A

ab �t�=3cij,B
ab �t� between Eqs. �27a� and �27b�; thereby, we

use that both cij,A
ab �t� and cij,B

ab �t� vanish initially. Then, we
need to retain only the simplified Eq. �27b� of the two EOMs
for the Auger decay amplitude �Eq. �27a�� yielding

ċij
ab�t� = i

1
2



h�H

vhbije
i�Eij

ab−Eh
a�tch

a�t� . �29�

Equations �28� and �29� constitute a linear system of differ-
ential equations which contains all phase information and
thus describes interference effects.

III. LASER DRESSING

In Sec. II, we devised a formalism to describe the quan-
tum dynamics of the photoionization of the inner shell of an
atom by xuv light and the subsequent Auger decay. Here we
expand our formalism to include an additional optical dress-
ing laser of moderate intensity. The impact of the laser on
ground-state electrons is neglected and only the modification
of the continuum wave functions of the photo- and the Auger
electron is considered.

To begin with, we simplify the manifold of virtual states
by replacing it by free-electron wave functions, the momen-
tum normalized plane waves �32�,

�P,k��r�,t� =
1

�2��3/2ei�k�·r�−�k�2/2�t�. �30�

This substitution explicitly excludes Rydberg states. It is jus-
tified by the fact that we are only concerned with continuum
electrons of sizable kinetic energy. A consequence of our
replacement is that the new continuum wave functions are no
longer strictly orthogonal to the bound-state wave functions
because both sorts of wave functions stem from different

Hamiltonians: p�̂2 /2=−�� 2 /2 and ĤHFS �Eq. �4�� �32�. Note
that we exploited strict orthogonality in the derivations of
Sec. II.

When we additionally consider a laser field, our replace-
ment of continuum wave functions becomes known as
strong-field approximation �44� in which the influence of the
Coulomb potential on continuum states is neglected. In other
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words, laser dressing can be incorporated easily into our
treatment by replacing the laser-free continuum functions
�P,k��r� , t� by Volkov waves �43,44� �see Eq. �34� below�. In
doing so, electrons in the atomic ground-state orbitals, how-
ever, are considered to be uninfluenced by the laser.

The laser pulse is assumed to be long with respect to all
other time scales in this paper and is taken to be monochro-
matic and continuous wave. Let the laser radiation of angular
frequency �L be linearly polarized with the polarization vec-
tor e�L. The vector potential is

A� L�t� = A� L,0 sin��L�t + �t�� , �31�

where the amplitude is A� L,0=−ALe�L. The laser phase at
t=0 can be specified using �t. Then, the laser electric field
follows from

E� L�t� = −
dA� L�t�

dt
= E� L,0 cos��L�t + �t�� , �32�

where the electric-field amplitude is E� L,0=�LALe�L �see Eq.
�11��. We assume free fields, i.e., a vanishing scalar potential,
and the Coulomb gauge �44,50�.

The Hamiltonian of a free electron in a laser field in ve-
locity form �44,50� is

ĥV =
�p�̂ + A� L�t��2

2
, �33�

using the electron momentum operator p�̂ =−i�� . The solution
of the time-dependent Schrödinger equation �Eq. �22�� with
Hamiltonian �33� reads

�V,k��r�,t� =
1

�2��3/2ei�k�·r�−�V�k�,t�� �34�

and is called a Volkov wave �43,44,54�. The Volkov phase is
given by

�V�k�,t� =
1

2
�

−�

t

�k� + A� L�t���2e�t�dt�. �35�

The factor e�t� for �
0 ensures the convergence of the in-
tegral. After the integral has been performed, the limit
�→0+ is taken. The Volkov phase vanishes at −�. Inserting
Eq. �31� into Eq. �35�, we find

�V�k�,t� = � k�2

2
+ UP�t − k� · �� L cos��L�t + �t��

−
UP

2�L
sin�2�L�t + �t�� , �36�

where the ponderomotive potential is

UP =
AL

2

4
=

2�

�L
2 �IL,0, �37�

with the electric-field amplitude �E� L,0�=8��IL,0 for a laser
with intensity IL,0. The fine-structure constant is �. During a
laser cycle, the maximum classical excursion from the origin
of a free electron is given by �44�

�� L =
A� L,0

�L
= −

8��I0,L

�L
2 e�L. �38�

The exponential of the Volkov phase �Eq. �36��, e−i�V�k�,t�,
can be expanded using the generating function of the gener-
alized Bessel functions Jm�u ,v� �44,55� which reads

e−i�u cos �+v sin�2��� = 

m=−�

�

�− i�meim�Jm�u,v� �39�

by setting =�− �
2 in Eq. �10� in Ref. �44�. The Jm�u ,v� can

be evaluated in terms of the ordinary Bessel functions
Jm−2n�u� and Jn�v� using �44,55�

Jm�u,v� = 

n=−�

�

Jm−2n�u�Jn�v� . �40�

Another connection to ordinary Bessel functions is the rela-
tion Jm�u�=Jm�u ,0� with which Eq. �39� reduces to the fa-
miliar Jacobi-Anger expansion �56�. Finally, the temporal
phase factor reduces to

e−i�V�k�,t� = e−i�k�2/2+UP�t 

m=−�

�

e−im��L�t+�t�−��/2��

� Jm��� L · k�,
UP

2�L
� . �41�

IV. ESSENTIAL-STATE MODEL FOR LASER-DRESSED
PHOTOIONIZATION AND AUGER DECAY

This section is devoted to a solution of the EOMs from
Sec. II F for an essential-states model �26,27,29� which is a
fairly drastic approximation to the simplified Hamiltonian of
Sec. II E. However, it retains the essential physics of the
problem. Namely, we include only the states from three mag-
netic subshells of the occupied orbital manifold and form
essential states from them by averaging the dipole and two-
electron matrix elements in Sec. IV A over the subshells.
Subsequently, we decouple the system of EOMs in Sec. IV B
using perturbation theory. The resulting equations are
adapted to account for laser dressing following Sec. III and
are solved analytically. We obtain the hole-state amplitude
in Sec. IV C which is used to find the Auger electron spec-
trum in Sec. IV D. Finally, we derive the xuv-absorption
cross section in Sec. IV E and the photoelectron spectrum in
Sec. IV F.

