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We compare the explicitly correlated Hylleraas and exponential basis sets in the evaluations of ground state
of Li and Be+. Calculations with Hylleraas functions are numerically stable and can be performed with the
large number of basis functions. Our results for ground-state energies −7.478 060 323 910 10�32� and
−14.324 763 176 790 43�22� of Li and Be+, correspondingly, are the most accurate to date. When small basis
set is considered, explicitly correlated exponential functions are much more effective. With only 128 functions
we obtained about 10−9 relative accuracy, but the severe numerical instabilities make this basis costly in the
evaluation.
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I. INTRODUCTION

In order to accurately calculate energy levels of light
atomic systems, not only nonrelativistic energies, but also
relativistic and QED corrections have to be obtained with the
high precision. In the NRQED approach all corrections are
obtained perturbatively, in powers of the fine-structure con-
stant �. Each term of this expansion is expressed as the ex-
pectation value of some effective Hamiltonian with the non-
relativistic wave function. Similarly, corrections due to the
finite nuclear mass and its size can all be included perturba-
tively. This however requires the accurate representation of
the nonrelativistic wave function.

The wave function of the ground and excited states can be
obtained on the base of the Ritz variational principle. The
accuracy of the upper bound for energy mainly depends on
the basis set of trial functions and effectiveness of the opti-
mization routine. There are not so many possible choices of
basis functions, knowing that electron correlations have to be
accurately accounted for. The most serious problem in devel-
opment of explicitly correlated methods is difficulty in accu-
rate calculations of integrals appearing in Hamiltonian ma-
trix elements, and the complexity of these integrals grows
with the increasing number of correlated electrons.

The most often in use are correlated Gaussian functions
which have been applied so far to systems including up to six
electrons, and the most accurate results in comparison to
other methods, have be obtained for Be atom �1–3�. Rela-
tively simple integrals and possible generalization to systems
with higher number of electrons is the main advantage of
Gaussian functions. However, these functions have improper
short-distance �Kato cusps� and long-rage behavior. As a re-
sult, the convergence of the variational procedure is not very
fast. Quality of the globally optimized trial functions, even in
a few thousand basis set is often insufficient for calculations
of relativistic effects beyond the leading order. In particular,
we observe poor convergence of matrix elements with singu-
lar operators, i.e., Dirac �.

Until now, the most accurate nonrelativistic wave function
for lithiumlike atomic systems were computed in Hylleraas
basis by King in �4�, by Yan and Drake in �5� and by present
authors in �6�. The Hylleraas function for the three-electron
system is of the form

��r�1,r�2,r�3� = r23
n1r31

n2r12
n3r1

n4r2
n5r3

n6e−�1r1−�2r2−�3r3, �1�

with nonnegative integer values of ni. Although, algorithms
for integrals with these functions are computationally de-
manding, the correct long and short-range asymptotic and
possibility to use a large basis set of functions ��10 000�
with small number of variational parameter ��15� allows
one to achieve high accuracy. In a recent series of papers we
formulated the analytical method for calculations of Hyller-
aas integrals with the help of recursion relations �7�. In this
work we tuned up the optimization routine compared to our
former work �6�. As a result, we significantly improved non-
relativistic energies as compared to the previously published
ones in �5,8� and achieved about 10−14 precision.

Even better precision can in principle be achieved with
the explicitly correlated exponential function. In 1987
Fromm and Hill obtained the closed analytical formula for
the related four-particle integral,

g0 =� d3r1

4�
� d3r2

4�
� d3r3

4�

e−w1r1−w2r2−w3r3−u1r23−u2r13−u3r12

r23r31r12r1r2r3
,

�2�

reducing the problem to the evaluation of multivalued
dilogarithmic functions of complex arguments �9�. Their for-
mula could be differentiated with respect to the wa and ua to
introduce pre-exponential powers of the ra and rab, thus to
generate the class of integrals needed for evaluation of
Hamiltonian and overlap matrix elements. The Fromm-Hill
formula was modified later by Harris eliminating the neces-
sity of branch tracking on the complex plane �10�. Zotev and
Rebane presented their method for integrals with an exten-
sion to complex exponentials �11�. They demonstrated fast
convergence even in small bases and high potential of this
method in variational calculations of four-body systems �12�.
Recently, Guevara et al. �13� were able to optimize the cor-
related exponential function including linear terms in inter-
particle distances by the six-dimensional numerical integra-
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tion and obtained nonrelativistic energy with the relative
precision of about 10−3.

