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A peculiar property of complex scattering potentials is the appearance of spectral singularities. These are
energy eigenvalues for certain scattering states that similarly to resonance states have infinite reflection and
transmission coefficients. This property reveals an interesting resonance effect with possible applications in
waveguide physics. We study the spectral singularities of a complex barrier potential and explore their appli-
cation in designing a waveguide that functions as a resonator. We show that for the easily accessible sizes of
the waveguide and its gain region, we can realize the spectral singularity-related resonance phenomenon at
almost every wavelength within the visible spectrum or outside it.

DOI: 10.1103/PhysRevA.80.032711 PACS number�s�: 03.65.Nk, 42.25.Bs, 24.30.Gd

I. INTRODUCTION

Recently it has been noticed that by defining the Hilbert
space of a quantum system using a nonstandard inner prod-
uct one can generate a unitary time-evolution by a Hamil-
tonian operator that is manifestly non-Hermitian in the
standard L2-inner product �1�. A typical example is H
=−�d2 /dx2�+ ix3. It turns out that one can actually describe
the corresponding physical system using the standard Hilbert
space and a Hermitian Hamiltonian which is much more
complicated and highly nonlocal �2�. The non-Hermitian
Hamiltonians with the above property must have a real spec-
trum and a complete set of eigenfunctions so that every wave
function can be expanded in terms of these. There are two
main mechanisms that are responsible for the incompleteness
of the eigenfunctions of a non-Hermitian Hamiltonian. These
are associated with the presence of exceptional points �3� and
spectral singularities �4�.

An exceptional point is a point in the space of parameters
M of the Hamiltonian operator H where an eigenvalue of H
becomes defective, i.e., if the parameters change continu-
ously along a path in M that passes through an exceptional
point, two or more of the eigenvalues of H together with
their eigenvectors coalesce. Exceptional points have found
various physical realizations and applications �5�. They have
also been the subject of experimental studies �6�. In contrast,
spectral singularities are certain points of the continuous
spectrum of non-Hermitian scattering Hamiltonians �7�
whose presence ruins the completeness of the eigenfunc-
tions, although for each point of the spectrum �including the
spectral singularity� there correspond two linearly indepen-
dent eigenfunctions �8�. The physical meaning and impor-
tance of this strange mathematical phenomenon have been
obscure until very recently �9�.

The appearance of spectral singularities as an obstruction
for defining a unitary quantum system using a complex po-
tential was initially noted by Samsonov �10� who, following
the pioneering work of Naimark �4,11�, only considered sys-
tems defined on the half-line. A simple example of an exactly

solvable model defined on the whole real line that can sup-
port a spectral singularity is the one given by a delta-function
potential, v�x�=z��x�, with a complex coupling constant z.
As shown in �12� this model has a spectral singularity pro-
vided that z is purely imaginary. The emergence and the
mechanism by which a spectral singularity spoils the com-
pleteness of the eigenfunctions of a scattering non-Hermitian
Hamiltonian are studied in �8�.

In Ref. �9� we have provided a physical interpretation for
the spectral singularities that identifies them with the ener-
gies of scattering states having infinite reflection and trans-
mission coefficients. Because this is a characteristic property
of resonance states, spectral singularities correspond to the
resonance states having a real energy and hence a zero width.
The existence of such states reveals a new type of resonance
effect with potential applications in various areas of physics.
To demonstrate how one can realize this effect, we have
explored, in Ref. �9�, the occurrence of spectral singularities
for the PT-symmetric imaginary barrier potential,

v�x� ª �− i� sgn�x� for �x� � �

0 for �x� � � ,
� �1�

where � and � are real parameters, � is positive, and sgn�x�
stands for the sign of x �13�.

The potential �1� can be used to model the propagation of
certain transverse electric �TE� fields in a planar slab wave-
guide with an adjacent pair of loss and gain regions �14�, as
shown in Fig. 1. In �9�, we have determined the values of
physical parameters of this system that correspond to a spec-
tral singularity. It turns out that for fixed values of the pa-
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FIG. 1. �Color online� Cross section of a rectangular waveguide
with gain �+� and loss �−� regions in the x-z plane. Arrows labeled
by I, R, and T represent the incident, reflected, and transmitted
waves.
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rameters entering the permittivity, spectral singularities occur
for a discrete set of values for the length of the loss and gain
regions 2� and the height of the waveguide 2�. For the
fundamental mode of the standing wave formed in the trans-
verse direction �along the x axis�, the largest allowed values
of � and � are 1004.17 and 62.0464 nm, respectively. Ex-
plicit calculation shows that for these values of � and �, the
reflection and transmission coefficients �at the resonance fre-
quency� exceed 1014. Note however that this requires main-
taining this value of � for the length of the loss and gain
regions to an extremely high degree of precision �10−1 Å�. A
0.1% deviation from the above values of � and � leads to a
decrease in the reflection and transmission coefficients by a
factor of 107. Furthermore, the experimental realization of
spectral singularities that is proposed in �9� involves restrict-
ing the frequency of propagating wave to the resonance fre-
quency of the active region and demands that the imaginary
part of the permittivity for the loss and gain differs only by a
sign.