A. Matrix elements and energies

To begin with, let us simplify the problem and the nota-
tion. We represent photo- and Auger electrons by plane
waves �Eq. �30�� with momentum vectors k�P and k�A, respec-
tively �laser dressing is not treated at this point�. Moreover,
we make the following replacements: a→k�P and b→k�A in
our previous equations. Summations over a and b become
integrals over k�P and k�A. As h, i, and j refer to individual
orbitals, their use is not meaningful anymore in our model
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context and are eliminated or adequately substituted as de-
tailed in the following.

To construct the matrix elements of the essential-states
model, we note that the set of hole orbital indices H refers to
orbitals from a single magnetic subshell. The pairs
�i , j��F refer to orbital i from one magnetic subshell and
orbital j from another magnetic subshell. The number of
single hole states is #H and the number of double hole states
is #F. The xuv interaction matrix element is taken to be

d̄�k�P� = Qd 1

#H 

h�H

�dk�Ph�2, �42�

while the Auger decay matrix element is

v̄�k�A� = Qv 1

#H # F 

h�H



�i,j��F

�vhk�Aij�2. �43�

Here, Qd
0 is the strength of the dipole matrix element and
Qv
0 is the strength of the two-electron matrix element.
Both strengths will be determined later in Eqs. �70� and �54�,
respectively, based on �experimental� parameters. We chose
to use the rms value to form average matrix elements be-
cause in the following equations frequently the modulus
squared of the matrix elements is used.

Within the scope of our essential-states model, the ener-
gies of the states of Sec. II D and Fig. 2 are as follows. The
ground-state energy �Eq. �16�� is E0=E0, neglecting the in-

fluence of ĤCH+ Ĥee. The energy of singly-excited states �Eq.
�17�� is decomposed into the kinetic energy of the photoelec-
tron k�P

2 /2 and the energy of the cation E+. It becomes
Eh

a→k�P
2 /2+E+ with E+=E0−�h �the orbital indices in H de-

note orbitals from the same subshell and thus �h is the same
for all h�H�. For doubly-excited states �Eq. �18��, we set
Eij

ab→ �k�P
2 +k�A

2 � /2+E2+ with E2+=E0−�i−� j being the energy
of the dication �again �i and � j are the same for all
�i , j��F�. With these definitions, we find for the single ion-
ization potential I+=E+−E0=−�h and for the double ioniza-
tion potential I2+=E2+−E0=−�i−� j �see also Fig. 2�. The
nominal photoelectron energy from the stationary-state en-
ergy level scheme is �P=E0−E++�X. Likewise,
�A=E+−E2+ is the nominal Auger electron energy.

Under these assumptions, we find for the inner-shell hole
amplitude �Eq. �28��—in which we replaced the hole index h
by the subscript P and the double index ij by the subscript
A—the expression

ċ̄P
k�P�t� =

− i
�2

d̄�k�P��X�t�ei�k�P
2/2−�P�t

+ i2�2�
R3

v̄��k�A�e−i�k�A
2 /2−�A�tc̄A

k�Pk�A�t�d3kA

�w�k�P,t�

.

�44�

The Auger decay amplitude �Eq. �29�� is

ċ̄A
k�Pk�A�t� =

i
2

v̄�k�A�ei�k�A
2 /2−�A�tc̄P

k�P�t� . �45�

The EOMs of the essential-states model are formed by Eqs.
�44� and �45�. They are very similar to Eqs. �10� and �11� in
Refs. �26,57�.

B. Perturbative decoupling

Despite our considerable simplifications in Sec. IV A,
Eqs. �44� and �45� still form a linear system of coupled in-
tegrodifferential equations. The coupling stems from the sec-
ond term w�k�P , t� on the right-hand side of Eq. �44�. It de-
scribes the Auger decay of inner-shell holes and can be
approximated in terms of second-order time-dependent per-
turbation theory �Weisskopf-Wigner theory� �30–32�. This
treatment allows us to decouple the differential equation �Eq.
�44�� by eliminating the dependence on c̄A

k�Pk�A�t� in terms of a
decay width � and an energy shift �R as follows:

w�k�P,t� = �− i�R −
�

2
�c̄P

k�P�t� . �46�

The energy shift of the resonance state follows from

�R,h = 

�i,j��F



���A,B�

Pr�
R3

���
1�ij

k�Pk�A�Ĥ1�1�h
k�P��2

Eh
k�P − Eij,�

k�Pk�A
d3kA

� 

�i,j��F

Pr�
R3

2�vhk�Aij�2

Eh
k�P − Eij

k�Pk�A
d3kA, �47�

where Pr indicates that the principle value of the integral has
to be taken. The result was obtained by neglecting electron
exchange and using Eij

k�Pk�A �Eij,A
k�Pk�A =Eij,B

k�Pk�A. With the same as-
sumptions, the decay width becomes

�h = 2� 

�i,j��F



���A,B�

�
R3

���
1�ij

k�Pk�A�Ĥ1�1�h
k�P��2

���Eh
k�P − Eij,�

k�Pk�A�d3kA

� 2� 

�i,j��F

�
R3

2�vhk�Aij�2��Eh
k�P − Eij

k�Pk�A�d3kA. �48�

As we assume the two-step model of Auger decay �6,42�, �h

is independent of the photoelectron momentum k�P. In Eqs.
�47� and �48�, we mark explicitly the dependence on the hole
orbital h�H. As all h�H are from a single magnetic sub-
shell and no direction is distinguished, the �R,h and the �h
agree for all h�H. Therefore, we may drop the dependence
on h in what follows.