Effectiveness of correlated exponential functions gives
opportunity to reduce significantly the size of the basis set as
compared to Gaussian and Hylleraas functions. However, the
evaluation of corresponding integrals is the most time con-
suming part of the variational method. This fact suggests to
use rather short basis with carefully optimized parameters. In
this work these integrals are calculated as follows. The mas-
ter integral g0 in Eq. �2� is calculated using Harris formula
�10�. Integrals with higher powers of interparticle distances,
are obtained using recursion relations, which are derived
from differential Eq. �18�. As a demonstration of this
method, we performed numerical calculations of the nonrel-
ativistic energy and of Dirac-� for the ground state of Li and
Be+. With 128 well-optimized correlated exponential func-
tions with real parameters we have obtained nonrelativistic
energies with relative precision of about 10−9. This precision
is not impressive in comparison to the value extrapolated
from 13 944 Hylleraas functions. However, the result for
lithium is comparable to six times bigger set of Hylleraas
functions or 1500 optimized Gaussians. The highly accurate
wave function in a small basis set gives a flexibility in de-
velopment of numerical methods for evaluation of more
complicated integrals. It is expected to be especially valuable
for evaluation of matrix elements of m�6 operators, which
involves integrals very difficult to deal with Hylleraas func-
tions.

II. NONRELATIVISTIC WAVE FUNCTION

The ground-state wave function � is represented as a lin-
ear combination of �, the antisymmetrized product of the
spatial functions � and the spin function �,

� = A���r�1,r�2,r�3��� , �3�

� = ��1�	�2���3� − 	�1���2���3� . �4�

In the case of correlated exponential functions, ��r�1 ,r�2 ,r�3� is

��r�1,r�2,r�3� = e−�1r1−�2r2−�3r3−	1r23−	2r13−	3r12, �5�

and we assume that �i ,	i are real numbers. These nonlinear
parameters are subject of additional conditions. Namely,
when one of the electrons goes to infinity, the wave function
shall decay exponentially sufficiently fast, so for example
�1+	2+	3
�2Eion, where Eion is the ionization energy.

The expansion coefficients and nonlinear parameter are
obtained by minimization of energy with the Hamiltonian H

H = T + V , �6�

T = �
a=1

3
p�a

2

2
, V = �

a=1

3

−
Z

ra
+ �

a
b=1

3
1

rab
, �7�

where Ze is the nuclear charge and atomic units are used
elsewhere. After elimination of spin variables, the matrix el-
ement of H can be expressed as

	�L
H
�R� = 	2�L�1,2,3� + 2�L�2,1,3� − �L�3,1,2�

− �L�2,3,1� − �L�1,3,2�

− �L�3,2,1�
H
�R�1,2,3�� . �8�

The individual matrix element 	�L
H
�R� is represented as a
linear combination of 34 Slater integrals defined as

g�n1,n2,n3,n4,n5,n6� =� d3r1

4�
� d3r2

4�
� d3r3

4�

�e−w1r1−w2r2−w3r3−u1r23−u2r13−u3r12

�r23
n1−1r31

n2−1r12
n3−1r1

n4−1r2
n5−1r3

n6−1,

�9�

where ni are nonnegative integers and wa=�a
L+�a

R, ua=	a
L

+	a
R. The number of necessary integrals for the matrix ele-

ment of H can be significantly reduced. Rebane and Zotev
�14� derived the formula which includes only seven inte-
grals: the overlap integral 	�L 
�R� and six Coulomb inte-
grals 	�L
r−1
�R�, which we have found very useful. It re-
duces significantly the computational costs in most of cases
except for small wa, ua, where it becomes numerically un-
stable. In this case we use the numerically stable standard
form of the kinetic-energy operator obtained by direct differ-
entiation of the left and the right wave function over the
electron coordinates.