In the present paper, we study the spectral singularities of
the complex barrier potential

v�x� ª �z for �x� � �

0 for �x� � � ,
� �2�

where z is an arbitrary complex coupling constant. Our main
motivation is that the proposed experimental setup that
would confirm the resonance phenomenon associated with
the spectral singularities of Eq. �2� is free of most of the
above-mentioned restrictions. This is essential because of the
additional degree of freedom, namely, the real part of z in
Eq. �2�. Another reason for considering the potential �2� is
that, similarly to �1�, the mathematical problem of locating
the spectral singularities of �2� admits an exact and essen-
tially analytic solution. This is very convenient, for it enables
us to avoid dealing with the subtleties of the numerical treat-
ments of the problem.

A most remarkable result of our investigation is that for
the experimentally easily accessible dimensions of the wave-
guide associated with Eq. �2�, we can produce the spectral
singularity-related resonance effect at almost every wave-
length within the visible spectrum or outside it. This is of
great practical significance for it may form the basis of a new
mechanism for producing laser beams of desired wavelength.

This paper is organized as follows. In Sec. II, we provide
a brief review of the results of �8,9� on the calculation of
spectral singularities and their relation to the reflection and
transmission coefficients. In Sec. III, we solve the problem
of locating the spectral singularities of the complex barrier
potential. In Sec. IV, we describe a waveguide modeled using
this potential and explore the possibility of the detection of
the resonance effect associated with the spectral singularities.
In Sec. V, we present our concluding remarks.

II. SPECTRAL SINGULARITIES

Consider the Hamiltonian operator H=−�d2 /dx2�+v�x�
for a complex scattering potential v�x� with x�R. Suppose
that v�x� tends to zero as x→ �� so rapidly that the integral

�−�
� �1+ �x���v�x��dx converges. Then the spectrum of H has a

real continuous part. Suppose for simplicity that the spec-
trum coincides with �0,��. Then the eigenvalue equation
H	=E	 yields the following asymptotic expressions for the
�generalized� eigenfunctions of H:

	k
g�x� → A�

g eikx + B�
g e−ikx for x → � � . �3�

Here g is a degeneracy label taking values 1 and 2, kª	E,
and A�

g , B�
g are possibly k-dependent complex coefficients

that are related by the so-called transfer matrix M= �Mij�
according to


A+
g

B+
g � = M
A−

g

B−
g � . �4�

The transfer matrix encodes all the necessary information
about the scattering properties of the system. It is easy to
show that it has a unit determinant �8�.

Next, consider the Jost solutions 	k� of the eigenvalue
equation H	=k2	 that by definition satisfy

	k��x� → e�ikx for x → � � . �5�

Denoting the coefficients A�
g and B�

g for the Jost solutions
	k� by A�

� and B�
� and using of Eqs. �3�–�5�, we find A+

+

=B−
−=1, A−

−=B+
+=0, A−

+=B+
−=M22, A+

−=M12, and B−
+=−M21

�8�. These relations identify 	k� with the left- and right-
going scattering solutions �15�. As a result, the left and right
transmission Tl,r and reflection Rl,r amplitudes are given by
�9�

Tl = Tr =
1

M22
, Rl = −

M21

M22
, Rr =

M12

M22
. �6�

Spectral singularities of H are eigenvalues E=k2 for
which 	k+ and 	k− become linearly dependent �4,16,17�.
They are given by the real zeros of M22 where both the
transmission and reflection coefficients diverge �9�. Because
the latter is a characteristic feature of resonances �18�, we
associate spectral singularities with a peculiar type of reso-
nances which satisfy the eigenvalue equation H	=k2	 for a
real k2. These are resonances having a zero width �9�.

