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Resonance states of unnatural parity in positronic atoms
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Resonance states of unnatural parity P¢ and D in the positronic atoms e*H and e*He* are calculated and
discussed in detail in terms of the coupled-channel scheme in the hyperspherical coordinate system. New
resonances emerge in the analysis of the eigenphase sum. The time-delay matrix eigenvalues prove to be useful
in unraveling overlapping resonances. Many resonances are identified as belonging to some infinite series of
Feshbach resonances supported by an adiabatic hyperspherical potential. Some Feshbach resonances indepen-
dent of any infinite series are also identified to be supported by an adiabatic potential. The positions and widths
of higher-lying members of the infinite series are known to be expressible as geometric progressions. Their
common ratios are obtained theoretically, including those for the series failing to appear in the present calcu-
lation. Several resonances unassociated with a minimum in any adiabatic potential are found in the region of
avoided crossing. The diabatic picture is invoked for understanding the resonance mechanism, the resonance
energy, and the trend in the widths for all those exceptional cases. The lowest-order 2y and 3y pair annihilation
in these unnatural-parity states is shown to be forbidden.
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I. INTRODUCTION

The excited state H™(2p? *P¢) of the hydrogen negative
ion has an energy slightly below the threshold of electron
detachment into the continuum H(2s,2p)+e~ but well above
the threshold for the continuum H(1s)+e~ (/) [1]. Neverthe-
less, it is a true bound state rather than a resonance state;
autodetachment into the only continuum H(1s)+e (p) with
no change in the orbital angular momentum L (=1) is forbid-
den since the parity would necessarily change into odd by
this electron detachment (parity forbidden). This state
H~(2p? *P°) is an example of unnatural parity, 7= (1)1,

Systems containing positronium Ps, consisting of an elec-
tron e~ and a positron e*, afford other examples. Excited
states PsH(**S?) of the positronium hydride having an en-
ergy slightly below the threshold for dissociation into
H(2p)+Ps(2p) but above the thresholds for a few continuum
channels have been found in elaborate calculations [2,3].
These states are true bound states since both autodissociation
and autoionization with no change in L are parity forbidden.
Also, the electron-positron pair annihilation in them by the
normal 2y or 37y emission in the lowest order is forbidden
[2,3]. The lowest-order 27y annihilation occurs for a singlet s
e~-¢* pair with a rate of about the order of 10° s~ in normal
atoms and small molecules and the lowest-order 3y annihi-
lation occurs for a triplet s pair with a rate three orders of
magnitude slower. These rates are proportional to the expec-
tation value of the delta function &(r) of the e™-e* distance
vector r. This expectation value vanishes if the internal mo-
tion of the e™-e¢™ pair has a nonzero orbital angular momen-
tum, as is the case with PsH(**$°).
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Such unusual states are of recent particular interest, and
some other positron-involving slightly bound states of un-
natural parity in PsLi, PsNa, and PsK have been studied
theoretically in the frozen-core approximation, which renders
the difficult many-body problem into an approximate four-
body problem [2,3]. Among these states, the PsLi has been
identified to be an example of a peculiar Boromean state
[4,5], with the constituent four “particles” (Li*, e, e~, and
e*) being able to form no stable three-body bound state that
can be a parent for the four-body S state.

Unnatural-parity resonance states in positronic systems
e¢™H [6] and e¢*He* [7] have also been calculated recently
using the complex-coordinate rotation method. This theoret-
ical technique changes the complicated continuum-state
problem into a bound-state problem in the complex-
coordinate space. It thus avoids the calculation of the con-
tinuum wave function with the correct asymptotic channels
that yields scattering parameters, such as the scattering ma-
trix S. Instead, each complex-energy eigenvalue E,—i(I'/2)
is directly calculated one by one, where E, is the energy
position of a resonance and I' is its resonance width. Com-
puted values of (E,,I') are reported in Refs. [6,7].

The present work is motivated to unravel the physics of
these unnatural-parity resonances in ¢*H and e*He* by ex-
ploiting the hyperspherical close-coupling (HSCC) method, a
continuum multichannel technique briefly introduced in Sec.
II. The resonance parameters are extracted from the S matrix,
as is explained in Sec. IV. The HSCC method has an advan-
tage of specifying the mechanisms for many of the reso-
nances, identifying them as supported by particular adiabatic
potential energy curves U;(p) in the hyper-radius p (to be
explained in Sec. II) and as modified by the nonadiabatic
coupling between these adiabatic hyperspherical channels
(Secs. VI A and VI B). In fact, the system e*He* has two
different kinds of asymptotic channels, one with the repul-
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sive Coulomb potential between e* and He*(n,l) and the
other with a nearly constant potential between Ps(n’,!’) and
He?* (Sec. VI). These two kinds of channels produce many
avoided crossings, which expectedly lead to rich and com-
plicated multichannel physics. Indeed, the diabatic picture
proves to be crucial in the region of avoided crossings be-
tween the adiabatic curves, as is discussed in Sec. VI C.

The multichannel technique can also be used to under-
stand the infinite series of Feshbach resonances supported by
the asymptotic dipole potential in the nonrelativistic frame-
work (see Sec. V). This theory is useful in analyzing many
resonances in Sec. VI B. Another conspicuous point to notice
in Sec. III is that the lowest-order 2y and 3y annihilation is
forbidden in the unnatural-parity states of the system ¢*H or
e"He™.

