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We present an explicit analytic calculation of the energy-level shift of an atom in front of a nondispersive
and nondissipative dielectric slab. We work with the fully quantized electromagnetic field, taking retardation
into account. We give the shift as a two-dimensional integral and use asymptotic analysis to find expressions
for it in various retarded and nonretarded limiting cases. The results can be used to estimate the energy shift of
an atom close to layered microstructures.
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I. INTRODUCTION

Control and manipulation of cold atoms have become fun-
damentally important due to their central role in the devel-
opment of nanotechnology and as a tool for investigating the
mechanisms underlying macroscopic manifestations of quan-
tum physics �1�. It now seems feasible to control them on a
�m length scale by utilizing microstructured surfaces—also
known as atoms chips—with promising areas of application
such as quantum information processing with neutral atoms,
integrated atom optics, precision force sensing, and studies
of the interaction between atoms and surfaces.

For this reason, e.g., experiments using Bose-Einstein
condensates for measuring the Casimir-Polder force �2� have
been developed. Typically, the dielectric substrate utilized in
such experiments �3� carries a very thin top layer of another
material, generally graphite, or gold. However, in explicit
analytic theories, this finite thickness has often been ne-
glected and the system has been treated as a semi-infinite
half-space. Here we are aiming at an approach that lets us
include the thickness of such a layer as a parameter into the
calculation, allowing us to obtain analytic expressions for the
Casimir-Polder force on an atom.

We are going to consider a ground-state atom close to a
nondispersive dielectric slab, which is one of the few sys-
tems of high symmetry for that the electromagnetic field can
be quantized through an exact normal-mode expansion with
manageable effort �4�. While of course unrealistic in prac-
tice, the assumption of absent dispersion and absorption
leads to a good approximation of the Casimir-Polder energy
for all but very few systems, namely, those where the atom
has a strong transition very near an absorption line in the
medium, which in practice is something very difficult to en-
gineer. This can most easily be understood from
McLachlan’s approach �5� to the Lifshitz theory of disper-
sive and absorbing dielectrics �6�, who showed that the
Casimir-Polder interaction energy can be seen as a mutual
polarization energy and be expressed as a frequency integral
over the product of the atomic polarizability and the
frequency-dependent susceptibility of the electromagnetic
field fluctuations. From this also follows that for large dis-
tances between the atom and an electromagnetically interact-
ing surface the interaction energy involves only the static
responses of both, because the interaction is dominated by
long wavelengths. Following McLachlan’s approach, the

Casimir-Polder interaction of an atom with a layered struc-
ture has been considered by Wylie and Sipe �7�, who use the
electromagnetic Green’s function to derive the field suscep-
tibility and give the atomic energy shift in terms of a double
integral over the Fresnel reflection coefficients of the surface,
but then only plot results for a few numerical examples and
do not analyze the energy shift any further.

A later approach modeling a dispersive and absorbing di-
electric �and also magnetic� material by fluctuating noise cur-
rents �see �8� for a review� has yielded a similar formula to
McLachlan’s, expressing the Casimir-Polder energy shift as
an integral over the product of the atomic polarizability and
the electromagnetic Green’s function at imaginary frequen-
cies. With the Green’s function taken from electrical engi-
neering applications �9�, this approach has been used to de-
rive the Casimir-Polder interaction between an atom and an
arbitrary array of dielectric �and magnetic� multilayers �10�.
The case of a dielectric slab is considered as an example, and
several results are given with which we shall compare our
results below.

Here, by contrast, we are not aiming at general expres-
sions and are going to use only basic quantum electrody-
namic theory. The focal point of the present work is to start
from an explicit normal-mode expansion for the quantization
of the electromagnetic field and obtain simple and practical
formulas that are useful for estimates and can be applied very
easily to experimental situations. The energy shift in an atom
close to a dielectric slab comes about due to its interaction
with electromagnetic field fluctuations, which in turn are af-
fected by the presence of the slab. Thus, a quantization of the
electromagnetic field in the presence of a layered system is
required. Even though for this system the explicit field quan-
tization in terms of annihilation and creation operators mul-
tiplied by normal modes had been studied previously �4�, we
have recently reconsidered the problem and provided a proof
of the completeness of the electromagnetic field modes that
was missing in previous works on the problem. This proof of
completeness is very useful in that it removes any ambiguity
in how to normalize and sum over the electromagnetic field
modes, and in this way also establishes the correct density of
states which had previously been a subject of disagreement
�12�.

By solving the Helmholtz equation and imposing the cor-
responding continuity conditions at the faces of the slab, it
was shown in �4,11� that the field modes for this system
comprise of traveling and trapped modes. The traveling
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modes have a continuous frequency spectrum, and are com-
posed of incident, reflected, and transmitted parts outside the
slab. The trapped modes arise due to solutions of the Helm-
holtz equation with purely imaginary normal wave vector
outside the slab. Physically, they come about due to repeated
total internal reflection inside the dielectric, and emerge as
evanescent fields outside the slab. They exist only at certain
discrete frequencies which depend on polarization direction
and parity and are obtained through the dispersion relations.