In the derivation of Eqs. �46�–�48�, we implicitly assume
that ċ̄P

k�P�t� varies only slightly on time intervals �t−� ; t� for
t� �−� ;�� and a small �
0 with respect to all time scales
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in the problem �27,58�. Otherwise Eq. �46� would not be
meaningful. We can integrate Eq. �45� formally,

c̄ij
k�Pk�A�t� = �

t−�

t

ċ̄ij
k�Pk�A�t��dt� + �

−�

t−�

ċ̄i j
k�Pk�A�t��dt�

=
1
2

v̄�k�A�c̄h
k�P�t�

ei�k�A
2 /2−�A−i��t

k�A
2

2
− �A − i�

. �49�

Here, e�t with �
0 ensures the initial condition
c̄A

k�Pk�A�−��=0 and the convergence of the integral where
�→0+ is performed after the integration. The last equality
follows from �t−�

t ċ̄A
k�Pk�A�t��dt�= c̄A

k�Pk�A�t�− c̄A
k�Pk�A�t−��, where the

term for t−� cancels the second integral.
Our result for the Auger amplitude �Eq. �49�� is inserted

into the expression for w�k�P , t� �the second term on the right-
hand side of Eq. �44�� yielding

w�k�P,t� = 2i�
R3

�v̄�k�A��2e�t

k�A
2

2
− �A − i�

c̄h
k�P�t�d3kA. �50�

With the decomposition �56�

1

x − i�
= Pr

1

x
+ i���x� , �51�

we obtain Eqs. �46�–�48� after dropping the subscript h,
eliminating the sum over final states and replacing the ener-
gies and two-electron matrix elements in Eqs. �47� and �48�.
In detail, we find

�R = Pr�
R3

2�v̄�k�A��2

�A −
k�A

2

2

d3kA �52�

and

� = 2��
R3

2�v̄�k�A��2���A −
k�A

2

2
�d3kA. �53�

A suitable value for the strength of the Auger decay ma-
trix element �Eq. �43�� can be obtained from Eq. �53� via

Qv = �par

��Qv=1
, �54�

provided the decay width �par is taken to be an �experimen-
tal� parameter.

C. Hole-state amplitude with laser dressing

In Secs. IV A and IV B, we disregarded laser dressing and
focused on the EOMs with xuv light only. In the framework
of Sec. III, we can easily incorporate laser dressing in the
strong-field approximation �44� into our equations; the only

change in our EOMs �Eqs. �44� and �45�� concerns the time-
dependent phase factors i�k�P

2 /2�t which need to be replaced
by Volkov phases i�V�k�P , t� �Eq. �36��. Using relation �46�,
we decouple the hole amplitude from the Auger decay am-
plitude and recast Eq. �44� into

ċ̄P
k�P�t� =

− i
2

d̄�k�P��X�t�ei�V�k�P,t�e−i�Pt + �− i�R −
�

2
�c̄P

k�P�t� ,

�55�

assuming that the Auger decay is uninfluenced by the laser
and thus the second-order energy shift �R �Eq. �52�� and the
Auger decay rate � �Eq. �53�� are meaningful. The first-order
ordinary differential equation �Eq. �55�� is solved analyti-
cally �56� yielding

c̄P
k�P�t� =

− i
2

d̄�k�P�e−i��R−i��/2��t�
−�

t

�X�t��

� ei�V�k�P,t�ei��R−i��/2�−�P�t�dt�. �56�

To solve the time integration in Eq. �56�, we expand the
Volkov phase as in Eq. �41� and insert the inverse Fourier
transform of the envelope of the xuv pulse �Eq. �11��,

�X�t�� =
1

2�
�

−�

�

�̃X���e−i�t�d� . �57�

We obtain for the laser-dressed hole amplitude �Eq. �56�� the
expression

c̄P
k�P�t� =

− 1

22�
d̄�k�P� 


m=−�

�

eim��L�t−�/2�Jm��� L · k�P,
UP

2�L
�

� �
−�

� �̃X���ei�k�P
2/2+m�L+UP−�P−��t

k�P
2

2
+ m�L + UP − �P + �R − � − i

�

2

d� .

�58�

For moderate laser intensities, we have UP / �2�L��0. Then,
the generalized Bessel functions go over into ordinary Bessel
functions �44,55�. Further, the limit limu,v→0 Jm�u ,v�=�m,0
exists which completely removes the dependence of the
equation on the laser for vanishing intensity. With this ap-
proximation, our expression �58� goes over into Smirnova
et al.’s �26,59� Eq. �15�.

D. Laser-dressed Auger electron spectrum

The amplitude to observe an Auger electron with momen-
tum k�A for a photoelectron with momentum k�P at time t is
found by integrating Eq. �45� from −� to t. Beforehand,
expression �45� needs to be adapted for laser dressing by
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replacing i�k�A
2 /2�t with i�V�k�A, t� after which we insert the

hole-state amplitude �Eq. �58��. We obtain the following
closed-form expression:

c̄A
k�Pk�A�t� =

− i

4�
d̄�k�P�v̄�k�A� 


m=−�

�

eim��L�t−�/2�

� Jm��� L · k�P,
UP

2�L
�

� �
−�

� �̃X���

k�P
2

2
+ m�L + UP − �P + �R − � − i

�

2

� �
−�

t

ei�k�P
2/2+m�L+UP−�P−�A−��t�ei�V�k�A,t��dt�d� .

�59�

We are only interested in the Auger electron spectrum after
the xuv pulse is over and the induced hole amplitude has
decayed. Therefore, after expanding the Volkov phase �Eq.
�41��, we let t→� and simplify the time integration in Eq.
�59� by observing that

��� − ��� =
1

2�
�

−�

�

ei��−���t�dt� �60�

is a representation for Dirac’s � distribution �32,56�. Finally,
we obtain the laser-dressed Auger amplitude,

c̄A
k�Pk�A��� =

i

2
d̄�k�P�v̄�k�A� 


m,n=−�

�

ei�m+n���L�t−�/2�

�Jm��� L · k�P,
UP

2�L
�Jn��� L · k�A,

UP

2�L
�

�S� k�P
2

2
+ m�L + UP,

k�A
2

2
+ n�L + UP� , �61�

with the line shape function

S��P,�A� =
�̃X��P + �A − �P − �A�

�A − �A − �R + i �
2

, �62�

which depends only on the absolute values of the momenta
k�P and k�A. Formula �61� goes over into Eq. �18� in Ref.
�26�—apart from a factor i

2 in our expression—by setting
UP=0, replacing the generalized Bessel functions by ordi-
nary ones and removing the dependence on the laser for the
photoelectrons by using Jm�0�=�m,0.