Atomic units are used throughout this paper.

II. HYPERSPHERICAL COUPLED-CHANNEL METHOD

Both systems e¢*H and e*He* consist of a positron, an
electron, and a nucleus, either a proton p or an alpha particle
He?*. The Schrodinger equation with the exact three masses
is expressible in terms of the Jacobi coordinates, e.g., r_ for
e~ relative to the nucleus and r, for e* relative to the center
of mass of the hydrogen atom or the helium ion He*. For an
accurate numerical solution of the Schrodinger equation for a
strongly correlated three-body system and for transparent
elucidation of its dynamics, the hyperspherical coordinate
system (p,{)) is now widely accepted as much more suitable
than the pair (r_,r,) of the conventional Jacobi coordinates
[8,9]. The hyper-radius p is defined by

2=

PP = prt+ s, (1)

where p_ and u, are the reduced masses corresponding to
the motion in r_ and in r, and are both close to the electron
mass of 1.0. The hyper-radius is a measure of the size of the
whole three-body system. This variable represents the two
light particles collectively and nearly on a par. It allows a
part of the correlation effects to be described efficiently. The
hyperangle ) denotes the five angular coordinates (&,F,,fF_)
collectively, where tan E=ulr ,u,i/ %r,. A remarkable theo-
retical advantage, not enjoyed by using the conventional co-
ordinate system, is that only one variable out of the six-
dimensional coordinate space runs over to infinity and the
five other variables run over a finite region.

The fragmentation channel e*+H (He") is associated with
the coordinate region (p>1,£<1). The fragmentation chan-
nel Ps+H* (He>*) would be described more appropriately by
the hyper-radius p’ defined in terms of r, the internal coor-
dinate of Ps, and R, the position vector of the nucleus rela-
tive to the center of mass of Ps; p'?=u,r>+ uzR>. Here, u,
(=0.5) is the reduced mass of Ps and ug (=2.0) is that asso-
ciated with the motion in R. In fact, this new hyper-radius p’
turns out to be identical to p defined by Eq. (1). Thus, the
hyper-radius p proves convenient as a reaction coordinate
that connects smoothly and naturally the two different
classes of fragmentation channels. The five-dimensional hy-

perangle () that is equivalent to the already defined one is

expressible as (7,R,F) with tan n=w?r/ uy’R. The Ps-
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nucleus fragmentation is associated with the coordinate re-
gion (p>1,7<1).

The adiabatic hyperspherical states ¢;({);p) in the five-
dimensional space () are calculated as the eigenfunctions of
the adiabatic Hamiltonian H,4({); p), which follows by treat-
ing p as the adiabatic parameter rather than a variable. Their
energies, augmented by the (mock) centrifugal potential
coming from the five-dimensional angular part of the kinetic
energy operator, are referred to as the adiabatic hyperspheri-
cal potentials U,(p). They serve well in understanding the
physics of bound and resonance states supported by these
potentials, both visually and numerically, in analogy with the
adiabatic potentials of diatomic molecules.

For accurate numerical calculations, the wave function
W(p,Q) for the total three-body system is expressed as a
linear combination of the adiabatic states in the form

V(p.2) =2 pFp)gi(:p). )

Here, the factor p~>'% has been introduced for simplification
of the explicit form of the coupled equations,
1 &
(— 247 +Ui(p) - E>F,-(p) + E Vii(p)Fi(p)=0, (3)
J

for the unknown channel functions F;(p). These equations,
called the hyperspherical coupled-channel or close-coupling
(HSCC) equations, follow from the three-body Schrédinger
equation in (p,{)) for a total energy E, where Eq. (2) is
substituted. No approximation has been made so far, pro-
vided the expansion [Eq. (2)] includes all the basis functions
{¢;} in the complete set, i.e., provided all the channels are
included in Eq. (3). The nonadiabatic coupling V;;(p) stems
from the kinetic energy operator in p, omitted in the adia-
batic Hamiltonian H,4({);p). It includes both a mere multi-
plicative potential and a first-order differential operator in p.
For further detail of the HSCC formulation, see Refs.
[10,11].

In the present calculations, we retain all open channels
and some closed channels in the HSCC equations [Eq. (3)],
often confirming the convergence of the resonance param-
eters (obtained as explained in Sec. IV) with the increase in
the number of coupled channels. The much more rapid con-
vergence rate than the conventional close-coupling equations
in terms of the independent-particle coordinates is one of the
well-established advantages of the HSCC equations. The
equations are solved up to a large value of p, and then, the
solutions are matched with the asymptotic wave function in
the coordinates (r_,r,) or (r,R), satisfying the ordinary scat-
tering boundary conditions. This leads to the scattering ma-
trix S(E). Detailed numerical procedures are elaborated in
previous work, which reports successful applications of the
HSCC method (see, e.g., Refs. [12-16]).