III. COMPLEX BARRIER POTENTIAL

Consider the complex barrier potential �2�. The solution
of the time-independent Schrödinger equation, H	=k2	, for
this potential is elementary. We can use this solution to de-
termine the entries of the transfer matrix M,

M11 =
e−2i�kf�w,− �k�

4w
, �7�

M12 = − M21 =
i�w2 − 1�sin�2�kw�

2w
, �8�

M22 =
e2i�kf�w,�k�

4w
, �9�

where wª
	1−z /k2 �19�, and for all 
�R,
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f�w,
� ª e−2i
w�1 + w�2 − e2i
w�1 − w�2. �10�

According to Eq. �9�, spectral singularities are associated
with real values of k for which

f�w,�k� = f�	1 − z/k2,�k� = 0. �11�

This is a complex transcendental equation involving four real
variables �, k, Re�z�, and Im�z�, where “Re” and “Im” stand
for the real and imaginary parts of their argument. A direct
numerical solution of Eq. �11� would amount to identifying
two of the variables as parameters �say Re�z� and Im�z�� and
solving Eq. �11� for the remaining two variables �i.e., � and
k�. This requires selecting a range of values for the param-
eters and performing a numerical solution of Eq. �11� for all
the values of the parameters within this range. This is not a
straightforward procedure for in principle there is a real so-
lution only for a one-dimensional subset of the two-
dimensional parameter space. Numerical treatments may
miss part of this one-dimensional subset and could lead to
various types of errors �20�. In the following, we shall avoid
these difficulties by offering an exact and essentially analytic
solution of Eq. �11�. Specifically, we shall reduce Eq. �11� to
a single real transcendental equation involving two real vari-
ables and a discrete label. As we will see this provides a
much more efficient and precise method of locating spectral
singularities of the potential �2�.

We begin our analysis by recalling that in light of Eq.
�10�, we can express Eq. �11� in the form

ei�kw�1 − w� = � e−i�kw�1 + w� . �12�

This is equivalent to

cos�2�k	1 − z/k2� = � 
2k2

z
− 1� . �13�

We can reduce Eq. �13� into a pair of real equations. To this
end, we first introduce

� ª

Re�z�
k2 , � ª

Im�z�
k2 , y ª

�

1 − �
, �14�

q ª �k	2�1 − ���	y2 + 1 − 1� sgn�y� , �15�

r ª �k	2�1 − ���	y2 + 1 + 1� . �16�

In light of Eqs. �15� and �16� and k0, we have

sgn�q� = sgn�y� and r  0. �17�

Next, by inserting z /k2=�+ i� into Eq. �13� and using the
elementary properties of the trigonometric and hyperbolic
functions, we express the real and imaginary parts of this
equation as

cos r cosh q = �
1 − �1 − ��2�y2 + 1�

�1 − ��2y2 + �2 , �18�

sin r sinh q = �
2�1 − ��y

�1 − ��2y2 + �2 . �19�

Here either the top or the bottom sign should be taken in
both of the equations.

We can easily eliminate r in Eqs. �18� and �19�. We do
this by solving for cos r and sin r and imposing the identity
sin2 r+cos2 r=1. Expressing cosh2 q that appears in the re-
sulting equation as 1+sinh2 q, we find after some lucky can-
cellations

sinh4 q − 
 4�1 − ��
�1 − ��2y2 + �2�sinh2 q − 
 4�1 − ��2y2

��1 − ��2y2 + �2�2�
= 0.

Solving this equation for q and using Eq. �17�, we obtain

q = sgn�y�Q��,y� , �20�

where

Q��,y� ª sinh−1�	2�	y2 + 1�1 − �� + 1 − ��
�1 − ��2y2 + �2  . �21�

Next, we substitute Eq. �20� in Eq. �18� and solve for r.
Employing the identity cosh�sinh−1�x��=	1+x2 to simplify
the resulting expression, we then find

r = Rn
���,y� , �22�

where n is an integer, � is a sign, and

Rn
���,y� ª �n � cos−1
1 − �1 − ��	y2 + 1

	�1 − ��2y2 + �2 � . �23�

Three remarks are in order.
�1� Because for real values of � and y, we have

�1 − ��	y2 + 1 + � − 1 � 0, �24�

and

�1 − ��2y2 + �2

= �1 − �1 − ��	y2 + 1�2 + 2��1 − ��	y2 + 1 + � − 1� ,

�25�

the argument of cos−1 in Eq. �23� lies in the interval
�−1,1�. This implies that the second term on the right-hand
side of Eq. �23� takes values in �0,��, and Rn

��� ,y� is always
real. Furthermore, sgn�Rn

��� ,y��=sgn�n� for n�0 and
sgn�R0

��� ,y��=� except for the case �=y=0 which corre-
sponds to a real barrier potential. Therefore, to ensure that
r0, we must demand that either n0 and � be arbitrary or
n=0 and �=+. In the following we shall confine our attention
to these two cases.