We are now in a position to determine the laser-dressed
Auger electron spectrum where we consider the case that the
photoelectron is not observed. Therefore, we integrate the
probability density �c̄A

k�Pk�A����2 �Eqs. �61� and �62�� over all
possible photoelectron momenta to eliminate this degree of

freedom. This yields for the probability density �32� to ob-
serve an Auger electron with momentum vector k�A,

PA�k�A� = �
R3

�c̄A
k�Pk�A����2d3kP. �63�

E. xuv-absorption cross section of laser-dressed atoms

The probability of finding an atom in the ground state is
given in terms of the ground-state amplitude c̄0�t� in the
wave packet �Eq. �23�� by

P0�t� = �c̄0�t��2 = c̄0
��t�c̄0�t� . �64�

Consequently, the negative of the xuv-absorption rate �38� is

− �X�t� = Ṗ0�t� = ċ̄0
��t�c̄0�t� + c̄0

��t�ċ̄0�t� � ċ̄0
��t� + ċ̄0�t�

= 2 Re ċ̄0�t� = 2 Im�iċ̄0�t�� . �65�

The center line follows from the weakness of xuv absorption,
i.e., c̄0�t��1 for all t. The rate of change of the ground-state
amplitude follows from the first EOM �Eq. �24��; adapted for
the essential-states model with laser dressing, it reads

ċ̄0�t� =
− i
2
�

R3
d̄��k�P��X�t�ei�Pte−i�V�k�P,t�c̄P

k�P�t�d3kP. �66�

Inserting this EOM into Eq. �65�, expanding the Volkov
phase factor using Eq. �41�, and inserting the laser-dressed
hole-state amplitude �Eq. �58��, we obtain the rate

�X�t� = − 2 Im�iċ̄0�t�� =
1

2�
�X�t� 


m,n=−�

� �
R3

Jm��� L · k�P,
UP

2�L
�

�Jn��� L · k�P,
UP

2�L
��d̄�k�P��2

��
−�

�

Im� �̃X���e−i�tei�n−m���L�t+�t�−�/2�

k�P
2

2
+ n�L + UP − �P + �R − � − i

�

2
�d�d3kP.

�67�

The absorption rate �Eq. �67�� in conjunction with the flux
JX= IX,0 /�X at the xuv �peak� intensity IX,0 with photon en-
ergy �X allows one to obtain the xuv photoabsorption cross
section �60� via

� =
�X

JX
. �68�

Note that for a continuous-wave approximation of mono-
chromatic radiation, we have for the xuv field strength
�̃X���= �̃X,0���� and �X�t�=EX,0=8��IX,0=const for all t.
The relation between time- and frequency-domain field am-
plitudes follows from Eq. �57� and is EX,0= 1

2��̃X,0. For large
t, terms with m�n oscillate rapidly in the absorption rate
�Eq. �67��. We discard these terms and retain only the con-
stant terms with m=n. This leads to the expression
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���X� = 8���X 

m=−�

� �
R3

Jm��� L · k�P,
UP

2�L
�2

�Im� �d̄�k�P��2

E+ +
k�P

2

2
+ m�L + UP − E0 + �R − �X − i �

2 �
�d3kP �69�

by expanding �P=E0−E++�X. For vanishing laser intensity,
the structure of this equations becomes the same as from Eq.
�40� in Ref. �38�. There, however, �R was not accounted for.

Similarly to Eq. �54�, a suitable value for the strength of
the dipole matrix element �Eq. �42�� can be obtained from
Eq. �69�, omitting laser dressing, via

Qd = �par��par�
���par��Qd=1

, �70�

provided the cross section �par��par� at an energy �par in the
range of energies of interest or close to the range is taken as
a �experimental� parameter.

F. Laser-dressed photoelectron spectrum

We determined the rate with which xuv light is absorbed
�X�t� �Eq. �65�� in Sec. IV E. The rate was derived under the
premise of weak xuv absorption which allowed us to ap-
proximate the ground-state amplitude by c̄0�t��1 for all t.
Therefore, �c̄0�t��2 cannot be used to obtain the probability
with which photoelectrons are ejected. Instead, we need to
integrate the rate

PP�t� = �
−�

t

�X�t��dt� = − 2�
−�

t

Im�iċ̄0�t���dt�. �71�

In expression �71�, we insert the ground-state amplitude rate
of change �Eq. �66�� and the laser-dressed hole-state ampli-
tude �Eq. �58�� and expand the Volkov phase factor �Eq.
�41�� to obtain the probability

PP�t� =
1

2�



m,n=−�

� �
R3

Jm��� L · k�P,
UP

2�L
�

�Jn��� L · k�P,
UP

2�L
��

−�

t

�X�t��

��
−�

�

Im��̃X���
�d̄�k�P��2e−i�tei�n−m���L�t+�t�−�/2�

k�P
2

2
+ n�L + UP − �P + �R − � − i �

2�
�d�dt�d3kP. �72�

Letting t→�, replacing the real-valued �X�t�� by the com-
plex conjugate of Eq. �57�, and omitting the integration over
k�P, we find the probability density for photoelectron ejection

by the xuv pulse. The time integration yields a � distribution
�Eq. �60�� of the form �(��−�+ �n−m��L). Replacing
m̃�n−m, we arrive at the probability density

P̃P�k�P� �
1

2�
�d̄�k�P��2 


m̃=−�

�



n=−�

�

�Jn−m̃��� L · k�P,
UP

2�L
�Jn��� L · k�P,

UP

2�L
�

� Im��−�

� eim̃��L�t−�/2��̃X
� �� − m̃�L��̃X���

k�P
2

2
+ n�L + UP − �P + �R − � − i �

2

d�� .