III. ANNIHILATION IN POSITRONIC ATOMS OF
UNNATURAL PARITY

A three-body system with an orbital angular momentum L
and an unnatural parity 7=(~1)**! is impossible to form by
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coupling a vanishing angular momentum 1=0 with another
angular momentum 1" since L=I’, then, and the parity is
(—1)1’ =(-1)L. If the wave function is written in terms of a set
of Jacobi coordinates (x,X), for example, and if it is inde-
pendent of the angular coordinates X (vanishing angular mo-
mentum associated with x), then this state is of natural parity.
Thus, any three-body state of unnatural parity can never
break up into a particle and a two-body system in an s state.

Similarly, no unnatural-parity state of the system e*H or
e*He" has an s-state component in the partial-wave expan-
sion of the wave function in the e-e¢* angular coordinate F.
Therefore, the lowest-order 2y and 3y annihilation is forbid-
den in the unnatural-parity states. In other words, in-flight or
collisional pair annihilation practically never occurs in posi-
tron encounters with the hydrogen atoms or the helium ions
He* (or in positronium encounters with protons or alpha par-
ticles), whether via resonance states or not, if the total system
is of unnatural parity. Only much slower higher-order anni-
hilation can occur in the positronium, if any, after the colli-
sion.

IV. RESONANCE FITTING

The scattering matrix S(E) contains the information on
resonances, as well as, unlike the complex-coordinate rota-
tion calculations, nonresonant background and its interfer-
ence with the resonances. The eigenphases are determined by
diagonalizing the S matrix, and sharp structures in their sum
&(E) are located. To their energy dependence the Breit-
Wigner one-level formula [17,18],

r/2
E,-E

S(E) = arctan + &,(E), (4)
is fitted with the background phase &,(E) usually assumed to
be linear in E (or quadratic in E in some cases of broad
resonances). This simple fitting procedure normally works
well for deriving the resonance parameters (E,,I").

Very broad resonances and overlapping resonances re-
quire careful analysis. For this purpose, the time-delay ma-
trix Q(E), introduced by Smith [19] and related to the S
matrix by Q(E)=iS(dS"/ JE), proved to be useful [20-22]. Its
trace, Tr Q(E), or the diagonal sum satisfies the relation [21]

)

0B =3 0,(E)=3 ¢(E)=2%

N, 0
(E-E,,)*+(T,2) JE

-3

v

(5)

Here, the summation of the Lorentzians over more than one
resonance has been introduced to cover overlapping reso-
nances as well. According to Eq. (5), Tr Q(E) provides in-
formation equivalent to &(E). The inspection of the eigenval-
ues ¢,(E) of the Q matrix, however, singles out each
resonance clearly [20-22].

Figure 1(a) illustrates the Q-matrix eigenvalues and their
sum for the e*He*(P¢) resonance found near the threshold
—0.079 989 of e*+He*(n=5). The center of the Lorentzian
lies below this threshold by only ~3X 1073, but its width
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FIG. 1. (Color online) (a) Eigenvalues ¢,(E) of the time-delay
matrix Q(E) for e*He*(P¢) and their sum, Tr Q(E). (b) Conver-
gence of Tr Q(E) as the number of HSCC equations increases.
He*(n) and Ps(n) stand for coupling all channels up to those pro-
ducing asymptotically He*(n) and Ps(n).

0.034 covers a strikingly broad energy range across this
threshold. This resonance is discussed in the last part of
Sec. VIC. Figure 1(b) shows the convergence behavior of
Tr Q(E). Coupling all the channels up to those breaking up
asymptotically into e*+He*(n=4) is seen to be far from con-
vergence, but further inclusion of all the channels breaking
up into e*+He*(n=5) and into He’*+Ps(n=2) is already
good enough for extracting accurate resonance parameters.

A remarkable case of overlapping resonance is found in
Fig. 2. One of the Q-matrix eigenvalues is by far the largest
and almost coincides with Tr Q(E) [see Fig. 2(a)]. Fitting the
Breit-Wigner formula [Eq. (5)] to it reveals only one reso-
nance. By enlarging the scale and paying attention to the
much smaller second largest eigenvalue, as in Fig. 2(b), one
finds another weak and broad peak overlapping the conspicu-
ous one. It might look like a mere background. However, it is
clearly a Lorentzian. Also, the extracted resonance energy
and width agree quite well with a complex pole of the S
matrix calculated in a completely different manner by the
complex-coordinate rotation technique [7]. This will be seen
in Table III to be presented later in Sec. VI. Furthermore, this
broad resonance will turn out in Sec. VI C to be a member of
an infinite series supported by some potential. Figure 2(c)
shows a close agreement between the results with different
numbers of coupled equations, showing the near conver-
gence attained.