The atomic energy shift is obtained by means of second-
order perturbation theory, and involves a product of electro-
magnetic mode functions which is summed over intermedi-
ate virtual photon states. Thus the atomic energy shift
receives two quite separate contributions: one from the con-
tinuous set of traveling modes, and the other from the dis-
crete set of trapped modes. The first is an integral over wave
numbers, and the second a sum over discrete wave numbers
that satisfy a quite complicated dispersion relation. In prac-
tice, both must be considered together at all times to avoid
divergent terms appearing in each separate contribution but
cancelling between them. This technically seemingly hope-
less task can, however, be dealt with simply and elegantly by
using the summation method of �11�, which re-expresses
both the integral over continuous modes and the sum over
discrete modes as a single contour integral in the complex
plane. We shall show below that this trick yields a closed-
form expression for the atomic energy shift and permits easy
asymptotic analysis for various regimes, yielding the kinds
of simple formulas that we are after for estimating the effect
of the layer thickness in experimental situations.

II. DESCRIPTION OF THE SYSTEM

We consider a dielectric slab of finite thickness L sur-
rounded by vacuum, as is shown in Fig. 1. We assume the
material to be a nondispersive and nonabsorbing dielectric,
which is a simple but good model for an imperfectly reflect-
ing material. Thus the material is characterized solely by its
refractive index n, which is real and the same for all frequen-
cies. While any real material has of course to be transparent
at infinite frequencies, this nondispersive model captures the
essential properties of an imperfect reflector. In particular, it
includes evanescent waves, whose absence in perfect-
reflector models can be problematic �13�.

Since the dielectric is homogeneous in the x and y direc-
tions, the dielectric permittivity of the configuration depends
only on the z coordinate and is given by

��z� = �n2 for − L/2 � z � L/2,

1 for �z� � L/2.
�

We assume the atom to be neutral and in its ground state.
Also, we shall make use of the electric-dipole approxima-
tion, which is adequate because, for the relevant modes, the
electromagnetic field varies slowly over the size of the atom.
We assume that the atom’s center is fixed at the position r0
= �0,0 ,z0�.

The model assumes that the interaction between the atom
and the surface is purely electromagnetic, i.e., that there is
negligible wave-function overlap between the atomic elec-
tron and the surface. We shall work with an interaction
Hamiltonian between the atom and the quantized electro-
magnetic field that is given by

Hint = − � · E�r,t� , �1�

which is the lowest-order multipole Hamiltonian and corre-
sponds to the electric-dipole interaction. In this equation, �
=e�r−r0� is the electric-dipole moment of the atomic elec-
tron, and E�r , t� is the transverse electric field. Unlike the
minimal-coupling Hamiltonian p ·A, the Hamiltonian �1� in-
cludes the electrostatic interaction between the atomic dipole
and its images on the other side of vacuum-dielectric inter-
faces. As shown previously in a similar context �14�, the
Hamiltonian �1� may be more convenient for calculations
that aim to derive energy shifts in cases where the retardation
of the electromagnetic interaction matters.

The quantization of the electromagnetic field has been
discussed in detail previously �4,11�, and thus, we shall only
sketch the procedure here. We work with the electromagnetic
potentials ��r , t� and A�r , t� and choose the generalized
Coulomb gauge

� · ���z�A�r�� = 0. �2�

Furthermore, since the overall system is neutral, we can set
��r , t�=0. Thus the field equations reduce to the wave equa-
tion for A�r , t� everywhere except right on the interfaces z
= �L /2. At the interfaces we solve Maxwell’s equations di-
rectly by imposing the continuity conditions

E�, D�, B continuous. �3�

In this way the electromagnetic field modes can be written,
for traveling modes f�

L,R as left- or right-incident waves made
up of incoming, reflected and transmitted parts, and for
trapped modes f�

S,A as symmetric or antisymmetric waves in-
side the slab with evanescent fields outside. We list these
modes in Appendix A.

Equipped with a complete set of solutions to the classical
field equations, we can proceed to quantize the electromag-
netic field by using the technique of canonical quantization,
i.e., by introducing annihilation and creation operators a�, a�

†.
Then the expansion for the electric field operator E�r , t� in
terms of the normal modes f��r� reads

−L/2 L/2

ε( )−1z

−1n2

z−a/2 a/2

FIG. 1. The geometry of the dielectric slab.
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E�r,t� = i	
�


 	�

2�0
�a�e−i	�tf��r� − a�

†ei	�tf�
��r�� , �4�

where the subscript �= �k ,
� is a composite label including
both the polarization 
=TE,TM, and the wave vector k.