�73�

The photoelectron spectrum depends on the Fourier trans-
form of the xuv field envelope at � and at �− m̃�L. This
functional dependence indicates interference effects between
channels with a different number of laser photons provided
that the xuv field envelope has sufficient width.

V. ELECTRONIC STRUCTURE

The theory of Secs. II–IV treated the electronic structure
of an atom as an abstract quantity which was represented by

the orbital energies in ĤHFS �Eq. �4��, the one-electron matrix

elements in ĤCH �Eq. �5��, the dipole matrix elements in ĤX

�Eq. �9��, and the two-electron matrix elements in Ĥee �Eq.
�7��. Programs exist to carry out the Hartree-Fock-Slater ap-
proximation �48,49� and compute the required one- and two-
electron matrix elements. To evaluate the essential-states
model of Sec. IV, however, we use a much simpler model
approach in terms of scaled hydrogenic functions for the
atomic orbitals. This treatment follows Refs. �25–27�. The
parametrization of the model corrects to a large extend for
inaccuracies in the orbital energies and the matrix elements.
If the results of the essential-states model depended sensi-
tively on the electronic structure, then due to the substantial
simplifications made, its physical predictions would be un-
trustworthy. Despite the use of approximate orbitals, the
equations derived in this section are completely general and
an ab initio evaluation in terms of Hartree-Fock-Slater orbit-
als is feasible.

We use hydrogenic wave functions to model the spatial
atomic orbitals in spherical polar coordinates �̃i�r ,� ,��
=Rnili

�r�Ylimi
�� ,�� �32�. Here, ni, li, and mi are the principal,

orbital angular momentum, and magnetic quantum number,
respectively, of orbital i� �1, . . . ,Z /2�. The radial part is
Rnili

�r� and the angular dependence is described by spherical
harmonics Ylimi

�� ,��. We scale the hydrogenic wave func-
tions such that their energy Eni

=−Z2 / �2ni
2� matches the en-

ergy �i of the corresponding orbital in the chosen atom
�25,27�. For this purpose we use an effective charge

Zeff,i = ni
− 2�i. �74�

This scaling also adjusts the spatial extend of the orbital
appropriately.
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A. Dipole matrix elements

The dipole matrix elements for xuv absorption �Eq. �12��
are given by the promoted wave function in momentum
space �32,61�,

dk�Ph =
1

�2��3/2�
R3

e−ik�·r�z�h�r��d3r , �75�

with r� ·e�X=z. We use an atomic orbital �h�r�� for the vacancy
created by photoionization and the spatial part �P,k��r� ,0� of a
plane wave �Eq. �30��. This comprises also the case when
laser dressing is considered because the laser dressing mani-
fests itself exclusively �54� in the time-dependent Volkov
phase �Eq. �35��. We use the Rayleigh expansion �62� of the
plane waves in Eq. �75�,

eik�·r� = 4�

l=0

�



m=−l

l

ilYlm
� ��k,�k�jl�kr�Ylm��,�� . �76�

The directions of k� and r� are specified by the polar angles �k,
�k and �, �, respectively. Here, jl denotes a spherical Bessel
function �56�. We arrive at the dipole matrix element �Eq.
�75�� in spherical polar coordinates,

d̃h�kP,�kP
,�kP

� = 22

3 

l��lh−1,lh+1�

l�0

�− i�l

�Y�lh,1,l;mh,0,mh�Ylmh
��kP

,�kP
�Dnhlh

�l� �kP� .

�77�

Corresponding to orbital h, we have the principal nh, orbital
angular momentum lh, and magnetic mh quantum numbers.
The angular integral is

Y�l1,l2,l3;m1,m2,m3� = �
4�

Yl3m3

� ���Yl2m2
���Yl1m1

���d�

=�2l1 + 1��2l2 + 1�
4��2l3 + 1�

C�l1,l2,l3;m1,m2,m3�C�l1,l2,l3;0,0,0� , �78�

where C�l1 , l2 , l3 ;m1 ,m2 ,m3� is a Clebsch-Gordan coefficient
�62�. The integral restricts the accessible angular momenta
and magnetic quantum numbers in the photoionization pro-
cess. The radial dipole matrix elements are

Dnhlh
�l� �kP� = �

0

�

jl�kPr�r3Rnhlh
�r�dr �79�

in terms of the radial part Rnhlh
�r� of the atomic orbital h.

B. Auger transition matrix elements

Auger decay is mediated by the two-electron matrix ele-
ment,

vhk�Aij � �̃h
ij�k�A� =

1

�2��3/2�
R3

e−ik�A·r��h
ij�r��d3r . �80�

Here, �h
ij�r�� and �̃h

ij�k�A� are the configuration space and mo-
mentum space Auger electron wave functions, respectively

�25,32�. With the two-electron repulsion ĥee �Eq. �8��, the
configuration space Auger electron wave function reads

�h
ij�r�� = � j�r���

0

� �
4�

�̃h
��r�,���ĥee�̃i�r�,���r�2dr�d��.