V. INFINITE SERIES OF FESHBACH RESONANCES

In terms of the conventional Jacobi coordinates, the po-
tential matrix elements in the close-coupling equations for
the systems e*H and e*He* have an asymptotic form
~a,;/ (2X?) except for those associated with the fragmenta-
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FIG. 2. (Color online) (a) Eigenvalues ¢;(E) of the time-delay
matrix Q(E) for e*He*(P¢) and their sum, Tr Q(E), which is almost
the same as the largest eigenvalue. (b) Eigenvalues ¢;(E) on an
enlarged scale to distinguish between the smaller eigenvalues. (c)
Convergence of Tr Q(E) as the number of HSCC equations in-
creases. He*(6) and Ps(3) stand for coupling all channels up to
those producing asymptotically He*(n=6) and up to Ps(n=3). Both
results are almost indistinguishable.

tion channels e*+He* with a repulsive Coulomb tail. Here, X
is either ,u,i/zr+ or ,u,le/zR. The diagonal elements a;;/(2X?)
represent the centrifugal potential. The off-diagonal dipole
potentials a;;/ (2X?) stem from the dipole coupling between
channels producing a two-body fragment with angular mo-
mentum differing by one unit, for example, p-d coupling. No
fragmentation of an unnatural-parity three-body state pro-
duces a two-body fragment in an s state, as noted in Sec. III.
Therefore, no two-body systems are produced in the ground
state. Also, no asymptotic s-p coupling occurs, and hence, no
off-diagonal dipole potential exists for the n=2 unnatural-
parity channels.

The coefficient a;; may be positive, negative, or vanish-
ing. In the asymptotic limit X — o, the dipole potential sub-
matrix {a,-j}/ (2X?) within a set of degenerate channels may
be diagonalized by a unitary transformation, so that the
transformed asymptotic channels are decoupled. Any dipole
potential for a decoupled channel having a coefficient «
(here called a dipole-moment eigenvalue) less than —1/4 is
known to support an infinite number of bound-state levels
converging to the asymptotic energy of those degenerate
channels. These bound states turn into an infinite series of
Feshbach resonances via coupling with open channels [23].
The relativistic effects actually terminate the series at some
finite number. There may also be shape and Feshbach reso-
nances that are independent of any series.

PHYSICAL REVIEW A 80, 032708 (2009)

TABLE 1. Parameters for the infinite series of Feshbach reso-
nances of symmetries P¢ and D? in the systems ¢*H and e*He*. Ey;:
series limit. a: dipole-moment eigenvalue (less than —1/4). C: pa-
rameter appearing in Eq. (6) for the resonance positions and widths.

System Fragmentation Eq Symmetry a C
e'H e*+H(n=5) -0.019989 P¢ -37.70  1.027
Pe -3.482 3.495
D° -35.05  1.065
D° -20.14  1.409
D’ —-0.458 13.78
p+Ps(n=3) —-0.027778 Pe -32.02  1.115
D’ -28.25  1.187
e*+H(n=4) -0.031233 Pe -18.46 1472
D’ -15.72  1.597
D’ —4.840 2933
et+H(n=3) -0.055525 P -5220 23818
D° -2.300 4.388
e*Het He?*+Ps(n=3) —0.027778 P -68.01  0.7633
D° -64.12  0.7862

Table I summarizes the dipole-moment eigenvalues «
(<-1/4) for infinite series in unnatural-parity e*H and
e"He*. Clearly, there are no infinite series converging to the
threshold of e*+H(n=2) or of p (or He**) +Ps(n=2) because
of the absence of the s-p coupling. This differentiates
unnatural-parity resonances from natural-parity resonances.
The table says, for example, that there exist two e*H(P¢) and
three e*H(D°) series converging to an energy of
—-0.019 989 a.u., i.e., the threshold of the continuum e*
+H(n=5).

The resonance parameters for the higher members (la-
beled by an integer v) of an infinite series converging to a
threshold energy Ey, may be expressible as [23]

Er,V= E[h —&, &,=& exp(_ CV),

I',=Tyexp(- Cv). (6)

Here, the constant C is common to both the resonance posi-
tions and widths for each series. It is calculable from the
dipole-moment eigenvalue and is included in Table I. The
constants g, and I', depend on the whole interaction includ-
ing the short-range potentials, and their determination re-
quires a full resonance calculation.

VI. ANALYSIS OF THE RESONANCES

The positions and widths of the resonances found in the
system e*H are summarized in Table II and those found in
the system e*He" in Table III. Some of those resonances
were also calculated previously by using the complex-
coordinate rotation method [6,7], and the results are repro-
duced in these tables. The threshold energies Ey, included in
these tables are for the exact reduced mass, as is used in the
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TABLE II. Energies E, and widths I of P¢ and D? resonances in e¢™H. x[y]=x X 10". Ey, represents the

threshold energy.

Threshold, E,

P€

DO

HscC*
E.,T

ro

Complex rotation”
E.,T

HSscC?
E T

ro

Complex rotation®
E.,T

Ps(n=4), —0.015625
H(n=5), —0.019989

Ps(n=3), —0.027778

H(n=4), -0.031233

-0.02026,8.82[-6]
-0.02078,2.19[-5]

-0.02236,4.60[-5]

~0.02785,1.21[-5]
~0.02799,3.74[-5]
~0.02845,1.21[-4]
~0.02988,4.07[-4]

~0.03128,1.3[-6]
~0.03143,5.2[-6]

-0.03211,1.9[-5]
-0.03552,4.6[-5]

~0.03145,7.0[-6]

-0.03215,1.9[-5]
~0.03558,4.6[-5]

-0.02018,2.6[-6]
-0.02022,8.6[-6]
-0.02068,2.3[-5]
-0.02084,1.2[-5]
-0.02217,5.2[-5]

-0.02782,6.6[-6]
-0.02793,2.2[-5]
-0.02830,7.4[-5]
-0.02957,2.5[-4]

