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A time-dependent close-coupling method is developed to treat the double ionization of H2 by fast bare-ion
collisions. At high incident energies, for which charge transfer to the projectile may be ignored, multipole
expansions are made for the electron-electron and electron-projectile interactions in a fixed target nuclei
coordinate system. The time-dependent Schrödinger equation for the six dimensional target electron wave
function is reduced to a set of close-coupled equations on a four dimensional numerical lattice in �r1 ,�1 ,r2 ,�2�
center-of-mass spherical polar coordinates. Time-dependent close-coupling calculations are carried out for
p+H2 collisions at an incident energy of 1.0 MeV. The ratio of double to single ionization is found to be 0.3%,
which is in reasonable agreement with experimental measurements.
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I. INTRODUCTION

The double ionization of atoms and molecules probes the
long range interaction of two electrons in the field of a
charged ion: the quantal three-body breakup problem. For
atoms the two ejected electrons move in the spherical field of
an atomic ion, while for molecules the two ejected electrons
move in the nonspherical field of a molecular ion. Under
photon-impact the two ejected electrons feel a dipolar inter-
action, while under fast bare-ion impact the two ejected elec-
trons feel a multipolar interaction. From a theoretical per-
spective, the fast bare-ion-impact double ionization of a
molecule is a quite challenging three-body problem.

In the last few years, several nonperturbative theoretical
methods have been developed to treat photon-impact double
ionization of atoms. Double ionization cross sections for He
have been calculated using the extended R-matrix �1�, con-
verged close-coupling �2�, R-matrix with pseudostates �3�,
hyperspherical close coupling �4�, time-dependent close cou-
pling �5,6�, and exterior complex scaling �7� methods.
Double ionization cross sections for the lightest alkaline
earth metal atoms have also been calculated using the con-
verged close-coupling �8,9�, time-dependent close coupling
�10�, hyperspherical close coupling �11�, and R-matrix with
pseudostates �12� methods.

Recently, nonperturbative theoretical methods have been
developed to treat both photon-impact double ionization of
molecules and fast bare-ion-impact double ionization of at-
oms. Photon-impact double ionization cross sections for H2
have been calculated using the time-dependent close-
coupling �13,14�, exterior complex scaling �15,16�, and con-
verged close-coupling �17,18� methods. Fast bare-ion-impact
double ionization cross sections for He have been calculated
using the time-dependent coupled channels �19,20� and time-
dependent close-coupling �21,22� methods.

In this paper, we develop a nonperturbative time-
dependent close-coupling method to calculate single and
double ionization processes in fast bare-ion collisions with
H2. At high incident energies, charge transfer to the projectile
may be ignored, so that multipole expansions are made for

the electron-electron and electron-projectile interactions in a
fixed target nuclei coordinate system. Due to the nonspheri-
cal field of the molecular target, the six-dimensional two-
electron wave function is expanded in rotational functions.
Reduction of the time-dependent Schrödinger equation
yields a set of close-coupled equations on a four dimensional
numerical lattice in �r1 ,�1 ,r2 ,�2� center-of-mass spherical
polar coordinates. The initial condition involves the solution
of a set of close-coupled equations for the time-dependent
Schrödinger equation in imaginary time including only the
electron-electron interaction. The full set of close-coupled
equations is propagated in real time for a number of projec-
tile impact parameters. Single and double ionization cross
sections are extracted by postcollision projection of the time
evolved reduced wave functions onto bound single particle
molecular orbitals. To compare with experimental measure-
ments �23,24�, time-dependent close-coupling calculations
are carried out for p+H2 collisions at an incident energy of
1.0 MeV.

The rest of the paper is organized as follows. In Sec. II we
develop a time-dependent close-coupling method for ioniza-
tion processes in fast bare-ion collisions with homonuclear
diatomic molecules. In Sec. III, we apply the time-dependent
close-coupling method to calculate single and double ioniza-
tion cross sections for p+H2 collisions. In Sec. IV, we con-
clude with a summary and an outlook for future work. Un-
less otherwise stated, all quantities are given in atomic units.