�81�

To simplify ĥee, we replace it by the Laplace expansion �63�,

1

�r� − r���
= 


l=0

�
4�

2l + 1
�l�r,r�� 


m=−l

l

Ylm
� ���,���Ylm��,�� ,

�82�

with the decomposition

�l�r,r�� =
r�l

rl+1��r − r�� +
rl

r�l+1��r� − r� �83�

for the radial dependence, where � is the Heaviside step
function with ��0�= 1

2 . The wave function of the Auger elec-
tron is in spherical polar coordinates,

�̌h
ij�r,�,�� = �̃ j�r,�,�� 


l with ��lhlli�
li+lh+l even

4�

2l + 1

�Y�lh,l,li;mh,mi − mh,mi�

�Rnhlh,nili,l
�1� �r�Ylmi−mh

��,�� . �84�

The symbol ��lhlli� represents the triangular condition for
which Clebsch-Gordan coefficients do not vanish �62�. The
radial dependence in Eq. �84� is expressed by

Rnhlh,nili,l
�1� �r� = �

0

�

Rnhlh
�r���l�r,r��Rnili

�r��r�2dr�. �85�
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We would like to calculate the momentum space represen-
tation �Eq. �80�� of the Auger electron wave function �Eq.
�84�� �32,61�. The plane wave is expanded in terms of spheri-
cal Bessel functions �Eq. �76��,

�́h
ij�kA,�kA

,�kA
�

= 42� 

l with ��lhlli�
li+lh+l even

1

2l + 1

�Y�lh,l,li;mh,mi − mh,mi� 

l� with ��ll�lj�

l+l�+lj even

�− i�l�

�Y�l,lj,l�;mi − mh,mj,mi + mj − mh�

�Rnhlh,nili,njlj,l,l�
�2� �kA�Yl�mi+mj−mh

��kA
,�kA

� �86�

with

Rnhlh,nili,njlj,l,l�
�2� �kA� = �

0

�

jl��kAr�Rnhlh,nili,l
�1� �r�Rnjlj

�r�r2dr .

�87�

We can decompose Rnhlh,nili,njlj,l,l�
�2� �kA� �Eq. �87�� into a

product of two independent one-dimensional integrals by as-
suming the product ansatz

�l�r,r�� = �1,l�r��2,l�r�� �88�

for the radial dependence �Eq. �83��. This simplifies our task
to evaluate Eq. �87� greatly. It becomes

Rnhlh,nili,njlj,l,l�
�2� �kA� = Rnjlj,l,l�

�3� �kA�Rnhlh,nili,l
�4� , �89�

with

Rnjlj,l,l�
�3� �kA� = �

0

�

jl��kAr��1,l�r�Rnjlj
�r�r2dr �90�

and

Rnhlh,nili,l
�4� = �

0

�

Rnhlh
�r���2,l�r��Rnili

�r��r�2dr�. �91�

VI. COMPUTATIONAL DETAILS

All computations were carried out with MATHEMATICA

�64�. In our essential-states model of Auger decay, the set of
hole orbitals H comprises all five 3d orbitals of krypton. The
set of final states F consists of pairs of orbitals, the first is
the 4s orbital and the second is a 4p orbital with magnetic
quantum number m� �−1,0 ,1�. We use the same atomic
orbital energies for krypton as Ref. �27�: �3d=−70 eV, �4s
=−15 eV, and �4p=−15 eV. The effective charges �Eq.
�74�� assume the values Z3d=6.8, Z4s=4.2, and Z4p=4.2. The
orbital energies lead us to state energies �disregarding

ĤCH+ Ĥee� via Eqs. �16�–�18�. This yields, for xuv photons
with �X=90 eV, a nominal photoelectron energy of �P
=E0−E++�X=�3d+�X=20 eV �26,27�. We obtain a nomi-

nal Auger electron energy of �A=E+−E2+=�4s+�4p−�3d
=40 eV. The Auger decay width of a 3d hole in krypton is
artificially set to �broad=1.3 eV, which corresponds to a de-
cay time of 500 as in accord with the data in Fig. 3 in Ref.
�26�. We use this much shorter decay time to show the co-
herence in the laser-dressed Auger spectrum. The experimen-
tal value for the decay width is �expt=88 meV which corre-
sponds to a decay time of 7.5 fs �18�.

With an approximation which we discuss below �see Eq.
�94�� for the radial dependence �Eq. �88��, we determine the
strengths of the dipole �Eq. �42�� and Auger decay �Eq. �43��
matrix elements. Using the decay width � �Qv=1 from
Eq. �53�, we find from Eq. �54� the strengths
Qv,expt=1.10 with �expt and Qv,broad=4.25 with �broad. The
corresponding energy shifts follow from Eq. �52�. They are
�R,expt=−0.90 eV for Qv,expt and �R,broad=−13.53 eV for
Qv,broad. For a good agreement with the reference data �see
Fig. 6 below�, we employ the value Qv=3.1 and the shift
�R=−0.68 eV. However, we set �R=0 in all our computa-
tions because we have chosen the orbital energies such that
they correctly reproduce the �experimental� Auger and pho-
toelectron energies. The photoionization cross section of the
krypton 3d subshell for 20 eV photoelectron energy in
Hartree-Fock-Slater approximation �65� is read off of graph I
in Ref. �66�; it is about �HFS=1.5 Mbarn. The cross section
without laser dressing ���X� �Qd=1 is determined from Eq.
�69� using �expt and letting �R=0. With Eq. �70�, we obtain a
dipole strength of Qd=0.26.

We use a xuv light pulse which has a Gaussian envelope
with peak intensity IX,0 at t=0 and a full width at half maxi-
mum duration of �X=500 as

IX�t� = IX,0e−4 ln 2�t/�X�2
. �92�

The xuv electric-field envelope in Eq. �11� follows from
�X�t�=8��IX�t�; its Fourier transform is also a Gaussian
�56�.

VII. RESULTS AND DISCUSSION

We devote this section to a computational study of our
essential-states model and its parameters applied to
M4,5N1N2,3 Auger decay in krypton �16–19�. It is motivated
by a previous experiment �14� which focused on the line
group around 40 eV and related theoretical studies �25–27�.

FIG. 3. �Color online� Spherically integrated rms dipole matrix

element ď�kP� �Eq. �93�� for the description of 3d photoionization of
a krypton atom in the essential-states model of Sec. IV.
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We assess the accuracy of the approximations made in our
essential-states model and compare with existing literature
results. In future work �40�, we will explore laser-dressed
Auger decay extensively. Additionally, we present the laser-
dressed Auger spectrum for a much higher dressing-laser in-
tensity than what has been used so far.