-0.03135,1.7[-6]
-0.03154,2.0[-5]
-0.03186,9.9[-6]
~0.03485,3.0[-5]

-0.03138,5.0[-6]
-0.03162,2.2[-5]
-0.03190, 1.0[-5]
-0.03492,3.0[-5]

H(n=3), -0.055525

-0.05554,5.6[-8]

-0.05580,1.2[-6]
Ps(n=2), —0.062500

-0.06364,4.3[-6]
H(n=2), —0.124932

-0.05583,1.2[-6]

-0.05555,3.8[-6] —0.05557,1.0[-6]

-0.06366,4.1[-6]

*Present calculation.
PReference [6].

present hyperspherical calculations. On the other hand, the
nucleus was fixed in space in the complex-rotation calcula-
tion in Refs. [6,7]. The slight difference between our reso-
nance positions and those in Refs. [6,7] arises partly from the
mass-polarization effect.

The adiabatic hyperspherical potentials for e*H with sym-
metries P¢ and D° are shown as full curves in Figs. 3 and 4
and those for e*He" in Figs. 5 and 6. The potential-curve
structure is similar for both symmetries P° and D° for the
same system, but the D’ curves naturally lie higher than the
P¢ curves because of the centrifugal potential and have shal-
lower minimum if any. Therefore, most D’ resonances are
found to be shifted slightly upward from those for P¢. In
some cases the resonance disappears as the angular momen-
tum increases. The corresponding P¢ and D° resonances are
listed in the same row in Tables II and III. In addition, new
resonances occur for D that have no P¢ counterparts. They
are introduced by the additional D potential curves; note the
existence of more D’ curves than P° curves in Figs. 3—6.
Those additional curves are the reason for the more D’ series
than P° series in Table I in spite of the higher centrifugal
potential for D° than for P°.

Complicated dynamics of e*He" is expected from the
many more avoided crossings than for e*H in the energy
region of the potentials breaking up into Ps(n) +He?*. These
potentials are nearly flat asymptotically. On the other hand,
the asymptotic potentials e*+He* are repulsive and hence
diabatically cross the former potentials and adiabatically
avoid crossing them. Most avoided crossings look as if they
were real crossings. In other words, strong avoided crossing
occurs only for exceptional pairs of diabatic states. Espe-
cially, for two diabatic channels with different arrangements
crossing at large p, the electron lies at quite distant positions
in the space, one close to the nucleus and the other close to
the positron and far from the nucleus, so that the coupling
between these channels should be very weak.

The broken curves will be explained and used for reso-
nance mechanism analysis in Sec. VI C. The calculated reso-
nance energies are indicated by horizontal bars in Figs. 3—6
and are discussed in the following.

A. Nondipole independent Feshbach resonances

The continuous spectrum of the system e*H of unnatural
parity starts at the energy level of H(n=2). The adiabatic
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TABLE III. Energies E, and widths I" of P¢ and D° resonances in e*He*. x[y]|=xX 10®. The resonance
energies are arranged relative to the threshold energies E,, but the broad resonances extending across the
threshold He*(n=5) are listed in the same row as this threshold in spite of their central positions E,.

Pe

Dl)

HSCC?

Threshold, Ey, E.,T

Complex rotation”
E..T

HSCC
E..T

Complex rotation”
E.,T

Ps(n=3), —0.027778
-0.02828,2.9[-5]
-0.02890,6.1[-5]
-0.03037,1.2[-4]
He*(n=8), —0.031246
-0.03423,1.2[-4]
He*(n=7), —0.040811
-0.0438,4.1[-3]
He*(n=6), —0.055548
Ps(n=2), —0.062500
~0.06404,4.7[-4]
-0.0640, 1.4[-2]
He*(n=5), —0.079989  —0.0833,3.4[-2]
He*(n=4), —0.124983

-0.03426,1.23[-4]

-0.04379,3.99[-2]

-0.06405,4.75[-4]

-0.0643,1.8[-2]
-0.08411,3.34[-2]

-0.02822,1.9[-5]
-0.02879,4.5[-5]
-0.03022,1.5[-4]

-0.03396,1.5[-4] -0.03400,1.48[-4]

-0.04346,4.6[-3] -0.04343,4.56[-3]

-0.06296,6.2[-4]
-0.063,1.7[-2]
-0.0790,4.0[-2]

-0.06297,6.3[-4]
-0.06390,1.98[-2]
-0.08083,3.99[-2]

“Present calculation.
PReference [7].

potentials in Fig. 3 (P¢) and Fig. 4 (D°) tending asymptoti-
cally to this threshold are repulsive. Hence, these potentials
support no bound states below this threshold and no reso-
nances immediately above it. All the potentials in Figs. 5 and
6 tending to the He*(n=2,3,4) thresholds are also repulsive
because of the Coulomb potential between e¢* and He*. These
potentials remain repulsive at short distances p. Thus, no
bound states are found below the continuum threshold
He*(n=2) and no resonances are found below the thresholds
He*(n=3,4).
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=
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-0.04 - . 0
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FIG. 3. (Color online) Adiabatic hyperspherical potentials (full
curves) of the system e*H(P¢) as functions of the hyper-radius p.
The broken curves are for the p+Ps configurations only and are
explained in Sec. VI C. The vertical positions of the symbols H(n)
and Ps(n) on the right roughly indicate these asymptotic threshold
energies. The calculated resonance levels are shown by horizontal
bars.