III. CALCULATION OF SLATER INTEGRALS

A. Integration by parts method

The evaluation method of g�n1 ,n2 ,n3 ,n4 ,n5 ,n6� in Eq. �9�
is based on the integration by parts identities, which are
widely used for the analytical calculation of Feynman dia-
grams �15�. Let us consider the following integral in the
momentum and insert thin space after:

G�m1,m2,m3;m4,m5,m6�

=
1

8�6� d3k1� d3k2� d3k3�k1
2 + u1

2�−m1�k2
2 + u2

2�−m2

��k3
2 + u3

2�−m3�k32
2 + w1

2�−m4�k13
2 + w2

2�−m5�k21
2 + w3

2�−m6

�10�

which is related to g function by g0�g�0,0 ,0 ,0 ,0 ,0�
=G�1,1 ,1 ,1 ,1 ,1�. There are nine corresponding integration
by parts identities,

0 � id�i, j�

=� d3k1� d3k2� d3k3
�

�k� j

��k�i�k1
2 + u1

2�−m1�k2
2 + u2

2�−m2�k3
2 + u3

2�−m3�k32
2 + w1

2�−m4

��k13
2 + w2

2�−m5�k21
2 + w3

2�−m6� , �11�
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where i , j=1,2 ,3. The reduction of the scalar products from the numerator leads to the relations between functions G of
different arguments. These identities group naturally into three sets with respect to j. For example for j=3 and mi=1we have
the following system of three equations:

0 = G�0,1,1,1,2,1� − G�0,1,2,1,1,1� + G�1,0,1,2,1,1� − G�1,1,0,1,2,1� − G�1,1,0,2,1,1� + G�1,1,1,2,0,1�

− G�1,1,1,2,1,0� + G�1,1,2,1,0,1� + G�1,1,1,1,2,1��− u1
2 + u3

2 − w2
2� + G�1,1,2,1,1,1��u1

2 + u3
2 − w2

2�

+ G�1,1,1,2,1,1��− u2
2 + u3

2 − w2
2 + w3

2� ,

0 = G�0,1,1,1,2,1� + G�1,0,1,2,1,1� − G�1,0,2,1,1,1� − G�1,1,0,1,2,1� − G�1,1,0,2,1,1� + G�1,1,1,0,2,1�

− G�1,1,1,1,2,0� + G�1,1,2,0,1,1� + G�1,1,1,2,1,1��− u2
2 + u3

2 − w1
2� + G�1,1,2,1,1,1��u2

2 + u3
2 − w1

2�

+ G�1,1,1,1,2,1��− u1
2 + u3

2 − w1
2 + w3

2� ,

0 = G�0,1,1,1,2,1� + G�1,0,1,2,1,1� − G�1,1,0,1,2,1� − G�1,1,0,2,1,1� − G�1,1,1,1,1,1� + 2G�1,1,2,1,1,1�u3
2

+ G�1,1,1,2,1,1��− u2
2 + u3

2 + w1
2� + G�1,1,1,1,2,1��− u1

2 + u3
2 + w2

2� . �12�

Whenever mi=0, G becomes a known two-electron integral � as defined in the Appendix. For example,

G�0,1,1;1,1,1� = ��− 1,0,− 1;w2 + w3,w1,u2 + u3�

=
1

2w1

Li�1 −

u2 + u3 + w2 + w3

u2 + u3 + w1
� + Li�1 −

u2 + u3 + w2 + w3

w1 + w2 + w3
� +

1

2
ln2�w1 + w2 + w3

u2 + u3 + w1
� +

�2

6
� . �13�

We solve the system of Eq. �12�, for example against G�1,1 ,1 ;2 ,1 ,1�, and obtain