II. THEORY

The time-dependent Schrödinger equation for fast bare-
ion scattering from a two-electron homonuclear diatomic
molecule is given by

i
���r�1,r�2,t�

�t
= �Htar�r�1,r�2� + Hproj�r�1,r�2,t����r�1,r�2,t� .

�1�

The target Hamiltonian is given by
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Htar�r�1,r�2� = �
i=1

2

�−
1

2
�i

2 − �
�

Zt

�ri
2 +

1

4
Rt

2 � riRt cos �i�
+

1

	r�1 − r�2	
, �2�

where Zt is the charge on each target nucleus and Rt is the
internuclear distance. The projectile Hamiltonian is given by

Hproj�r�1,r�2,t� = �
i=1

2 
−
Zp

	r�i − R� p�t�	
� , �3�

where Zp is the charge on the projectile. For straight-line
motion, the magnitude of the time-dependent projectile posi-
tion is given by

R� p�t� = bî + �d0 + vt�k̂ , �4�

where b is an impact parameter, d0 is a starting distance
�d0�0�, and v is the projectile speed.

The six-dimensional target electron wave function is ex-
panded in rotational functions for each total angular momen-
tum projection along the internuclear axis, M, and total spin
angular momentum, S,

�MS�r�1,r�2,t� = �
m1,m2

Pm1m2

MS �r1,�1,r2,�2,t�

r1r2
�sin �1

�sin �2

�m1
��1��m2

��2� ,

�5�

where

�m��� =
eim�

�2�
, �6�

and M =m1+m2.
Upon substitution of �MS�r�1 ,r�2 , t� of Eq. �5� into the

time-dependent Schrödinger equation of Eq. �1�, we obtain
the following set of time-dependent close-coupled partial dif-
ferential equations for each MS symmetry:

i
�Pm1m2

MS �r1,�1,r2,�2,t�

�t
= Tm1m2

�r1,�1,r2,�2�Pm1m2

MS �r1,�1,r2,�2,t�

+ �
m1�,m2�

Vm1m2,m1�m2�
M �r1,�1,r2,�2�Pm1�m2�

MS �r1,�1,r2,�2,t�

+ �
m1�,m2�,M�

Ẇm1m2,m1�m2�
MM� �r1,�1,Rp,�p,t�Pm1�,m2�

M�S �r1,�1,r2,�2,t�

+ �
m1�,m2�,M�

Ẅm1m2,m1�m2�
MM� �r2,�2,Rp,�p,t�Pm1�,m2�

M�S �r1,�1,r2,�2,t� . �7�

The kinetic and nuclear interaction operator is given by

Tm1m2
�r1,�1,r2,�2�

= �
i=1

2

�K�ri� + K̄�ri,�i� + Ami
�ri,�i� + N�ri,�i�� , �8�

where K�r� and K̄�r ,�� depend on the lattice representation
of derivative operators,

Ami
�ri,�i� =

mi
2

2ri
2 sin2 �i

, �9�

and

N�ri,�i� = − �
�

Zt

�ri
2 +

1

4
Rt

2 � riRt cos �i

. �10�

The electron-electron interaction operator is given by

Vm1m2,m1�m2�
M �r1,�1,r2,�2�

= 4� �
	=	q	

	max �r1,r2��
	

�r1,r2�

	+1

Y		q	��1,0�Y		q	��2,0�

2	 + 1
, �11�

where q=m1−m1�=m2�−m2 and Ylm�� ,�� is a spherical har-
monic. The electron-projectile interaction operators are given
by

Ẇm1m2,m1�m2�
MM� �r1,�1,Rp,�p,t�

= − 4�Zp�m2,m2� �
	=0

	max

�
q=−	

+	

�q,m1−m1�

�
�r1,Rp��

	

�r1,Rp�

	+1

Y		q	��1,0�Y		q	��p,0�

2	 + 1
�12�

and
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Ẅm1m2,m1�m2�
MM� �r2,�2,Rp,�p,t�

= − 4�Zp�m1,m1� �
	=0

	max

�
q=−	

+	

�q,m2−m2�

�
�r2,Rp��

	

�r2,Rp�

	+1

Y		q	��2,0�Y		q	��p,0�

2	 + 1
. �13�

We choose the projectile to move in the xz plane, such that
sin �p=b /Rp�t�, cos �p= �d0+vt� /Rp�t�, and �p=0. Thus, the
projectile motion is aligned with the internuclear axis.