�2� Every r and q that satisfy Eqs. �18� and �19� must also
satisfy Eqs. �20� and �22�, but the converse is not true. It
turns out that depending on the choice of the top or bottom
sign in Eqs. �18� and �19� and range of values of � and y one
must further restrict the values of n and � in Eq. �22�.

�3� Equations �18� and �19� are not equivalent to Eq. �13�
unless we impose Eqs. �15� and �16�. First, we impose Eq.
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�16�. This allows us to express �k in terms of r, �, and y. In
view of Eq. �22�, we then find

�k = Gn
���,y� ª

Rn
���,y�

	2�1 − ���	y2 + 1 + 1�
. �26�

Unlike Eq. �16� that determines �k in terms of � and y, Eq.
�15� gives rise to an additional constraint on the possible
values of � and y. We will next derive an explicit form of this
constraint.

We can use Eqs. �15� and �16� to obtain

q = r		y2 + 1 − 1

	y2 + 1 + 1
sgn�y� . �27�

If we insert Eq. �22� in this equation and use Eq. �17�, we
arrive at

q = sgn�y�Q̃n
���,y� , �28�

where

Q̃n
���,y� ª Rn

���,y�		y2 + 1 − 1

	y2 + 1 + 1
. �29�

Recall that here n is a non-negative integer and for n=0 we
have �=+.

Enforcing Eqs. �20� and �28� yields Q�� ,y�= Q̃n
��� ,y�.

This gives an infinite sequence of equations that determine
the locus of points in the �-y plane for which the complex
barrier potential has a spectral singularity. These form an

infinite sequence of curves. Clearly, Q�� ,y�= Q̃n
��� ,y� is

equivalent to Fn
��� ,y�=0, where

Fn
���,y� ª

1

2
�sinh2 Q��,y� − sinh2 Q̃n

���,y�� . �30�

In view of Eqs. �21�, �29�, and �30� we have the following
explicit expression for Fn

�:

Fn
���,y� =

�1 − ��	y2 + 1 + 1 − �

�1 − ��2y2 + �2
−

1

2
sinh2�		y2 + 1 − 1

	y2 + 1 + 1

���n � cos−1
 1 − �1 − ��	y2 + 1

	�1 − ��2y2 + �2
�� . �31�

In the �-� plane, which coincides with the complex z /k2

plane, the spectral singularities are located on the curves

Cn
�
ª ���,�� � R2�Fn

���, �
1−�� = 0� . �32�

As we will see below, not all the points on these curves turn
out to correspond to a spectral singularity.

Examining the graphs of Cn
� �see Fig. 2�, we find that

these curves all lie to the left of the line: �=1 in the �-�
plane. The curve C0

+ intersects this line at ��=1, �=0� but
this point does not correspond to a spectral singularity be-
cause for �=0 the potential is real. These observations allow
us to confine our attention to the case ��1. A consequence
of this relation and Eq. �17� is

sgn�q� = sgn�y� = sgn��� = sgn�Im�z�� . �33�

In order to determine the choices of n and � for which Cn
�

includes points corresponding to spectral singularities, we
proceed as follows. First, we recall that the spectral singu-
larities are give by Eq. �11�. Next, we use the identities w
=	1−�− i�=	1−�− i�1−��y and Eqs. �10� and �26� to ex-
press the left-hand side of Eq. �11� in terms of � and y. This

yields a sequence of equations of the form F̃n
��� ,y�=0, where

F̃n
���,y� ª e−2iGn

���,y�	1−�−i�1−��y�1 + 	1 − � − i�1 − ��y�2

− e2iGn
���,y�	1−�−i�1−��y�1 − 	1 − � − i�1 − ��y�2,

where Gn
� is introduced in Eq. �26�. The spectral singularities

lie on the curves

C̃n
−
ª ���,�� � R2 � �F̃n

���, �
1−��� = 0� . �34�

It turns out that �F̃n
��� , �

1−� ��=0 only for �=− and n0. Fur-

thermore, as shown in Fig. 2, the graph of C̃n
− coincides with

a part of the graph of Cn
− that lies above the � axis in the �-�

plane. That is,

C̃n
− = ���,�� � R2 � Fn

−��, �
1−�� = 0, �  0� . �35�

This provides a highly nontrivial check on the validity of our
calculations. It also reveals the interesting fact that spectral
singularities can appear only for the cases that the coupling
constant z has a positive imaginary part. In Sec. IV, we will
provide a simple physical justification for this fact.