III. ENERGY-LEVEL SHIFT

Since the interaction Hamiltonian �1� is linear in the elec-
tric field, whose vacuum expectation value vanishes, there is
no energy shift to first order in Hint. Therefore, the lowest-
order contribution to the shift comes from second-order per-
turbation theory, so that the shift is of first order in the fine-
structure constant � �15�,

�E = − 	
j�i

	
�

��j ;��� · Ê�r,t��i;0��2

Ej − Ei + 	�

, �5�

where Ê�r , t� is given by Eq. �4�. In this equation, the inter-
mediate state �j ;�� is a composite state with an atom in the
excited state �j� and the electromagnetic field carrying a pho-
ton of energy 	�. Similarly, the initial state �i ;0� describes an
atom in its ground state �i� and the electromagnetic field in
the vacuum state. In the electric-dipole approximation we
can write

�j�f�r� · ��i�  f�r0� · �j���i� , �6�

since the field varies slowly over the size of the atom and we
can therefore assume that across the atom it is almost the
same as at its center r0= �0,0 ,z0�. With this, the shift reads

�E = −
1

2�0
	
j�i

	
�

	�

Eji + 	�

�f�
��r0� · �j���i��2, �7�

where we have introduced the abbreviation Eji=Ej −Ei. Since
�i� is a state of definite angular momentum, different compo-
nents of � lead to different intermediate states �j� that are
mutually orthogonal, and the shift simplifies to

�E = −
1

2�0
	
j�i

	
�

	�

Eji + 	�

�f�
��r0��2��j���i��2. �8�

Furthermore, we are going to abbreviate the moduli squares
of the matrix elements of the dipole-momentum operator �
between the initial state i and the intermediate states j, and
distinguish only the components parallel and perpendicular
to the slab,

���2 � ��j���i��2 with  = x,y,z ,

����2 � ��j��x�i��2 + ��j��y�i��2,

����2 � ��j��z�i��2.

The sum over � in Eq. �8� is a sum over all field modes,
which, as explained earlier and easily seen from Appendix A,
comprise a continuous set of traveling modes and a discrete
set of trapped modes. The contribution from the traveling
modes gives rise to the shift

�Etrav = −
1

2�0
	
j�i

	

=TE,TM

	

� d3k

	

Eji + 	

�„�fk

L �r0��2 + �fk


R �r0��2…���2, �9�

where the sum over  runs over the x, y, and z components
of the dipole moment and of the polarization vector that is
incorporated in the mode functions. As we are interested in
the change in the energy levels of the atom solely due to the
presence of the dielectric slab, we renormalize the energy
shift and remove from Eq. �9� the part that arises due to the
interaction between the atom and the electromagnetic field in
free space, i.e., the Lamb shift. Conveniently, this rids the
calculation of any divergences, provided traveling and
trapped modes are considered together �cf. e.g., �16��. The
simplest way to implement this renormalization of the shift is
by subtracting the equivalent expression for a transparent
slab with n=1,

�Etrav � �Etrav − �Etrav�n = 1� . �10�

We decide to place the atom at a position z0�L /2 to the
right of the slab, substitute the mode functions �A7� and
�A11�, and get

�Etrav = −
1

2�2��3�0
	
j�i

	

,
� d3k

	

Eji + 	
���2

� ê

�k+�ê


��k−��R
e2ikzz0 + R

�e−2ikzz0� . �11�

Similarly, the contribution from the discrete set of trapped
modes reads

�Etrap = −
1

2�0
	
j�i

	

,

	
kz

� d2k�

	

Eji + 	

� ��fk

S �r0��2 + �fk


A �r0��2����2, �12�

which can be written in a more explicit form by substituting
the trapped modes to the right of the slab from Eq. �A12�,

�Etrap = −
1

2�0
	
j�i

	

,

	
kz

� d2k�

	

Eji + 	
���2

� ê

�k+�ê


��k−��M
�2�L

S,A�2e−2�z0. �13�

We note that renormalization makes no difference to the
trapped-modes contribution to the shift, as the trapped modes
vanish in the limit n→1.

The total energy shift is obtained by combining the
traveling-mode contribution Eqs. �11� and the trapped-mode
contribution �13�. At first sight, this is very complicated,
since the former is given by an integral over kz while the
latter involves a sum over discrete values of kz=i� that are
solutions of the dispersion relations �A19�. In addition, the
shift �11� due to traveling modes and its counterpart �Eq.
�13�� due to trapped modes diverge when evaluated each on
their own, as observed before in similar circumstances �16�.
What helps, is the observation that the reflection coefficients
R
 have poles in the complex kz plane at exactly the values
of kz=i� that are solutions of the dispersion relations �A19�.
Furthermore, the residues around those poles are such that
the sum over kz in Eq. �13� can be rewritten as a contour
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integral with the same integrand as in Eq. �11�. Thus the sum
of Eqs. �11� and �13� can be combined into a single contour
integral in the complex kz plane. In Ref. �11� we have shown
this to be the case in connection with a proof of the com-
pleteness of the electromagnetic field modes around a dielec-
tric slab, and we refer the reader there for details. Using this
method to add Eqs. �11� and �13�, we obtain for the total
energy shift

�E = −
1

2�2��3�0
	
j�i

	

,
� d2k��

C
dkz

	

Eji + 	

� ���2ê

�k+�ê


��k−�R
�kz,k��e2ikzz0, �14�

with the integration path C as shown in Fig. 2. The poles of
R
 lie on the imaginary axis between 0 and i
n2−1k� /n, so
that C runs above them. To manipulate this expression fur-
ther, we sum over the two polarizations and rearrange the
Cartesian components =x ,y ,z into parallel and perpendicu-
lar parts relative to the surface of the slab. The double inte-
gral in k� can be simplified by transforming into polar coor-
dinates and carrying out the integration in the azimuthal
angle, so that the total energy shift reads