To begin with, let us discuss the results for the rms matrix
elements �Eq. �42� and �43�� of the essential-states model.
First, xuv absorption is determined by the rms dipole matrix
element in spherical polar coordinates �Eq. �42�� which is

determined from the d̃h�kP ,�kP
,�kP

� �Eq. �77�� for all h
�H. We take its modulus squared and integrate over the full
solid angle to obtain the spherically integrated rms dipole
matrix element,

ď�kP� =�
4�

�d̃�kP,�kP
��2d�kP

. �93�

It is plotted in Fig. 3. After a steep rise at the edge �zero
photoelectron momentum�, it decays smoothly. Around the
nominal photoelectron energy of �P=20 eV, the depen-

dence of ď�kP� on kP is weak. Additionally, quantities such as
the line shape function �Eq. �62�� decrease rapidly as soon as
k�P

2 /2 deviates appreciably from �P.
Second, Auger decay is mediated by the rms two-electron

matrix element �Eq. �43��. To construct it, we need the direct

two-electron matrix element �́h
ij�kA,�kA

,�kA
� �Eq. �86�� for

all h�H. The rms matrix element in spherical polar coordi-
nates is then denoted by ṽ�kA,�kA

,�kA
�. We examine three

cases for the radial dependence �Eqs. �83� and �88��. This
provides us with a good way to assess the quality of our
approximation. First, following Refs. �25,27�, we use

�l�r,r�� =
r�l

rl+1 . �94�

Second, we examine the reverse case,

�l�r,r�� =
rl

r�l+1 , �95�

and, finally, the exact case �Eq. �83��. For comparison with
Refs. �25–27� and for computational efficiency, we will use
the crude approximation �Eq. �94�� throughout.

We display the rms two-electron matrix element
ṽ�kA,0 ,0� in Fig. 4 with the viewing direction along the z
axis which, in turn, is the direction of the linear xuv and laser
polarization vectors. Our choice of direction agrees with Ref.
�26�. The dependence around the nominal Auger energy of
�A=40 eV—i.e., over the range plotted in Fig. 7—is weak.

To asses the impact of our omission of the two-electron
exchange matrix element vhk�Aji in the essential-states model
of Sec. IV, we compute its rms value in spherical polar co-
ordinates ṽX�kA,�kA

,�kA
�. It is displayed in Fig. 5 along the

z axis, ṽX�kA,0 ,0�, for the approximations in Eqs. �94� and
�95�. The values of ṽX�kA,0 ,0� in our momentum range of
interest are roughly one order of magnitude smaller than the
corresponding values of the direct matrix element at the
same momentum in Fig. 4 for the approximation in Eq. �94�.
The other case �Eq. �95�� yields very large value for
ṽX�kA,0 ,0�. Particularly, these values are much larger than
corresponding values for ṽ�kA,0 ,0� which is unphysical.
This comparison underscores that Eq. �94� represents a rea-
sonable approximation to the full Eq. �83� while Eq. �95�
does not.

We need to specify and characterize the xuv and optical
light fields next. A present-day attosecond-pulse light source
typically has a xuv peak intensity of at most
IX,0=1011 W /cm2 at a photon energy of �X=90 eV. The

TABLE I. Parameters for an 800 nm dressing laser. The vector
potential amplitude AL �Eq. �31��, the electric-field amplitude EL,0

�Eq. �32��, the ponderomotive potential UP �Eq. �37��, the magni-
tude of the maximum excursion �L �Eq. �38��, and the second ar-
gument in generalized Bessel functions for a broad range of inten-
sities IL,0.

IL,0

�W /cm2� 1010 1011 1012 1013 1014

AL �a.u.� 0.0094 0.030 0.094 0.30 0.94

EL,0 �a.u.� 0.00053 0.0017 0.0053 0.017 0.053

UP �eV� 0.00060 0.0060 0.060 0.60 6.0

�L �Å� 0.087 0.28 0.87 2.8 8.7

UP / �2�L� 0.00019 0.0019 0.019 0.19 1.9

FIG. 4. �Color online� The rms two-electron direct matrix ele-
ment for krypton 3d-hole Auger decay ṽ�kA,0 ,0� of the essential-
states model of Sec. IV. Using the first radial dependence �Eq. �94��
to find ṽ�kA,0 ,0� yields the solid black line; the second radial de-
pendence �Eq. �95�� gives the dashed red line; and the exact result
�Eq. �83�� is represented by the dotted green line.

FIG. 5. �Color online� The rms two-electron exchange matrix
element ṽX�kA,0 ,0� for krypton 3d-hole Auger decay. See Fig. 4
for details.
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resulting ponderomotive potential �Eq. �37�� is 1.8 �eV with
a magnitude of maximum excursion �Eq. �38�� of 8.2 fm.
Clearly, the impact of the xuv field on photo- and Auger
electrons can be omitted in excellent approximation. How-
ever, this approximation does not hold for the dressing
laser—typically a Ti:sapphire laser system with near-infrared
�NIR� light of a wavelength of 800 nm and a photon energy
of �X=1.55 eV—which delivers a large range of laser in-
tensities. Exemplary data are given in Table I. For lower
intensities—up to 1012 W /cm2—the ponderomotive poten-
tial �Eq. �37�� and the vector potential amplitude AL �Eq.
�31�� are small in relation to the laser photon energy. Also
AL is negligible compared with the momentum of the photo-
and Auger electrons. Therefore, we may neglect the influence
of the ponderomotive potential UP. Specifically, this amounts
to replacing generalized by ordinary Bessel functions in
equations such as Eqs. �36�, �63�, �69�, and �73�. For the
Auger spectrum �Eq. �63�� this was done in Refs. �25,27� and
was done also in this paper for laser intensities up to
1012 W /cm2. This approximation is assessed by comparing
Auger spectra from the expression using generalized Bessel
functions �Eq. �40�� with spectra from the corresponding ex-
pression using ordinary Bessel functions. Excellent agree-
ment is found.