1

2

�


�w1
G�1,1,1;1,1,1� − 2w1
G�1,1,1;2,1,1� + P = 0, �14�

where 
 is a polynomial


 = u1
2u2

2w3
2 + u2

2u3
2w1

2 + u1
2u3

2w2
2 + w1

2w2
2w3

2 + u1
2w1

2�u1
2 + w1

2 − u2
2 − u3

2 − w2
2 − w3

2� + u2
2w2

2�u2
2 + w2

2 − u1
2 − u3

2 − w1
2 − w3

2�

+ u3
2w3

2�u3
2 + w3

2 − u2
2 − u1

2 − w1
2 − w2

2� , �15�

and P is a the sum of two-electron integrals �,

P = − u1w1��u1 + w2�2 − u3
2���0,0,− 1;u1 + w2,u3,u2 + w1� − u1w1��u1 + u3�2 − w2

2���0,0,− 1;u1 + u3,w2,w1 + w3�

+ �u1
2w1

2 + u2
2w2

2 − u3
2w3

2 + w1w2�u1
2 + u2

2 − w3
2����0,0,− 1;w1 + w2,w3,u1 + u2�

+ �u1
2w1

2 − u2
2w2

2 + u3
2w3

2 + w1w3�u1
2 + u3

2 − w2
2����0,0,− 1;w1 + w3,w2,u1 + u3�

− �u2�u2 + w1��u1
2 + u3

2 − w2
2� − u3

2�u1
2 + u2

2 − w3
2����0,0,− 1;u2 + w1,u3,u1 + w2�

− �u3�u3 + w1��u1
2 + u2

2 − w3
2� − u2

2�u1
2 + u3

2 − w2
2����0,0,− 1;u3 + w1,u2,u1 + w3�

+ w1�w2�u1
2 − u2

2 + w3
2� + w3�u1

2 + w2
2 − u3

2����0,0,− 1;w2 + w3,w1,u2 + u3�

+ w1�u2�u1
2 − w2

2 + u3
2� + u3�u1

2 + u2
2 − w3

2����0,0,− 1;u2 + u3,w1,w2 + w3� . �16�

Since

G�1,1,1;2,1,1� = −
1

2w1

�g0

�w1
. �17�

Equation �14� takes the form of a differential equation,



�g0

�w1
+

1

2

�


�w1
g0 + P = 0 �18�

or

�

�

�w1
��
g0� + P = 0. �19�

Analogous differential equation with respect to other param-
eters wi and ui can be obtain by appropriate permutation of
arguments, using the tetrahedral symmetry of the function g0.
This differential equation has been previously derived in
Ref. �16�.
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B. Calculation of g0

g0 was obtained in analytical form by Fromm and Hill in
�9� in terms of combination of multivalued dilogarithmic
function of complex arguments. Their formula was later sim-
plified by Harris �10�, who was able to eliminate the ambi-
guity of choosing the right branch of dilogarithmic function.
In this work we use directly his formulas and allowed our-
selves to verify its correctness. For this we used the solution
of the differential equation in terms of one-dimensional inte-
gral. Namely, for 

0 we find

g0 =
1

�

��

w1

�

dw1�
P�w1��
�
�w1��

+ g0
�

w1=�� , �20�

where

g0
�

w1=� =

sgn�u1�
2


�2

6
+

1

2
ln2�u1 + u3 + w2

u1 + u2 + w3
�

+ Li2�1 −
u2 + u3 + w2 + w3

u1 + u3 + w2
�

+ Li2�1 −
u2 + u3 + w2 + w3

u1 + u2 + w3
�� . �21�

The above integration over w1 is performed numerically us-
ing adapted Gaussian points for the logarithmic singularity at
w1=�, see Appendix of �8�.

For 
�0 we find

g0 =
1

�− 

�

w̃1

w1

dw1�
P�w1��
�
�w1��

, �22�

where



w1=w̃1
= 0. �23�

This integral is performed numerically using Gauss-
Legendre quadrature in variable t=�w1− w̃1. In the simplest
case when 
=0, g0 can be readily obtained from Eq. �18�,

g0 = − 2P� �


�w1
�−1

. �24�

In almost all the cases, we achieved 28 digits accuracy using
quadruple precision arithmetic with about 100 integration
points.