�E = −
1

2�2�0
	
j�i

	
=�,�

Eji
3 S���2 �15�

with parallel and perpendicular contributions given, respec-
tively, by

S� �
1

8Eji
3 �

0

�

dk�k�I� and S� �
1

4Eji
3 �

0

�

dk�k�I� �16�

and, in turn,

I� = �
C

dkz
	

Eji + 	
RTE�kz,k��e2ikzz0

− �
C

dkz
	

Eji + 	

kz
2

k2RTM�kz,k��e2ikzz0, �17�

I� = �
C

dkz
	

Eji + 	

k�
2

k2RTM�kz,k��e2ikzz0. �18�

Before proceeding with the evaluation of Eqs. �17� and �18�,
we note that both of them are written in terms of the position
z0 of the atom, measured from the center of the slab. In

practice, one would of course want to know the energy shift
of the atom as a function of its distance to the surface of the
slab, Z=z0−L /2. Writing Eqs. �17� and �18� in terms of the
atom-surface distance Z gives rise to a phase factor eikzL

which we absorb in the reflection coefficients �A8� by rede-
fining

R̃
 = r


1 − e2ikzdL

1 − r

2e2ikzdL , �19�

so that Eq. �18� turns into

I� = �
C

dkz
	

Eji + 	

k�
2

k2 R̃TMe2ikzZ, �20�

and similarly for Eq. �17�. Since the photon frequency is
given by 	=
k�

2+kz
2, one can identify branch points in the

integrand at kz= � ik�. We choose to place the square-root
cuts from kz=ik� to i� and from kz=−ik� to −i�. Apart from
this square-root cut, the integrand is analytic in the upper
half-plane and for Z�0 vanishes exponentially on the infi-
nite semicircle in the upper half-plane. Therefore Cauchy’s
theorem allows us to deform the original integration path C
into a new path C� that goes round the square-root cut from
ik� to i� �see Fig. 2�. Identifying the correct sheet on each
side of the cut by demanding that 	�0 on the real kz axis
and re-expressing kz=iq, we can work out the integral along
the path C� and obtain

I� = 2Eji�
k�

�

dq
k�

2


q2 − k�
2

R̃TM

Eji
2 − k�

2 + q2e−2qZ. �21�

The calculation of the parallel contribution I�, Eq. �17�, runs
along exactly the same lines. Substituting Eq. �21� into Eq.
�16�, we see that the two contributions S� and S� to the
energy shift �15� are both double integrals, over k� and over
q=−ikz. We choose to make a change of variables to u
= �q2−k�

2�1/2 /Eji and v=k� /Eji, and arrive at

S� =
1

4
�

0

�

dv�
0

�

du
v


u2 + v2

1

1 + u2

� ��u2 + v2�R̃TM − u2R̃TE�e−2ZEji

u2+v2

, �22�

and

S� =
1

2
�

0

�

dv�
0

�

du
v3


u2 + v2

1

1 + u2 R̃TMe−2ZEji

u2+v2

.

�23�

These expressions, together with Eq. �15�, give us a general
formula for the energy shift of a ground-state atom in front
of a dielectric slab. The structure of the energy shift and its
dependence on the reflection coefficients is similar to the
expression for the shift that has been obtained by using the
electromagnetic Green’s tensor �see Eq. �3.4� in Ref. �7� and
for an isotropically polarizable atom Eq. �19� in Ref. �10��.
For a detailed comparison see Sec. III of Ref. �14�. The shift
depends on the matrix elements of the atomic dipole between
the initial state �i� and other states �j� that are coupled to �i�
by strong dipole transitions. In practice, the sum in Eq. �15�

Rekz

Imkz

iΓk�

ik�

C

C ′

FIG. 2. �Color online� By closing the contour C one can choose
a more suitable integration path C�. In the figure, �=
n2−1 /n.
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over intermediate states �j� is in most cases dominated by a
single close-lying state with a strong dipole transition to the
initial atomic state �i�. Alternatively, we can use the identity

��j���i��2 =
4��0�

m2Eji
2 ��j�p�i��2, �24�

where �=e2 /4��0 is the fine-structure constant, and rewrite
the energy shift in terms of the matrix elements of the mo-
mentum operator,

�E = −
2�

�m2	
j

	
=�,�

EjiS�p�2. �25�

In this form the shift is very similar to that of an atom in
front of a dielectric half-space �cf. Eqs. �2.12�, �2.25�, and
�2.26� of Ref. �14��, except for the different reflection coef-
ficients in each situation.