FIG. 2. �Color online� Graphs of the curves Cn
− �the dashed

black curves� and C̃n
− �the solid red curves� in the �-� plane for n

=1,2 ,3. Cn
− are symmetric about the � axis. C̃n

− coincides with Cn
−

for �0. This shows the lack of spectral singularities for ��0.
The dashed black line corresponds to �=1. The solid gray lines are
the coordinate axes.
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Another outcome of examining the curves C̃n
− is that, in

comparison to Eq. �35�, the use of Eq. �34� in plotting C̃n
−

leads to substantially larger numerical errors. Therefore, in
practice, it is more appropriate to employ Eq. �35� to locate
the spectral singularities of the potential �2� graphically. For
this reason, in preparing Fig. 3, we have used Eq. �35� to plot

C̃n
− for 1�n�20. This figure reveals the following facts

about the curves of spectral singularities:

�i� C̃1
− has a vertical asymptote given by ��0.667;

�ii� for all n�1, C̃n
− is a decreasing curve;

�iii� for n�2 the graph of C̃n
− lies above that of C̃n+1

− ; and

�iv� as n→�, C̃n
− tends to the � axis �21�.

IV. RESONANCE EFFECT ASSOCIATED
WITH SPECTRAL SINGULARITIES

In this section, we describe an electromagnetic waveguide
that can be used to realize the resonance effect associated
with the spectral singularities of the complex barrier poten-
tial �Eq. �2��.

Let � ,� ,� be positive parameters having the dimension
of length. Consider a rectangular waveguide with perfectly
conducting walls that guides TE waves along the z axis in the
region defined by �x��� and �y���. Suppose that the region
�z��� inside the waveguide is filled with an atomic gas so
that the relative permittivity inside the waveguide is given by
�14,22�

��z� = �1 −
�p

2

�2 − �0
2 + 2i��

for �z� � �

1 for �z� � � ,
� �36�

where �, �p, �0, and � are the frequency of the wave, the
plasma frequency, the resonance frequency, and the damping
constant, respectively. Figure 4 provides a schematic illustra-
tion of the waveguide.

Let Kª� /c be the wave number, Kmª�m / �2�� for ev-
ery positive integer m, and ��z� be a solution of

���z� + �K2��z� − Km
2 ���z� = 0, �37�

with a continuous derivative. Then it is an easy exercise to
show that the following TE wave is a solution of the Max-
well equations with appropriate boundary conditions for the
above waveguide �9�,

E� �r�,t� = E Re�e−i�t�− i� sin�Km�x + �����z�� ĵ� , �38�

B� �r�,t� = E Re�e−i�t�sin�Km�x + ������z�î

− Km cos�Km�x + �����z�k̂�� . �39�

Here E is a real constant and î, ĵ, and k̂ are the unit vectors
along the x, y, and z axes, respectively �23�.

Equation �37� coincides with the eigenvalue equation,

�−
d2

dz2 + v�z�� = k2	 ,

for the complex barrier potential �Eq. �2�� if we replace x
with z in Eq. �2� and make the following identifications:

k = 	K2 − Km
2 =

�

c
	1 −

�2

�2 , � ª

�mc

2�
, �40�

Re�z� =
�2�p

2��2 − �0
2�

c2���2 − �0
2�2 + 4�2�2�

, �41�

Im�z� =
− 2�3�p

2�

c2���2 − �0
2�2 + 4�2�2�

. �42�

These imply

FIG. 3. �Color online� Graphs of the curves C̃n
− in the �-� for

1�n�20. The unmarked curves correspond to n=5,6 ,7 , . . . ,20

from top to bottom. C̃1
− has an asymptote given by ��0.667. The

dashed line corresponds to �=1. The solid gray lines are the coor-
dinate axes.
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� �
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� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

î

2β

2α

k̂

ĵ

FIG. 4. �Color online� A rectangular waveguide aligned along

the z axis. The dashed region is filled with an atomic gas. î, ĵ, and

k̂ are the unit vectors along the x, y, and z axes, respectively.
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� =
�p

2��2 − �0
2�

���2 − �0
2�2 + 4�2�2��1 − �2/�2�

,

�43�

� =
− 2��p

2�

���2 − �0
2�2 + 4�2�2��1 − �2/�2�

.