C. Recurrence scheme

Since the direct evaluation of g�n1 ,n2 ,n3 ,n4 ,n5 ,n6� in Eq.
�9� is very time consuming, it is desirable to derive recur-
rence relations permitting integrals of larger index values to
be expressed in terms of those with smaller indices. From
differential Eq. �19� we can deduce much more than only
integral representation for g0. We notice that

g�n1,n2,n3,n4,n5,n6� = �− 1�n1+¯+n6
�n1

�w1
n1
¯

�n6

�u3
n6

g0.

�25�

Analogously, we introduce 
�n1 ,n2 ,n3 ,n4 ,n5 ,n6� and
P�n1 ,n2 ,n3 ,n4 ,n5 ,n6� derived form 
 and P respectively. If

�0 then Eq. �18� takes the form

1

2

�1,0,0,0,0,0�g�0,0,0,0,0,0�

+ 
�0,0,0,0,0,0�g�1,0,0,0,0,0� = P�0,0,0,0,0,0� .

�26�

Clearly this algebraic equation can be used to obtain
g�1,0 ,0 ,0 ,0 ,0� once g�0,0 ,0 ,0 ,0 ,0� is evaluated from the
direct Ref. �10� or integrals �20� and �22� formulas. Now, we
differentiate Eq. �26� n1−1, n2, n3, n4, n5, n6 times over w1,
w2, w3, u1, u2, and u3, respectively,

�
i1. . .i6=0

n1. . .n6 �n1

i1
�

1/2
..�n6

i6
�

1/2

�n1 − i1, . . . ,n6 − i6�g�i1,..,i6�

= P�n1 − 1,n2,n3,n4,n5,n6� , �27�

where we introduced a Newton-like notation

�n

0
�

1/2
=

1

2
, �n

n
�

1/2
= 1,

�28�

�n

i
�

1/2
= �n − 1

i
�

1/2
+ �n − 1

i − 1
�

1/2
.

The above formula allows to express the integral g�n1 , .. ,n6�
with nonzero n1 through g-integrals with smaller index val-
ues. The expression for 
�n1 ,n2 ,n3 ,n4 ,n5 ,n6� can be explic-
itly generated as derivatives of the polynomial 
, since they
become zero for large values of indices ni. P has a simple
structure in terms of two-electron integrals � multiplied by a
simple polynomial. Derivatives of these polynomials can be
calculated explicitly. For � we use the recurrence scheme
proposed by Korobov in �17�.

Similar recurrence relations can be obtained from the dif-
ferential equation like that in Eq. �18�, but with respect to a
different variable. We use them for the missing integrals with
n1=0 in the above w1 scheme, thus completing the algorithm
for all g-integrals starting from the master one g0. We use
them also to check the numerical stability of the recurrence
scheme, as g�1,1 ,1 ,1 ,1 ,1� can be obtained from the differ-
ential equation in any of these nonlinear parameters. As the
result of this checking, we found out, that these recursions
become unstable for small values of 
 in Eq. �15� and as a
remedy we used higher precision arithmetics in this particu-
lar region.

PUCHALSKI, KȨDZIERA, AND PACHUCKI PHYSICAL REVIEW A 80, 032521 �2009�

032521-4



Recently, Harris obtained a family of recurrence formulas
which enable construction of correlated exponential integrals
with arbitrary pre-exponential powers of interparticle dis-
tances �18�. In comparison to them, our recurrences are not
equivalent. Harris’s recurrences in the denominator involve
additional powers of ui and thus may become numerically
unstable in the limit of small ui. This however, requires nu-
merical verification.