In order to further analyze or calculate the energy shift
numerically, it is convenient to transform the double inte-
grals in Eqs. �22� and �23� into polar coordinates by substi-
tuting u=s cos � and v=s sin �, and then replace � by t
=cos �. This gives

S� =
1

4
�

0

�

ds�
0

1

dt
s3

s2t2 + 1
�R̃TM − t2R̃TE�e−2ZEjis, �26�

S� =
1

2
�

0

�

ds�
0

1

dt
s3

s2t2 + 1
�1 − t2�R̃TMe−2ZEjis, �27�

with reflection coefficients

R̃TE =
− �n2 − 1�t2

2 + �n2 − 1�t2 + 2
1 + �n2 − 1�t2coth �
, �28�

R̃TM =
n4 − 1 − �n2 − 1�t2

n4 + 1 + �n2 − 1�t2 + 2n2
1 + �n2 − 1�t2coth �
,

�29�

and the abbreviation �=LEjis
1+ �n2−1�t2. Thus the energy
shift of the atom in front of a dielectric slab is given by Eqs.
�15� or �25�, with Eqs. �26�–�29�. In this form the shift is
readily computed numerically, as we shall do in Sec. V.
However, to extract important physics and be in the position
to make quick estimates, one should investigate the
asymptotic behavior of the shift in various physically signifi-
cant regimes, which we shall do first.

IV. ASYMPTOTIC ANALYSIS

The nature of the interaction of the atom with the slab
depends on the separation between them: for large separa-
tions the interaction is manifestly retarded, but for small
separations the retardation can be neglected and the interac-
tion can be assumed to take place instantaneously. The scale
on which one makes this distinction of the atom-surface
separation being small or large, comes from comparing the
time 2Z /c that a virtual photon takes for a round-trip be-
tween atom and surface to the time scale of internal evolu-

tion of the atom. For the atom in state �i� with a strong dipole
transition into a close-lying state �j�, the time scale of the
atom’s internal dynamics is given by � /Eji. The ratio of the
two time scales is 2ZEji in natural units, which can therefore
be used as the criterion for retardation: the interaction is
manifestly retarded for 2ZEji�1, as the atom has evolved
appreciably by the time the virtual photon has completed its
round-trip, and it can be considered nonretarded for 2ZEji
�1, because the atomic state hardly changes while the pho-
ton travels to the surface and back. In terms of length scales,
it is the relative sizes of the distance Z of the atom from the
surface and the wavelength 1 /Eji of the strongest internal
transition that matter. However, the thickness of the slab L
provides a third length scale to consider. We shall now con-
sider the various asymptotics limits.

A. Thick slab LšZ

For a very thick slab, i.e., in the limit L→�, we can
approximate coth �1 in Eqs. �28� and �29�. Then expres-
sions �26� and �27� reduce to what they would be for a di-
electric half-space �14�. The energy shift for an atom in front
of a dielectric half-space has been analyzed in detail previ-
ously in both the retarded and the nonretarded limits �16�. In
both these limits the integrals in Eqs. �26� and �27� can be
calculated exactly without any further approximations and
the Casimir-Polder force be given in terms of elementary
functions of the refractive index n. In the nonretarded limit
this is easy to see, since the interaction of the atom with the
dielectric is then simply the Coulomb energy of a dipole
interacting with its electrostatic image. In the retarded re-
gime the result for the Casimir-Polder force given in �16� as
an exact and explicit function of the refractive index n is
much more remarkable, as it cannot be anticipated in such a
simple way. It is an extremely useful result, because, as
shown in Ref. �5� and mentioned earlier, the Casimir-Polder
force on an atom in the retarded limit is determined by the
static dielectric constant even if the material is dispersive.
For an isotropically polarizable atom interacting with a half-
space that is simultaneously dielectric and magnetic, the re-
tarded limit of the Casimir-Polder energy shift is given as an
integral by Eq. �31� of Ref. �10�.

B. Thin slab L™Z

If the atom-surface separation Z is much larger than the
slab thickness L then the exponentials in Eqs. �26� and �27�
effectively cut off the integral at very small values of s, so
that the argument of the coth in Eqs. �28� and �29� stays very
small throughout the whole effective range of integration.
Thus we can approximate the coth by its small-argument
expansion, coth �1 /�. This leads to significant simplifi-
cations in Eqs. �28� and �29� because the square roots in the
denominators drop out, and we get

R̃TE 
− �n2 − 1�t2

2 + �n2 − 1�t2 + 2/�sLEji�
, �30�
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R̃TM 
n4 − 1 − �n2 − 1�t2

n4 + 1 + �n2 − 1�t2 + 2n2/�sLEji�
. �31�

Substituting these into Eqs. �26� and �27�, we can now carry
out the t integral. While elementary, this integration gives an
unwieldy combination of rational functions, square roots,
and arctan, so that we dispense with writing it down. The
subsequent integration over s cannot be performed analyti-
cally, unless we make further approximations, which we
shall do in the following for the retarded and nonretarded
limits.

C. Retarded regime (2ZEjiš1) for a “thin” slab

If 2ZEji�1 then we can apply Watson’s lemma to the s
integrals in Eqs. �26� and �27�. So, we substitute the approxi-
mated reflection coefficients �30� and �31�, carry out the t
integration, and then expand the integrand of the s integral
around s=0, after which the s integral over the leading term
becomes elementary. In such a way we find that the energy-
level shift is given by

�E  −
�n2 − 1�L

160�2�0n2Z5	
j�i

�5 + 9n2�����2 + 2�4 + 5n2�����2

Eji
.