The e*H(P¢) potential approaching the threshold Ps(n
=2) has a minimum and supports a bound state, as indicated
by a horizontal bar, which turns into a Feshbach resonance
below this threshold. For D?, this minimum is too shallow to
support a resonance. For e*He*, this potential shows a strong
avoided crossing with a e*+He" potential, which compli-
cates the dynamics. A similar situation occurs also for the
Ps(n=3) potentials. These cases are discussed in detail in
Sec. VIC.

B. Infinite series of dipole resonances

The asymptotic potentials in Figs. 3—-6 are almost the
same as the decoupled dipole potentials in the diagonalized
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-0.018}F 0
-0.020}F H(5) -0.05F
~
= 3
S -0.022p 3 3 H3)
& =
—_— <
.8 -0.024f ‘= -0.06F
= L g Ps(2)
(5} ~
= =}
5] a
(=9 T T o ,
-8 s -0.07F h .
= Ps(3) 2 ;
S -0.03} 4 5 L L
o < T T
< = H(4) -0.08} © 1
V
A (b) 012 e
!
—0.04b—i L 1 0 40 80
0 100 200 300

Hyperradius (a.u.) Hyperradius (a.u.)

FIG. 4. (Color online) Adiabatic hyperspherical potentials (full
curves) of the system e*H(D?) as functions of the hyper-radius p.
For the broken curves and horizontal bars, see caption of Fig. 3.
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FIG. 5. (Color online) Adiabatic hyperspherical potentials of the
system e*He*(P¢) as functions of the hyper-radius. The vertical
positions of the symbols He*(n) and Ps(n) on the right roughly
indicate these asymptotic threshold energies. For the broken curves
and horizontal bars, see caption of Fig. 3.

Jacobi-coordinate close-coupling equations. Therefore, each
infinite series of Feshbach resonances may be associated
with an adiabatic hyperspherical potential. According to
Table I, there exists one infinite series of dipole-supported
e*H(P¢) resonances below each of the thresholds H(n=3),
H(n=4), and Ps(n=3) and two infinite series below
H(n=5). These numbers of series coincide with the numbers
of the asymptotically attractive e*H(P¢) potentials seen in
Fig. 3 below these thresholds. The potential approaching
Ps(n=2) is seen to be attractive, but it has no dipole tail and
supports no infinite series, as has been noted in Sec. V. In-
spection of Figs. 4—6 also reveals consistency with Table I as
regard to the number of infinite series, though visual distinc-
tion of the weakly attractive dipole potentials from those
decaying more rapidly than ~p~ is sometimes difficult.
The energies E, and widths I' of the resonances lying
below the threshold Ps(n=3) and above the lower thresholds
are plotted semilogarithmically in Fig. 7 for e*H(P¢) and
e¢*H(D?). Straight lines are also drawn with slopes C
=1.115 (for P°) and 1.187 (for D°), taken from Table I. The
vertical positions of these lines are chosen to reproduce the
higher members well, so that the parameters in Eq. (6) are

o 40 80
= = Ps(2)
Ps(3) N
-0 = He'(5)
—_ He (8) -0.1}F
=3
= = He'(4)
= &
g =
g -0 4 . g
8. He (7) |5}
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L [ N
s - 2 He'(3)
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Z £
< ' S}
He'(6) 2
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Ps(2)
-0 He'(5) He'(2)
200 0 40 80

Hyperradius (a.u.)

Hyperradius (a.u.)

FIG. 6. (Color online) Adiabatic hyperspherical potentials of the
system e*He*(D?) as functions of the hyper-radius. For the broken
curves and horizontal bars, see caption of Fig. 3.

FIG. 7. Semilogarithmic plot of the positions E, ,=Ey—¢, and
widths I',, of the (a) e"H(P?) and (b) e*H(D®) resonances below the
Ps(n=3) threshold E;=-0.027 778 and above the lower thresholds.
The straight lines have slopes of 1.115 (for P¢) and 1.187 (for D°)
as taken from Table I. Their vertical positions are adjusted to repro-
duce the higher members of the resonance series.

estimated as e;=6.0X 1073 and ['j=1.0X 107 for P¢ and
£0=5.2X 1073 and I'y=7.6 X 10~ for D°, though the second
digit in these values could well be in some error.

The calculated resonance parameters are seen to satisfy
Eq. (6) quite well with C common to both E, and I'. This
corroborates clearly that, for both P¢ and D?, the four reso-
nances belong to a common infinite series of dipole reso-
nances. Indeed, Figs. 3(b) and 4(b) suggest that the lowest of
the potentials with a breakup limit p+Ps(n=3) supports
these resonances. The energy points &, in Figs. 7(a) and 7(b)
for the lowest resonances slightly deviate above from the
straight line, i.e., in the stronger binding direction, because
these resonances are supported by the deep-well part of the
potential, which is more attractive than the dipole potential.
Nevertheless, even these resonances are seen to satisfy the
dipole-resonance formula [Eq. (6)] fairly well. This is re-
markable also because the avoided crossings of the support-
ing potential with other potential curves could have affected
these resonances more strongly.