IV. OPTIMIZATION AND RESULTS

A. Hylleraas basis set

In Table I we present results obtained with Hylleraas
functions for ground states of Li and Be+, as they are much
more accurate than previous ones in �5,6�. In comparison to
these former works, we used slightly different division into
five sectors with its own set of nonlinear parameters as

proposed in Ref. �5�, and enhanced the optimization process
by replacement of the minimization routine with CG Polak-
Ribberie �19� with modifications of the line search algorithm
�20�. In Ref. �6� we performed optimization in quadruple
precision arithmetics. Here we observe that this precision is
sufficient for determination of the nonrelativistic energy, but
it is at the edge of numerical stability for analytical calcula-
tion of gradients in a basis set corresponding to �
�max��ini�=10. Therefore, in this work we used sextuple
precision arithmetics for the whole calculation. Obviously,
optimization process in higher precision arithmetics takes
more time, in this case it is about 5 times longer, but the
accuracy is improved by at least an order of magnitude. The
results presented in Table I are better than the former ones in
50 percent bigger basis set. Especially important is the nu-
merical result for maximum set of 13944 carefully optimized
functions, as this guarantees good quality of extrapolation to
� and estimation of an uncertainty.

TABLE II. Nonrelativistic energies and Dirac-� expectation values for the ground state of Li compared to
results in Hylleraas basis.

N E�Li� �E /E ��ra� ��rab�

1 −7.453 907 382 3.2�10−3 13.631 327 0.614 377

2 −7.465 318 352 1.7�10−3 13.163 649 0.617 596

4 −7.476 009 761 2.7�10−4 13.691 905 0.586 670

8 −7.476 936 884 1.5�10−4 13.773 519 0.576 457

16 −7.478 052 680 1.0�10−6 13.840 924 0.545 361

32 −7.478 059 401 1.2�10−7 13.841 641 0.544 671

64 −7.478 060 050 3.7�10−8 13.842 162 0.544 526

96 −7.478 060 272 7.0�10−9 13.842 641 0.544 391

128 −7.478 060 301 3.1�10−9 13.842 618 0.544 368

Hyll. � −7.478 060 323 9 13.842 610 8 0.544 324 6

TABLE I. Ground-state nonrelativistic energies for the ground state of Li and Be+ for various basis length
with Hylleraas functions with comparison to earlier results including correlated Gaussian functions.

No. of terms E�Li� E�Be+�

2625 −7.478 060 323 570 509 −14.324 763 176 517 134

4172 −7.478 060 323 845 785 −14.324 763 176 746 865

6412 −7.478 060 323 898 268 −14.324 763 176 783 625

9576 −7.478 060 323 907 743 −14.324 763 176 789 144

13944 −7.478 060 323 909 560 −14.324 763 176 790 150

� −7.478 060 323 910 10�32� −14.324 763 176 790 43�22�

9577a −7.478 060 323 892 4 −14.324 763 176 766 8

� b −7.478 060 323 906�8� −14.324 763 176 784�11�
10000c −7.478 060 323 81

8000d −14.324 763 176 4

16764e −7.478 060 323 451 9

aReference �5�.
bReference �8�.
cReference �21�.

dReference �22�.
eReference �23�.
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B. Correlated exponential basis set

We optimized the correlated exponential basis set incre-
mentally starting from 1 up to 128 functions as shown in
Tables II and III. At the starting point, the bigger basis was
composed of previously optimized smaller basis and func-
tions with randomly chosen nonlinear parameters under con-
straints resulting from interparticle separation conditions.
Due to the presence of many nonlinear parameters, each
function has its own set of six parameters, the optimization
process was divided into steps. In a single-step nonlinear
parameters of only one function were optimized using Pow-
ell method without gradient. In one cycle all functions were
optimized separately. For small basis several cycles were
needed to achieve convergence at the ninth digit after the
decimal point, and for larger set of functions number of
cycles increases. Implementation is done in Fortran 95 in the
quadruple precision arithmetics. In the region of typical val-
ues of wa and ua, we observe very good numerical stability
of recurrence relations. However, in some particular cases
during the minimization process, where 
 in Eq. �15� be-
comes small and changes its sign, the sextuple precision
arithmetics was needed, as the recurrence relations lose nu-
merical precision. The region of small 
 is numerically un-
stable and we have not found yet an alternative way of evalu-
ation of g�n1 ,n2 ,n3 ,n4 ,n5 ,n6� functions, by avoiding the
presence of 
 in the denominator. This would be necessary
for larger basis set and for states with the higher angular
momentum. The quadruple precision arithmetics for the
maximum basis of 128 functions guarantees high quality of
the total wave function and the energy. We observe by com-
parison with Hylleraas results, that the relative accuracy of
about 10−9 is achieved for energies, and about five to six
significant digits for wave functions as indicated by the Dirac
� expectation values.