�32�

We would like to note that this result is valid for 2ZEji�1
and Z�L, but other than that for any slab thickness L. In
particular, there is no restriction on LEji, which can have any
size � or �1 provided it is much smaller than ZEji. In this
sense the notion of a “thin” slab is slightly misleading in the
retarded regime, as any slab of finite thickness can be con-
sidered thin for large enough Z.

Another interesting aspect of this result is that it shows
that there is absolutely nothing unusual or nonanalytic about
the limit L→0. A calculation of the Casimir-Polder force
using field-theoretical means and four photon polarizations
in a Gupta-Bleuler quantization scheme �17� has found dif-
ferent results for different ways of implementing the bound-
ary conditions on the photon field, and the tentative explana-
tion for this discrepancy, as given in Ref. �17�, has been that
these different results should apply to thick and thin slabs.
However, this explanation is inconsistent with our explicit
results for the Casimir-Polder energy shift for slabs of arbi-
trary finite thickness.

D. Nonretarded regime (2ZEji™1)

In the nonretarded limit the interactions between the atom
and the slab can be approximated as instantaneous, and the
energy shift in this regime can be calculated by considering
the limit Eji→0. One could take this limit in Eqs. �26�–�29�,
with Eqs. �15� and �25�, but the calculation is much shorter if
instead we go back to Eqs. �16�–�18�, which was before we
had deformed the contour C in the complex kz plane. In the
limit Eji→0, we get 	 / �Eji+	�→1 in Eqs. �17� and �18�, so
that the square root cut due to 	=
k�

2+kz
2 disappears from

them. Instead, we get poles at kz= � ik�. When we close the
contour C in the upper half-plane, we pick up the residues of
the integrands at kz=ik�, so that Eqs. �17� and �18� turn into

I� = − �2�i Res
kz

2R̃TM�kz,k��
�kz − ik���kz + ik��

e2ikzZ�
kz=ik�

�33�

I� = �2�i Res
k�

2R̃TM�kz,k��
�kz − ik���kz + ik��

e2ikzZ�
kz=ik�

, �34�

which are straightforward to determine. Substituting the re-
sults into Eqs. �16� and �15�, we obtain for the energy shift in
the nonretarded regime

�Ees = −
1

16��0

n2 − 1

n2 + 1	
j�i

�2����2 + ����2�

� �
0

�

dkk2e−2Zk 1 − e−2kL

1 − �n2 − 1

n2 + 1
�2

e−2kL

. �35�

The same result could be achieved from purely electrostatic
considerations. The atom can be viewed as a dipole, and the
dielectric slab can be modeled as a series of image dipoles.
The energy shift is then just the Coulomb interaction energy
of the atomic dipole and its images. We show in Appendix B
that an electrostatic calculation of this sort indeed reproduces
the energy shift �35�.

Finally we consider the limit L�Z and obtain for the
nonretarded energy shift of an atom near a thin slab

�Ees  −
3�n4 − 1�
256��0n2

L

Z4	
j�i

�2����2 + ����2� . �36�

V. SUMMARY AND CONCLUSIONS

We have obtained a general formula for the energy-level
shift in a ground-state atom near a nondispersive dielectric
slab of refractive index n: Eq. �15�, or alternatively Eq. �25�,
with the parallel and perpendicular contributions S� and S�

given by Eqs. �26� and �27�, respectively. While given only
as a double integral, it is nevertheless in a form that is readily
amenable to both numerical calculations and analytic ap-
proximations. We have given appropriate asymptotic formu-
las in both the retarded �2ZEji�1� and the nonretarded re-
gimes �2ZEji�1�. For the latter we showed that the result
can be reproduced by means of a classical electrostatic treat-
ment. For thin slabs the electrostatic energy shift varies as
L /Z4, as shown in Eq. �36�.

In the retarded regime, on the other hand, our general
formula reduces to Eq. �32�, showing that the shift behaves
as L /Z5, provided L�Z. For this case, it is possible to com-
pare our result with the one given in Eq. �55� of Ref. �10�
�and quoted also in Eq. �218� of Ref. �8�� for the interaction
energy between an isotropically polarizable ground-state
atom and a magnetodielectric plate,

U�Z� = −
�c��0�

160�2�0

L

Z5�14�2�0� − 9

��0�
−

6�2�0� − 1

��0� � ,

�37�

where ��0� is the isotropic static polarizability of the atom.
In order to compare this result to our result �32�, we need to
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substitute ��0�=n2 for the static dielectric constant and
��0�=1 for the static magnetic permeability. Furthermore,
the diagonal elements of the atomic polarizability are

����	� = 	
j

2Eji��j����i��2

Eji
2 − 	2 , � = �x,y,z� , �38�

so that we get for the static polarizability of the isotropic
atom considered in Ref. �8�.

��0� = 2	
j�i

����2

Eji
, � = �x,y,z� . �39�

In this language our expression �32� reads

�E = −
��0�

160�2n2�0

L

Z5 �n2 − 1��9 + 14n2� , �40�

which agrees with Eq. �37� upon substitution of ��0�=n2 and
��0�=1.