Similar observation is made for the three e*He*(P¢) and
three e*He*(D?) resonances below the threshold Ps(n=3)
and above the lower thresholds, plotted in Fig. 8 with open
circles and triangles. The calculated results satisfy Eq. (6)
quite well with slopes C=0.763 (for P¢) and 0.786 (for D?),
taken from Table I. The energy values g, are shifted slightly
in the stronger binding direction, as is also the case with e*H.
The width I'; for e*He"(D?) is fairly off the straight line,
perhaps because of the avoided crossing of the lower part of
the relevant adiabatic potential with a lower potential. The
parameters in Eq. (6) are estimated as £,=4.9X 107 and
[p=29X10"* for P¢ and g,=4.5X107 and I'j=1.9
% 107* for D, though the second digit could well be in some
error.

Similar semilogarithmic analysis with the C values in
Table I reveals that the two e*H(P®) resonances below the
threshold H(n=3) belong to the infinite series with C
=2.818 and that the four eH(P¢) resonances below H(n
=4) belong to the one with C=1.472. The hyperspherical
potentials supporting these series are obvious from Figs. 3(b)
and 3(c) and Table 1. Also, the three e*H(P¢) resonances
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FIG. 8. Semilogarithmic plot of the positions E, ,=Ey—¢, and
widths T", of (a) the three e*He*(P¢) and (b) the three e*He*(D?)
resonances lying below the Ps(n=3) threshold Ey4=-0.027 778 and
above the lower thresholds (open circles and triangles). The straight
lines have slopes of 0.7633 (for P¢) and 0.7862 (for D°) as taken
from Table I. Their vertical positions are adjusted to reproduce the
higher members of the resonance series. Some lower-lying reso-
nances are also included (solid circles and triangles) and discussed
in Sec. VIC.

below H(n=5) belong to the series with C=1.027 and are
supported by the lowest potential in Fig. 3(a). Theoretically,
there exists another series supported by the next lowest po-
tential, as is clear from Table I. Nevertheless, it has failed to
emerge in the calculation carried out so far.

A slightly more complicated case is the analysis of the
five e*H(D®) resonances below the threshold H(n=5). In
fact, they are classified into two groups. The three reso-
nances that correspond to the three P¢ resonances in Table 11
satisfy Eq. (6) with C=1.065. They are apparently supported
by the lowest potential in Fig. 4(a). The other two resonances
are found to be members of the series with C=1.409, sup-
ported by the next lowest potential. The third series associ-
ated with the weakly attractive potential in Fig. 4(a), which
surely exists according to Table I, has escaped our detection
so far.

Four e™H(D°) resonances are found below H(n=4)
in Table II. All of them except for the third lowest
(—=0.031 54) are analyzed to belong to the series with C
=1.597, supported by the lowest potential in Fig. 4(b). The
third lowest resonance may be regarded as supported by the
second lowest potential. However, it may be affected by the
avoided crossing of that potential with the next higher one.
The ¢*H(D?) resonance lying below H(n=3) is most prob-
ably a member of the series with C=4.388 and is supported
by the lowest of the three potentials approaching H(n=3) in
Fig. 4(c). However, no definite conclusion is drawn without
locating other members of this series.

C. Diabatic picture for the resonance mechanism

The lowest-lying ¢*He*(P¢) resonance at —0.034 23 in
Fig. 5(a) is an outstanding case challenging the generally
accepted belief that resonances are supported by a minimum
in an adiabatic hyperspherical potential with or without a
barrier outside the minimum. This resonance occurs in the
energy region of avoided crossing between two adiabatic
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curves. It lies above the top of the barrier in the lower curve
and below the dip of the upper curve.

In this avoided-crossing region of the energy and hyper-
radius p the coupling between the two channels with avoided
potentials should be crucial in unraveling the resonance
mechanism. The essential dynamics must be determined by
these two adiabatic channels. By a proper unitary transfor-
mation of them, a pair of diabatic channels may be created,
which, if coupled, is equivalent to the pair of coupled adia-
batic channels. One of the diabatic potentials should be con-
nected from the outer-region (p, < p) upper adiabatic poten-
tial to the inner-region (p<<p,) lower adiabatic potential
smoothly across the diabatic crossing point p,. This diabatic
potential is attractive all the way inward through p, until p
reaches the minimum of the lower adiabatic potential. Be-
yond there, it follows the repulsive adiabatic potential. Then,
this diabatic potential, say, W,(p), may support a bound state
lying between the two avoided adiabatic potentials. This
bound state must change into a resonance state due to the
coupling with the other diabatic channel, producing a reso-
nance unexpected from the adiabatic picture, such as the one
at —0.034 23.

This argument may be further supported from another as-
pect. Figure 5(a) suggests that the extension of the attractive
part of the lowest Ps(n=3) potential further down would
approximate the attractive part of the diabatic potential
W,(p) supporting the resonance at —0.034 23. Then, this
resonance may be regarded as another member of the infinite
series of resonances lying below the threshold Ps(n=3) and
plotted in Fig. 8(a) with the open circles and triangles. There-
fore, the data for this resonance are added to Fig. 8(a) by a
solid circle and solid triangle to the left of and next to &, and
I';. Indeed, the resonance energy lies close to the straight
line, demonstrating its membership of the same series. The
width is off the straight line, which is quite reasonable since
the width is very sensitive to the coupling with other chan-
nels, in general. The coupling associated with this resonance
is quite different in nature from that associated with the up-
per members of the series.