For a TE wave given by Eqs. �38� and �39� that propagates in
the waveguide, we have KKm, so that k is real and posi-
tive. Therefore, we can use the results of Sec. III to deter-
mine the reflection and transmission amplitudes of the wave.
In particular, if we can arrange the physical parameters of the
system, namely, �, �0, �p, �, �, and � so that k2 is a spectral
singularity, reflection and transmission coefficients diverge
and the waveguide functions as a resonator.

For the system we described above �p
2 and � are positive.

In view of Eq. �42� this implies that Im�z��0. Therefore, as
we showed in Sec. III �Fig. 2�, there is no spectral singulari-
ties. This is actually to be expected because for the physical
system that we consider the presence of a spectral singularity
means the emission of highly amplified electromagnetic
waves. This is clearly forbidden by the law of conservation
of energy. It is quite remarkable that the absence of spectral
singularities for the barrier potentials with Im�z��0, which
is a purely mathematical result, can be interpreted as a direct
consequence of conservation of energy in classical electro-
dynamics.

We can avoid the above conflict with energy conservation
if we consider the situation that the sign of �p

2 is reversed. In
this case the atomic gas confined in the region �z��� inside
the waveguide acts as a gain medium �24�. We can achieve
this by shining a laser beam along the y axis to excite the
resonant atoms and induce a population inversion �25�. This
was also the mechanism we employed in �9� to realize the
resonance effect related with the spectral singularities of the
PT-symmetric barrier potential �Eq. �1��. The main advan-
tage of the system we consider here is that, for the cases that
�0, �p, and � are fixed, the spectral singularities occur along
an infinite set of curves in the relevant parameter space,
whereas for the system considered in �9� they occur at an
infinite set of isolated points.

Another practical shortcoming of the system studied in �9�
is that it relied on the assumption that the frequency of the
propagating wave � is equal to the resonance frequency of
the gain medium �0. Here we do not need to make such an
assumption. This provides an additional flexibility in our at-
tempt to adjust the parameters of the system so that the fre-
quency of the propagating wave coincides with that of a
spectral singularity. To demonstrate how we can do this, we
first choose some typical values for �0, �p, and � that deter-
mine the characteristics of the gain medium. For example,
suppose that

��0 = 5 eV, �2�p
2 = − 0.04 eV2, �� = 1.25 eV. �44�

Then �0 and �p and �, �, and � become functions of � and
�. For each choice of �, we can select a practically attain-
able range of frequencies � and plot the parametric curve
C� defined by Eqs. �43� in the �-� plane for this range of

values of �. The points of the intersection of C� and C̃n
−

correspond to the values of � for which k2 is a spectral
singularity provided that Eq. �26� is also satisfied. The latter
condition fixes the value of �. The � and � values obtained
in this way depend on �, the label n, and another discrete

label �n that counts the number of times C� intersects C̃n
− as

one decreases the value of � starting from its largest allowed
value, namely, 1.

To determine the precise values of � and � for a given

choice of � and n, we plot the curves C� and C̃n
− in the �-�

plane as in Fig. 5 and select an intersection point, i.e., fix �n.
We then determine the coordinates ��� ,��� of this point
graphically �26�. Next, we numerically solve for � in

� = ��, � = ��, �45�

where the left-hand side of these equations is given by Eqs.
�43�. A consistency check on this calculation is that both of
these equations must give the same value for �. Having ob-
tained �, we compute k using Eq. �40�, substitute this value
of k and Eq. �45� in Eq. �26�, and solve for � in the resulting
equation.

Figure 5 shows the plots of the curves C� and C̃n
− for

various values of � and n. For every �, the curve C� inter-

sects each of the curves C̃n
− at least once and at most three

times, i.e., 1��n�3. As one adopts sufficiently large values
for � /m �sufficiently small values for ��, the number of
intersection points increases. This number equals to the num-
ber of different frequencies � at which a spectral singularity
occurs. Note, however, that each of these spectral singulari-
ties corresponds to a different value of the parameter �. Fur-

thermore, because for each value of �, C� intersects C̃n
− for

all n, for every value of � /m there is an infinity of choices
for the � �and �� values that yield a spectral singularity.