The initial condition for the solution of Eq. �1� is given by

��r�1,r�2,t = 0� = �̄�r�1,r�2, → �� , �14�

where �̄�r�1 ,r�2 ,→�� is the ground state of the two-electron
homonuclear diatomic molecule �M =S=0�. The ground state
may be obtained by relaxation of the Schrödinger equation in
imaginary time �t= i�

−
��̄�r�1,r�2,�

�
= Htar�r�1,r�2��̄�r�1,r�2,� . �15�

The wave function �̄MS�r�1 ,r�2 ,� is again expanded in prod-
ucts of rotational functions, substituted into Eq. �15�, yield-

ing a set of close-coupled partial differential equations for
the ground MS symmetry

−
� P̄m1m2

MS �r1,�1,r2,�2,�

�

= Tm1m2
�r1,�1,r2,�2�P̄m1m2

MS �r1,�1,r2,�2,�

+ �
m1�,m2�

Vm1m2,m1�m2�
M �r1,�1,r2,�2�P̄m1�m2�

MS �r1,�1,r2,�2,� .

�16�

We solve the time-dependent close-coupling equations us-
ing lattice techniques to obtain a discrete representation of
the reduced wave functions, P�r1 ,�1 ,r2 ,�2 , t� �or
P̄�r1 ,�1 ,r2 ,�2 ,��, and all operators on a four dimensional
radial and angular grid, �ri ,� j ,ri� ,� j��. For a low-order finite
difference representation, the variational principle yields the
kinetic energy operators

KiPi,j,i�,j��t�

= −
1

2
� ciPi+1,j,i�,j��t� + ci−1Pi−1,j,i�,j��t� − c̄iPi,j,i�,j��t�

�r2  ,

�17�

where ci=
ri+1/2

2

riri+1
and c̄i=

ri+1/2
2 +ri−1/2

2

ri
2 , while

K̄ijPi,j,i�,j��t� = −
1

2ri
2
djPi,j+1,i�,j��t� + dj−1Pi,j−1,i�,j��t� − d̄jPi,j,i�,j��t�

��2
� , �18�

where dj =
sin � j+1/2

�sin � j sin � j+1
and d̄j =

sin � j+1/2+sin � j−1/2

sin � j
. The coefficients reflect the adoption of half-spacing in all coordinate directions so

that proper boundary conditions may easily be applied. The time-dependent close-coupling equations are propagated forward
in time using an implicit algorithm,

Pm1m2

MS �t + �t� = �
m1�,m2�,M�

e−i�t/2�V
m1m2,m1�m2�
M �1,2�+W

m1m2,m1�m2�
MM� �1,2,t��
1 +

i�t

2
U�1��−1
1 +

i�t

2
Ūm1�

�1��−1

� 
1 +
i�t

2
U�2��−1
1 +

i�t

2
Ūm2�

�2��−1
1 −
i�t

2
Ūm2�

�2��
1 −
i�t

2
U�2��

� 
1 −
i�t

2
Ūm1�

�1��
1 −
i�t

2
U�1�� �

m1�,m2�,M�

e−i�t/2�V
m1�m2�,m1�m2�
M �1,2�+W

m1�m2�,m1�m2�
M�M� �1,2,t��Pm1�m2�

M�S �t� , �19�

where U�i�=K�ri�+N�ri ,�i� and Ūmi
�i�= K̄�ri ,�i�+Ami

�ri ,�i�.
For the extraction of ionization cross sections, we begin by defining asymptotic reduced wave functions. For the target

channels �i.e., M =S=0�,

P̂m1m2

MS �r1,�1,r2,�2� = Pm1m2

MS �r1,�1,r2,�2,t → �� − LP̄m1m2

MS �r1,�1,r2,�2, → �� �20�

and for all other channels

P̂m1m2

MS �r1,�1,r2,�2� = Pm1m2

MS �r1,�1,r2,�2,t → �� , �21�

where the overlap function
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L = �
m1,m2