The great advantage of our general formulas �15�, �26�,
and �27� is that they make it possible to know how the en-
ergy shift behaves for various slab thicknesses and values of
the atom-surface separation Z. Using these formulas and
standard software packages such as Mathematica or Maple,
one can easily plot �E for any desired parameter ranges. In
order to plot some examples in a meaningful and informative
way, we rewrite the energy shift in the following form:

�E = −
1

4��0
	
j�i

1

4�EjiZ4 �W�
slab����2 + Wz

slab��z�2� , �41�

with parallel part and perpendicular contributions defined by

W�
slab = 64Z4Eji

4 S� and Wz
slab = 64Z4Eji

4 S�, �42�

and the functions S�,� given as before in Eqs. �26� and �27�.
The motivation for this choice is that �i� W� and W� are
dimensionless quantities, and �ii� they facilitate easy com-
parison to the standard Casimir-Polder result �2� as W� =1
=W� for the retarded energy shift of an atom in front of a

perfect mirror �18�. When interpreting the plots it is impor-
tant to bear in mind that one needs to multiply with a factor
−1 /Z4 in order to judge the distance dependence of the en-
ergy shift. For example, the functions W�,z �42� are linear for
small Z, showing that the energy shift for small distances
behaves as −1 /Z3, as one expects for an electrostatic inter-
action.

In Figs. 3 and 4 we have plotted W�,z as functions of ZEji
for several slab thicknesses LEji, while fixing the refractive
index to n=2. We have also included these functions for
the dielectric half-space �14,16�, which corresponds to the
limit LEji→�. In Fig. 3 we show how the shift varies for
different refractive indices if we fix the thickness of the slab
at LEji=1. In practice values of LEji�10 might be more
realistic, but for those the energy shift is almost indistin-
guishable from the one for a dielectric half-space, as evident
from Figs. 3 and 4.

FIG. 3. �Color online� The function W�
slab for various thicknesses

of the dielectric slab, with refractive index n=2. The uppermost
curve is the result for a dielectric half-space, W�

HS.

FIG. 4. �Color online� The function Wz
slab for various thicknesses

of the slab, with refractive index n=2. The uppermost curve is for a
dielectric half-space, i.e., for LEji→�.

FIG. 5. �Color online� The function Wz
slab for a slab of thickness

LEji=1 and various values of the refractive index, n=1.5,3 ,5 ,10.
The uppermost curve Wz

PR is the result for a perfect reflector, i.e.,
for n→�.
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Figure 5 shows Wz for various refractive indices n
=1.5,3 ,5 ,10, and we have also included the limit of a per-
fect reflector, n→�, labeled as Wz

PR. Furthermore, one can
see how the energy shift varies with the thickness of the slab
LEji. In Fig. 6, we have plotted Wz as a function of slab
thickness for various fixed surface-atom separations, fixing
the refractive index at n=2. For Fig. 7 we have fixed the
atom’s position at ZEji=8 in the retarded regime, and shown
how Wz

slab varies with the slab thickness for various values of
the refractive index n. This shows again that the retarded
Casimir-Polder force has a well-defined and analytic limit for
L→0.
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APPENDIX A: MODE FUNCTIONS

Throughout this paper we have adopted the same notation
as in �11�, where k� is the wave vector in vacuum

k� = �kx,ky, � kz� = �k�, � kz� , �A1�

and kd
�= �k� , �kzd� is the wave vector inside the dielectric

slab. The z components of the wave vectors in free-space and
dielectric are related through Snell’s law by

kzd = 
�n2 − 1�k�
2 + n2kz

2, �A2�

and in reverse

kz =
1

n

kzd

2 − �n2 − 1�k�
2, �A3�

which are always positive.
The vector mode functions can be written as a product of

a polarization vector and a scalar mode function,

fk
�r� = ê
fk
�r� . �A4�

We work with the transverse electric �TE� mode, for which
the electric field is perpendicular to the plane of incidence,

êTE = �− ���−1/2�− i�y,i�x,0� , �A5�

and the transverse magnetic �TM� mode, for which the mag-
netic field is perpendicular to the plane of incidence,

êTM = �����−1/2�− �x�z,− �y�z,��� . �A6�

The momentum space representations ê
�k�� of the polariza-
tion vectors are obtained by applying the above differential
operators to a plane wave eik�·r.

The scalar mode functions for traveling left-incident
modes read

fk

L �r� = N�eik+·r + R
eik−·r, z � − L/2

I
eikd
+·r + J
eikd

−·r, �z� � L/2

T
eik+·r, z � L/2
� �A7�

for any polarization 
=TE,TM. The normalization constant
is N= �2��−3/2, and the remaining coefficients are obtained
from the continuity conditions �3�; in particular,

R
 = r


1 − e2ikzdL

1 − r

2e2ikzdLe−ikzL, �A8�

T
 =
1 − r


2

1 − r

2e2ikzdLei�kzd−kz�L, �A9�

where

FIG. 6. �Color online� The function Wz
slab as a function of LEji,

for an atom located at various fixed distances ZEji=1,5 ,10 from
the surface. The slab has a refractive index of n=2.

FIG. 7. �Color online� The function Wz
slab as a function of LEji,

for an atom located at a distance ZEji=8 from the slab and various
values for the refractive index n=1.5,3 ,5. In the limit n→� this
function approaches a unit step function.