V. SUMMARY

We have performed accurate calculations of the ground-
state energy and the wave function of Li and Be+ using ex-
plicitly correlated Hylleraas and exponential basis sets. Ob-
tained results with Hylleraas basis are the most accurate to

date, due to the use of large number of functions and efficient
optimization. Results with correlated exponential functions
are much less accurate, but they are the most efficient for the
limited number of functions. The relative accuracy of about
10−9 for the nonrelativistic energy of the ground state of Li
and Be+ with only 128 functions confirms high effectiveness
of this basis. Compared to both the Hylleraas and the Gaus-
sians functions, it allows to reduce significantly the size of
basis set. Using the computational method based on recur-
rence relations, we are able for the first time to perform
optimization process with as much as 128 correlated expo-
nential functions and even more, if numerical instabilities for
small 
 are eliminated, probably by a different type of recur-
rences.

Our primary motivation for developing explicitly corre-
lated exponential basis set is the efficient representation of
the wave function in a small number of basis functions. We
aim to apply them for numerical calculations of expectation
values of operators corresponding to higher order relativistic
and QED effects. They involve integrals with quadratic in-
verse powers of at least two interparticle distances. That kind
of integrals are very complicated in the evaluation in the
Hylleraas basis set and have not yet been worked out by the
recursion method of the authors. However, there is a know
algorithm by King �4�, but his method is much too slow for
a large scale computation. In the case of Slater integrals the
problem would even much more complicated, but we think,
one shall be able to perform this class of integrals numeri-
cally. Equipped with the large and accurately optimized Hyl-
leraas basis �24�, and with the short and flexible correlated
exponential basis functions, we are aiming to determine m�6

and m�7 effects in the hyperfine and fine structure of lithiu-
like systems.
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TABLE III. Nonrelativistic energies and Dirac-� expectation values for the ground state of Be+ compared
to results in Hylleraas basis.

N E�Be+� �E /E ��ra� ��rab�

1 −14.269 015 274 3.9�10−3 34.584 174 1.726 084

2 −14.319 868 303 3.4�10−4 34.818 880 1.722 376

4 −14.324 097 014 4.7�10−5 35.163 138 1.598 315

8 −14.324 646 319 8.2�10−6 35.082 068 1.589 484

16 −14.324 730 041 2.3�10−6 35.118 928 1.583 949

32 −14.324 760 432 1.9�10−7 35.109 851 1.582 886

64 −14.324 762 726 3.1�10−8 35.102 872 1.581 131

96 −14.324 763 106 4.9�10−9 35.105 550 1.580 752

128 −14.324 763 141 2.5�10−9 35.105 342 1.580 583

Hyll. � −14.324 763 768 9 35.105 055 7 1.580 538 6
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APPENDIX: TWO-ELECTRON INTEGRALS

The two-electron integral � is defined by

��n1,n2,n3,�,	,�� � � d3r1

4�
� d3r2

4�

�e−�r1−	r2−�r12r1
n1−1r2

n2−1r12
n3−1.

�A1�

This integral takes very simple form when all ni=0

��0,0,0,�,	,�� =
1

�� + 	��� + ���	 + ��
. �A2�

The explicit form for ni
0 can be obtained by differentia-
tion with respect to the corresponding nonlinear parameter,
the result for negative ni is obtained by an integration, for
example,

��0,0,− 1,�,	,�� =
1

�� − 	��� + 	�
ln�� + �

� + 	
� . �A3�

For the actual evaluation of � we use compact recurrence
relations from the work of Korobov �17�.
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