�
0

�

dr1�
0

�

d�1�
0

�

dr2�
0

�

d�2P̄m1m2

MS �r1,�1,r2,�2, → ��Pm1m2

MS �r1,�1,r2,�2,t → �� �22�

removes all ground-state character and thus prevents ground-state correlation from appearing as double ionization. The total
single ionization probability, for a given velocity and impact parameter, is given by

P1�v,b� = 2�
M

�
m,m�

�
n,l

�

0

�

dr2�
0

�

d�2��
0

�

dr1�
0

�

d�1Pnlm�r1,�1�P̂mm�
MS �r1,�1,r2,�2��2

− �
n�,l�
��

0

�

dr1�
0

�

d�1�
0

�

dr2�
0

�

d�2Pnlm�r1,�1�Pn�l�m��r2,�2�P̂mm�
MS �r1,�1,r2,�2��2� . �23�

The total double ionization probability is given by

P2�v,b� = �
M

�
mm�

�
0

�

dr1�
0

�

d�1�
0

�

dr2�
0

�

d�2	P̂mm�
MS �r1,�1,r2,�2�	2 − P1�v,b�

− �
M

�
m,m�

�
n,l

�
n�,l�
��

0

�

dr1�
0

�

d�1�
0

�

dr2�
0

�

d�2Pnlm�r1,�1�Pn�l�m��r2,�2�P̂mm�
MS �r1,�1,r2,�2��2

. �24�

We note that the total single ionization probability of Eq.
�23� is the sum of single ionization probabilities for all nlm
states of the molecular ion. The bound single particle orbit-
als, Pnlm�r ,��, found in Eqs. �23� and �24� are obtained by
direct diagonalization of the one-electron Hamiltonian,

Hm�r,�� = K�r� + K̄�r,�� + Am�r,�� + N�r,�� . �25�

Finally, the total cross section for both single and double
ionization is given by

��v� = 2��
0

�

P�v,b�bdb . �26�

III. RESULTS

The time-dependent close-coupling method was used to
calculate the ground state �M =S=0� of H2 at Rt=1.4 using
Eq. �16�. We employed a 192�16�192�16 point lattice
with a uniform mesh spacing of �r1=�r2=0.20 and ��1
=��2=0.0625. For the five coupled channels listed in Table I
and 	max=4 in Eq. �11�, a fully converged ground state of H2
on the lattice was obtained after 500 time steps with �
=0.02 and a lattice energy of −52.7 eV. For Rt=0.0 we ob-

tain a lattice energy of −81.1 eV, where the infinite lattice
limit is −79.0 eV �25�.

The time-dependent close-coupling method was then used
to calculate ionization cross sections for p+H2 collisions at
an incident energy of 1.0 MeV using Eq. �7�. We again em-
ployed a 192�16�192�16 point lattice with a uniform
mesh spacing of �r1=�r2=0.20 and ��1=��2=0.0625. For
the 19 coupled channels listed in Table II and 	max=2 in Eqs.
�12� and �13�, the total wave function for H2 was propagated

TABLE I. Ground state coupled channels for H2.

Channel m1 m2 M S

1 0 0 0 0

2 +1 −1 0 0

3 −1 +1 0 0

4 +2 −2 0 0

5 −2 +2 0 0

TABLE II. Scattering state coupled channels for H2.