It turns out that for each value of � /m, one can select n
so that the related spectral singularities correspond to experi-
mentally preferable values for � and �. For example, for
the principal mode �m=1� of a waveguide of height
2�=1 cm, choosing n=10 000 and �n=2, we find a spectral
singularity of frequency ��2.1555 eV /� �wavelength: �
�575.20 nm� provided that we maintain an active region of
length 2��2.8786 mm. For future reference we will use �
to label this spectral singularity. In fact, as we would expect,
changing the value of n starting from such a large initial
value, we find a large number of closely spaced spectral
singularities all belonging to the experimentally attainable
range of values of � and �.

Figure 6 shows the location of the spectral singularities
for 2� /m=1 cm that we obtained for 10 000�n�11 000
and �n=2,3. For these choices of n, the spectral singularities
associated with �n=1 correspond to extremely large �experi-
mentally unattainable� values for 2�. As suggested by Fig. 6,
using a waveguide of height 2�=1 cm and adjusting the
length 2� of the gain region �in the millimeter range�, we can
generate spectral singularities at almost every point of the
visible spectrum or outside it. This is also supported by a
detailed examination of other choices for the values of 2�
and n that we do not fully report here except for a few
illustrative cases that we include in Tables I and II.
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As shown in Fig. 6 and Tables I and II, for �n=2 the
wavelength of spectral singularity is an increasing function
of the length 2�, while for �n=3 it is a decreasing function
of 2�. This shows the availability of a wide range of values
of parameters of the system that lead to a spectral singularity.

According to Table I, for n=10 000 and �n=2, both of the
choices 2� /m=1 mm and 2� /m=1 cm give rise to spectral

singularities with the same values for the wavelength �, the
length parameter 2�, and the complex refractive index 	�.
Therefore, to observe this spectral singularity one does not
need to fine tune the height of the waveguide. This is also
true for n�2000 and �n=3.

Figure 7 shows the graphs of log10��T�2+ �R�2� as a func-
tion of � /�s where �s is the frequency of the spectral sin-
gularity � with n=10 000 �27�. This is represented by the
peak at � /�s=1 that corresponds to an amplification of the
emitted electromagnetic energy by a factor of �1015. We can
increase this factor if we use more precise values for the
� and 2� parameters associated with �. The other peaks
represent the spectral singularities with n=10 001,9999,
10 002,9998, . . . and �n=2. These are lower than the central
peak because the corresponding spectral singularities have a
slightly different values for � and 2� than those for � that
we have adopted in preparing this figure. The location of the
peaks can be easily explained. Because to a good approxma-
tion the frequency of the spectral singularities with n
�10 000 and �n=2 decreases as a linear function of n �see
Fig. 6�, changing n by one unit, i.e., by a factor of 10−4, leads
to a change in � by the same factor. This explains the occur-
rence of the peaks at the � /�s values that differ from unity
by an integer multiple of 10−4. Another interesting observa-
tion is that the amplification effect persists even if we change

(b)

(a)

FIG. 5. �Color online� Graphs of C� �thin black curves� and

C̃n
− �thick colored curves� for �0 ,�p ,� as given by Eq. �44�

and �=1.0,2.0,2.5,3.0 eV /� that correspond to � /m
=310.0,155.0,124.0,103.3 nm, respectively. The top figure shows

the intersection points of C� and C̃n
− with n=1,2 ,3 ,4 ,5. These

correspond to �n=1. The bottom figure shows the intersection

points of C� and C̃n
− with n=600,800,1000,2000,3000. For these

points �n=1, 2, or 3.
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FIG. 6. �Color online� Location of the spectral singularities
in the 2�-� plane for 2� /m=1 cm and 10 000�n�11 000. The
numerical values of 2� �length of the gain region� and � �wave-
length of the emitted wave� are given in mm and nm, respectively.
The displayed dots represent the spectral singularities with n
=10 000,10 100,10 200, . . . ,11 000 from the left to the right. The
curve segments joining adjacent dots represent 99 isolated points
each corresponding to a different spectral singularity. The top and
bottom figures show the spectral singularities with �n=2 and �n

=3, respectively. The spectral singularity � is also displayed.
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� by as much as 10% �see the last graph depicted in Fig. 7.�
This is another indication of the suitability of the proposed
setup for an experimental realization of the spectral
singularity-related resonance effect.