Finally, we are in the position to put together all ingredi-
ents to compute the laser-dressed Auger electron spectrum

�Eq. �63�� in spherical polar coordinates of krypton 3d hole

decay �67� ṔA�kA,�kA
,�kA

� integrated over the azimuth

angle P̃A�kA�=2�ṔA�kA,0 ,0�. As a verification of our solu-
tion, we compute the Auger spectrum in Fig. 6 for a
dressing-laser intensity of 5�1011 W /cm2 as in Fig. 3 in
Ref. �26�. Our result agrees very well with the one in
Ref. �26� apart from an overall scaling factor of
EX,0

2 =2.9�10−4 a.u. due to the xuv electric-field strength
which was set to unity in Ref. �26�. Finally, the spectrum in
Fig. 3 in Ref. �26� was determined with a nonzero value for
�R. We find that we need to shift it by a value of −0.68 eV
�Sec. VI� to achieve agreement. The structure in the figure is
mostly due to the time dependence as the momentum depen-
dence of the dipole and Auger decay matrix elements is
weak. The differences between both curves are ascribed to a
somewhat different treatment of the matrix elements.

We present the Auger electron spectrum for a dressing-
laser intensity of 1013 W /cm2 in Fig. 7 �68�. The spectrum is
first computed using generalized Bessel functions and a non-
vanishing ponderomotive potential in Eq. �63�. Then, it is
determined using ordinary Bessel functions and UP=0. There
are clear differences between the spectra. The convergence
with respect to the number of terms in Eq. �40� is rapid; a
summation from −2 to +2 in Eq. �40� was sufficient We
conclude that dressing-laser intensities around and above
1013 W /cm2 require an accurate treatment of the Volkov
phase �Eq. �41��. We need 15 laser photon indices �Bessel
functions� to account for absorption and emission of laser
photons in the sum �Eq. �61�� for the Auger electron spec-
trum. This is in good agreement with previous studies of
K-shell ionization of laser-dressed neon �22�, argon �39�, and
krypton �38� atoms—however, with a very different theoret-
ical approach—where 20, 12, and 5 photon blocks were re-
quired, respectively, to converge the calculations for the
same dressing laser parameters that are used here. Seemingly
crucial for the necessary number of photon blocks are the
decay widths of the inner-shell hole which were 0.27, 0.66,
and 2.7 eV, respectively. Our artificial value for the krypton
3d decay width of 1.3 eV lies between the decay widths of
the krypton and the argon K shell vacancies.

VIII. CONCLUSION

We have devised and applied an ab initio theory for inner-
shell xuv photoionization and subsequent Auger decay of
laser-dressed atoms, a so-called two-color problem. Our
work aims at the study and control of electron correlations—
here manifested in terms of electronic decay—which is the
most profound goal of attosecond science. The photo- and
Auger electrons experienced an optical dressing laser which
was considered to be intense but not strong enough to excite
or ionize electrons in the atomic ground state. We used the
Hartree-Fock-Slater �HFS� approximation as a starting point
for the description of the atomic electronic structure. The
HFS orbitals were then used to represent the full Hamil-
tonian. We employed a single configuration-state function to
represent the ground state and singly- and doubly-excited
states. The light fields were treated semiclassically and we

FIG. 6. �Color online� Auger electron spectrum �Eq. �63�� of
laser-dressed krypton 3d-hole decay with an artificial width of
�broad=1.3 eV for a dressing-laser intensity of 5�1011 W /cm2.
The solid black line was determined using our theory; the dashed
red line is the solid curve of Fig. 3 in Ref. �26� scaled by a factor of
EX,0

2 =2.9�10−4 a.u. and shifted by −0.68 eV.

FIG. 7. �Color online� Auger electron spectrum �Eq. �63�� of
laser-dressed krypton 3d-hole decay for an artificial width of
�broad=1.3 eV and a dressing-laser intensity of 1013 W /cm2. The
solid black line was determined using generalized Bessel functions
�Eq. �40��; the dashed red line was obtained neglecting UP and
using ordinary Bessel functions.
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use the strong-field approximation to treat the influence of
the optical laser on the photo- and Auger electrons. The in-
fluence of the laser on the atomic ground-state electrons was
neglected. The quantum dynamics of the problem was de-
scribed in terms of equations of motion �EOMs�. The EOMs
were solved analytically for an essential-states model and a
closed-form expression for the Auger electron amplitude was
obtained. Furthermore, the xuv-absorption cross section of
laser-dressed atoms and an expression for the laser-dressed
photoelectron spectrum were derived. We applied our for-
malism to study the photoionization of a 3d orbital �M shell�
of a krypton atom and its subsequent M4,5N1N2,3 Auger de-
cay where the vacancy is filled with a 4s valence electron
expelling a 4p valence electron. Following Ref. �26�, we
assumed an artificial decay width of krypton 3d vacancies of
1.3 eV. The atomic orbitals were approximated by suitably
scaled hydrogen wave functions circumventing the need for
a HFS computation. We discussed the approximations made
and studied the convergence of the Auger decay matrix ele-
ment and the expansion in terms of generalized Bessel func-
tions. We compared our laser-dressed Auger spectrum to lit-
erature results of Smirnova et al. �26� and found good

agreement. Finally, we presented the Auger electron spec-
trum for 1013 W /cm2 NIR laser intensity.

Our work opens up a multitude of future research per-
spectives. We have devised a general ab initio framework
which allows us to create simplified models of varying so-
phistication tailored to model many physical situations in
laser-dressed Auger decay. In this paper, we reduced our
EOMs to an essential-states model which can be solved ana-
lytically and comprises sufficient details for a number of
physical problems. In a forthcoming paper �40�, we will use
it to investigate coherence and interference of Auger elec-
trons and their control by a laser. In a next step, our model
can be generalized to a few states, e.g., all states in a subshell
can be considered, avoiding magnetic quantum number-
averaged dipole and Auger matrix elements.
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