Channel m1 m2 M S

1 0 0 0 0

2 +1 −1 0 0

3 −1 +1 0 0

4 +2 −2 0 0

5 −2 +2 0 0

6 0 +1 +1 0

7 +1 0 +1 0

8 +2 −1 +1 0

9 −1 +2 +1 0

10 0 −1 −1 0

11 −1 0 −1 0

12 +1 −2 −1 0

13 −2 +1 −1 0

14 0 +2 +2 0

15 +2 0 +2 0

16 +1 +1 +2 0

17 −2 0 −2 0

18 0 −2 −2 0

19 −1 −1 −2 0
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for 3150 time steps with �t=0.005. With a velocity of v
=6.35, the proton moves from zi=−25.0 to zf =+75.0 at vari-
ous impact parameters parallel to the internuclear axis rang-
ing from b=0.2 to 9.0. The weighted single ionization prob-
ability, bP1�v ,b�, from Eq. �23� is shown in Fig. 1 peaking at
b=1.2. The weighted double ionization probability,
bP2�v ,b�, from Eq. �24� is shown in Fig. 2 peaking at b
=0.6. Integrating the weighted probabilities using Eq. �26�
yields a single ionization cross section of 21.5 Mb and a
double ionization cross section of 62.0 kb.

As a test of the importance of electron correlation in the
double ionization process, we carried out additional calcula-
tions in which electron-electron interaction operator of Eq.
�11� was set to zero in the time-dependent close-coupling
equations of Eq. �7�. We found that the single ionization
weighted probability at an impact parameter of 0.60 went
from 2.92�10−2 to 3.11�10−2, while the double ionization
weighted probability went from 2.31�10−4 to 1.40�10−3.
The factor of six difference in the double ionization prob-
abilities indicates the importance of including the full inter-
action between the two ejected electrons.

The ratio of double ionization to single ionization for p
+H2 collisions at 1.0 MeV is found to be 0.3%. The time-
dependent close-coupling value is in reasonable agreement
with time-of-flight beam-cell experiments which found 0.2%
�23,24�. The present calculations assume the projectile
moves in an xz plane parallel to the internuclear axis, while
the experimental measurements average over all alignments
of the projectile with the internuclear axis. An orientation
average calculation is a much larger computational chal-
lenge.

For a projectile moving perpendicular to the internuclear
axis, the electron-projectile interaction operators of Eqs. �12�
and �13� need to be derived for projectile motion in the xy
plane. As found before for p+H2

+ collisions �26�, the total
cross section of Eq. �26� is modified to include impact pa-
rameters b and �b, calling for a full plane instead of just a
line of projectile trajectories. In the studies of one-electron
charge transfer in p+H2

+ collisions at various projectile ve-

locities and internuclear separations �26�, the cross sections
for perpendicular alignment were found to be 20% to 100%
larger than the cross sections for parallel alignment. It will be
interesting to see how much the single and double ionization
cross sections for p+H2 collisions change when the compu-
tationally more challenging calculations for the perpendicu-
lar alignment are carried out in the future.

IV. SUMMARY

A nonperturbative time-dependent close-coupling method
has been developed to treat double ionization processes in
fast bare-ion collisions with homonuclear diatomic mol-
ecules. This particular quantal three-body breakup problem is
especially difficult due to the nonspherical field of the mo-
lecular ion and the strong multipolar interaction of the pass-
ing bare ion. A test calculation is then made for p+H2 colli-
sions at 1.0 MeV and reasonable agreement is found between
theory and experiment for the ratio of double to single ion-
ization.

In the future, we plan to apply the newly developed time-
dependent close-coupling method to further p+H2 collision
studies. As found before for �+H2 collision studies �27�, the
time-dependent close-coupling method can be applied to
study energy and angle differential cross sections for the
ejected electrons as a function of internuclear orientation and
separation. In support of experimental efforts, we also plan
to study other ion-molecule collisions, including antiprotons
on H2 and alpha particles on Li2.
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FIG. 2. Weighted probability bP2�v ,b� for double ionization in
p+H2 collisions at an incident energy of 1.0 MeV/amu. The impact
parameter �b� is in atomic units.
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FIG. 1. Weighted probability bP1�v ,b� for single ionization in
p+H2 collisions at an incident energy of 1.0 MeV/amu. The impact
parameter �b� is in atomic units.
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