V. CONCLUSION

Spectral singularities are the energies of a rather strange
type of scattering states that similarly to resonance states
have infinite reflection and transmission coefficients. Physi-
cally this means that if one arranges to scatter a plane wave

of energy close to that of a spectral singularity, the system
amplifies the wave enormously. Therefore, spectral singulari-
ties are related to a novel resonance phenomenon that awaits
experimental verification.

For a real potential, the unitarity of dynamics implies that
the reflection and transmission coefficients add up to unity.
Therefore, spectral singularities cannot arise for a real poten-
tial. In this paper, we have explored the spectral singularities
of a complex barrier potential and showed how this potential
enters the description of the electromagnetic wave propaga-
tion in certain waveguides. If we adjust the physical param-
eters of the waveguide system so that the frequency of the
incoming wave is close to that of a spectral singularity, the
waveguide emits a substantially amplified wave of the same
frequency from both ends. We expect this phenomenon to
find useful applications in optics particularly because we can

TABLE I. The wavelength � of the TE wave and the length 2�
and complex refractive index 	� of the gain region corresponding
to a spectral singularity with �p ,�0 ,� given by Eq. �44� and
n=10 000. The boldface figures are those of the spectral singularity
�.

2� /m=1.0000 �m

�n � 2� 	�

1 1.6798 �m 15.517 mm 0.99919–6.1408�10−5i

2 614.03 nm 3.2291 mm 0.99910–2.1814�10−4i

3 162.61 nm 0.81531 mm 1.00045–2.6078�10−4i

2� /m=1.0000 mm

�n � 2� 	�

1 1.9974 mm 307.845 m 0.99920–4.9699�10−8i

2 575.20 nm 2.8786 mm 0.99908–2.4333�10−4i

3 162.85 nm 0.81379 mm 1.00045–2.6259�10−4i

2� /m=1.0000 cm

�n � 2� 	�

1 1.9982 cm 6.7894 km 0.99920–4.968�10−9i

2 575.20 nm 2.8786 mm 0.99908–2.4333Ã10−4i

3 162.84 nm 0.81379 mm 1.00045–2.6259�10−4i

TABLE II. The wavelength � of the TE wave and the length 2�
and complex refractive index 	� of the gain region corresponding
to a spectral singularity with �p ,�0 ,� given by Eq. �44�, 2� /m
=1.0000 cm, �n=2,3, and n=2000,3000,4000,5000.

n
�

�nm�
2�

�mm� 	�

�n=2

2000 306.59 0.30685 0.99902–1.1437�10−3i

3000 347.47 0.52173 0.99893–7.763�10−4i

4000 382.28 0.76534 0.99895–5.8934�10−4i

5000 415.09 1.03877 0.99897–4.757�10−4i

�n=3

2000 220.78 0.22059 1.00055–1.1701�10−3i

3000 203.54 0.30504 1.00064–8.043�10−4i

4000 193.10 0.38589 1.00062–6.1592�10−4i

5000 185.45 0.46327 1.00059–5.006�10−4i
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FIG. 7. �Color online� Graphs of log10��T�2+ �R�2� as a function
of � /�s for three different ranges of values of � /�s. �R�2 and �T�2
are the reflection and transmission coefficients �see endnote in
�27��. �s=2.155 48 eV /� is the frequency of the spectral singular-
ity � that occurs for �p ,�0 ,� given by Eq. �44�, n=10 000, �n=2,
2� /m=1.000 00 cm, 2�=2.878 644 mm, �=575.2046 nm, and
	�=0.999 081 358−0.000 243 330i. The highest peak represents �.
The other peaks correspond to the spectral singularities with
n=10 001,9999,10 002,9998, . . ..
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adjust the resonance frequency to attain any desired value.
A remarkable result of our investigation is that spectral

singularities of the complex barrier potential occur only for
certain values of the coupling constant with positive imagi-
nary part. While the mathematical reason for this phenom-
enon is obscure, it has a simple physical justification. The
condition that the coupling constant has a positive imaginary
part corresponds to the case that the waveguide includes a
gain region. This is necessary for the existence of the reso-
nance effect because of the law of conservation of energy.

One of the main goals of the present investigation was to
examine the range of critical values of the physical param-
eters of the waveguide system that corresponded to the oc-
currence of spectral singularities. We showed that indeed
these parameters spanned a very large spectrum of values.

This makes the waveguide system we considered in this pa-
per a plausible candidate for observing the spectral
singularity-related resonance effect.
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