ANA MARÍA CONTRERAS REYES AND CLAUDIA EBERLEIN PHYSICAL REVIEW A 80, 032901 �2009�

032901-8



rTE =
kz − kzd

kz + kzd
and rTM =

n2kz − kzd

n2kz + kzd
. �A10�

The right-incident modes can be obtained straightforwardly
from the left-incident modes, by simply inverting the z axis
and taking z→−z.

fk

R �r� = N�T
eik−·r z � − L/2

I
eikd
−·r + J
eikd

+·r �z� � L/2

eik−·r + R
eik+·r z � L/2.
� �A11�

The trapped modes are given by

fk

S,A�r� = M
��L


S,Aeik�·r+�z, z � − L/2

eikd
+·r � eikd

−·r, �z� � L/2

L

S,Aeik�·r−�z, z � L/2,

� �A12�

where the � signs apply to the symmetric �S� and antisym-
metric �A� modes, respectively, and �= �ikz��0. Note that for
trapped modes the polarization vector �A6� is complex and
no longer of unit length. The normalization constants are

MTE =
1

4�
n2L

2
+

1

�
� k�

k
�2

�A13�

MTM =
1

4�
n2L

2
+

1

�

n2k�
2

k�
2 + n2�2

, �A14�

and by imposing the continuity conditions �3� we obtain the
coefficients L


S,A

LTE
S = 2 cos� kzdL

2
�e�L/2, �A15�

LTE
A = 2i sin� kzdL

2
�e�L/2, �A16�

LTM
S = 2n cos� kzdL

2
�e�L/2, �A17�

LTM
A = 2ni sin� kzdL

2
�e�L/2. �A18�

The dispersion relations that arise from the simultaneous ap-
plication of all matching conditions in Eq. �3� to the sym-
metric �S� and antisymmetric �A� modes, with two polariza-
tions 
 each, read

� = �
kzd tan�kzdL/2� for �S�,
 = TE,

− kzd cot�kzdL/2� for �A�,
 = TE,

− kzd cot�kzdL/2�/n2 for �S�,
 = TM,

kzd tan�kzdL/2�/n2 for �A�,
 = TM,
�

�A19�

where

� =
1

n

�n2 − 1�k�

2 − kzd
2 . �A20�

APPENDIX B: ELECTROSTATIC CALCULATION
OF THE ELECTROSTATIC SHIFT

In order to have an independent check of our general for-
mula for the energy shift, which in the nonretarded limit
takes the form �35�, we shall derive the same nonretarded
shift purely by means of a classical electrostatics. If retarda-
tion can be ignored, the energy shift of the atom is simply the
electrostatic energy of the atomic dipole when placed near
the dielectric slab.

If the electrostatic potential ��r� generated by a unit point
charge at a position r� is known, then the electrostatic energy
of an atomic dipole located at r0 is �cf. e.g., �19� for a more
detailed discussion�,

�Ees = � 1

2 	
i=�x,y,z�

��i
2��i�i��H�r,r���

r=r0,r�=r0

. �B1�

Here the harmonic function �H�r ,r�� is the difference be-
tween the potential ��r� generated by the point charge at r�
and the potential that would be generated by that charge in
unbounded space, so as to exclude from �Ees the �infinite�
electrostatic self-energies that do not depend on the relative
position of the dipole and the slab. As �H�r ,r�� is a solution
of the Laplace equation and must vanish for z→ ��, it must
be of the form,

�H�r,r�� = �
−�

�

dkx�
−�

�

dkye
ikxx+ikyy

� �C1�k�,r��ek�z for z � − L/2
C2�k�,r��ek�z + C3�k�,r��e−k�z for �z� � L/2
C4�k�,r��e−k�z for z � L/2.

�
The coefficients C1–4�k� ,r�� are easily worked out by apply-
ing the continuity conditions �3� to this electrostatic problem.
Straightforward manipulations then give

�H = −
1

4��0

� − 1

� + 1
�

0

�

dkJ0�k��e−k�z+z�−L�

�
1 − e−2kL

1 − �� − 1

� + 1
�2

e−2kL

for z,z� � L/2, �B2�

with �=
�x−x��2+ �y−y��2. It is instructive to rewrite the
denominator as a geometric series

1

1 − �� − 1

� + 1
�2

e−2kL

= 	
n=0

� ��� − 1

� + 1
�2

e−2kL�n

and note that ��21�, Eq. 6.611�1.��
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�
0

�

dkJ0�k��e−k�z−z�� =
1


�2 + �z − z��2
,

which reveals that �H�r ,r�� can be understood as being due
to a series of image charges generated by repeated reflections
between the two interfaces of the slab �20�. However, expres-
sion �B2� is more useful for calculations; substituting it into
Eq. �B1� gives for the electrostatic energy shift

�Ees = −
1

16��0

� − 1

� + 1	
j

�2����2 + ����2�

� �
0

�

dkk2e−2Zk 1 − e−2kL

1 − �� − 1

� + 1
�2

e−2kL

, �B3�

which, upon replacing �=n2, is in agreement with Eq. �35�.
In terms of images this result for the electrostatic energy shift
has also been given in Eq. �41� of Ref. �22�.
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