A theoretical way of extrapolating the attractive part of
the Ps+He?* potentials is to remove from the adiabatic po-
tentials the contributions from the arrangement e*+He". This
may be effected by constructing the basis functions for the
adiabatic hyperspherical states ¢;({2;p) in terms only of the
Jacobi coordinates for the arrangement Ps+He?* and by di-
agonalizing the adiabatic Hamiltonian matrix H,4({);p). The
two lowest potential curves obtained in this way are included
in Fig. 5 as broken curves. Thus, all the four resonances in
Fig. 5(a) are visually understood to belong to the same se-
ries.

The D° version of this unexpected resonance occurs at
—0.033 96 and is indicated as the lowest resonance in Fig.
6(a). This time three potential curves are seen to be involved
in the avoided crossing. Nevertheless, the diabatic potential
supporting this resonance is quite similar to the P° case and
is approximated by the broken curve obtained in the same
way as the ones included in Fig. 5. The resonance energy and
width are added to Fig. 8(b) by a solid circle and solid tri-
angle to the left of and next to &, and I';. Just as for the P¢
symmetry, the resonance energy lies nearly on the straight
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line, demonstrating its membership of the D series converg-
ing to the threshold Ps(n=3).

The resonance at —0.0438 in Fig. 5(b) and the one at
—0.043 46 in Fig. 6(b) are also considered to be supported by
the broken P¢ (D°) diabatic potential curve and hence re-
garded as a member of the P¢ (D°) infinite series. This is
understood from the resonance parameters added to Figs.
8(a) and 8(b) (the third solid circle and triangle from left).
Once again, the resonance energy lies close to the straight
line in both of these figures. The width is quite large because
of the strong coupling between the diabatic channels. Note
the weak minimum structure in the lowest adiabatic potential
curve tending to He*(n=6), revealing the strong avoided
crossing with the Ps(n=3) curve. The other e*+He*(n=6)
potentials appear to be almost inactive in the presence of the
He?*+Ps(n=3) channel.

Two diabatic broken curves are seen in Fig. 5(b) below
the energy of Ps(n=2), one approaching asymptotically to
Ps(n=2) and the other to Ps(n=3). Each diabatic curve sup-
ports a resonance in this energy region. The one supported by
the former occurs below and close to the threshold Ps(n
=2). This is a usual narrow independent Feshbach resonance.
On the other hand, the resonance supported by the Ps(n=3)
diabatic potential is still another lower member of the series
plotted in Fig. 8(a) (the second solid circle and triangle from
left). It is naturally very broad and extends over a wide en-
ergy region across the threshold. This is the mechanism of
the overlapping resonance analyzed in Sec. IV regarding Fig.
2. A similar overlapping resonance occurs also for the sym-
metry D° [see Fig. 6(b) and the second solid circle and tri-
angle from left in Fig. 8(b)].

The lowest resonance in Fig. 5(c), also shown in Fig. 1 as
an example of a broad resonance, appears to be the lowest
member of the series supported by the diabatic Ps(n=3)
potential of symmetry P¢. Naturally, its resonance energy
[the leftmost solid circle in Fig. 8(a)] deviates significantly
from the straight line since the part of the diabatic potential
supporting this deep resonance level deviates significantly
from the dipole form. Similarly, the lowest resonance in Fig.
6(c) appears to be the lowest member supported by the
D° diabatic Ps(n=3) potential, though its resonance energy
naturally deviates significantly from the straight line in Fig.
8(b).
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VII. SUMMARY

Continuum states of unnatural parity 7=(—1)*! in the
three-body systems ¢"H and e*He* have been studied. Un-
like natural-parity states, they contain no two-body s-state
component. As a consequence of this, the continuum begins
from the energy of the H(2p) or He*(2p) state, no infinite
series of Feshbach resonances exist below the threshold of
the Ps(2p) state, and the lowest-order 2y and 37 pair anni-
hilation is forbidden.

The infinite resonance series converging to the thresholds
H(n=3) and Ps(n=3) are supported by the diagonalized
asymptotic dipole potentials in the Jacobi coordinates. These
dipole potentials correspond approximately one to one to the
asymptotic part of adiabatic hyperspherical potentials. Thus,
an infinite series is associated with a hyperspherical poten-
tial. Based on the theoretical common ratios of the geometric
progressions representing the resonance positions and widths
of the infinite series, many of the calculated resonances have
been identified to be members of a particular series and
hence supported by a particular adiabatic potential. Several
resonances are unassociated with a minimum of any single
adiabatic potential. They have been interpreted as supported
by a diabatic hyperspherical potential. The outer attractive
part of this diabatic potential may be approximated by ex-
tending the attractive part of an adiabatic potential down-
ward. Thus, some of these resonances may be regarded as
low-lying members of the infinite series, of which the higher
members are supported by a dipole potential. Broad and nar-
row resonances sometimes happen to overlap each other, the
former being such a low-lying member of an infinite series
and the latter being supported by another diabatic potential.
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