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In a recent series of papers, Higuchi and Higuchi defined an extended constrained-search procedure by
extending the Levy constrained search by adding additional constraints. As shown here, this procedure can be
equivalently formulated in terms of Lieb’s Legendre transformation functional. The Legendre transform ap-
proach has advantages in cases where the additional constraints are restrictive enough to cause problems with
N-representability.
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I. BACKGROUND AND MOTIVATION

A. Density-functional theory

Since the fundamental importance of electronic structure
for understanding the properties of molecules and materials
was recognized even before Rutherford’s work on the struc-
ture of the atom, it is almost surprising that the quantum-
mechanical theory of electronic structure is still an active
subject of research. Part of the problem is the enormous
complexity of describing electron correlation in many-
electron systems. It is simply impossible to write a quantita-
tively accurate approximation to the N-electron wave func-
tion for a system with more than a few electrons. Instead,
one either chooses a parametrization for the wave function
that reduces the number of degrees of freedom or one opts to
consider only a subset of the electronic coordinates and then
uses the fact that electrons are identical particles to infer the
properties of the implicit “other electrons.”

Density-functional theory �DFT� is among the simplest of
the “reduced” electronic structure theories. According to the
theorem of Hohenberg and Kohn, if we know the electron
density ��r�, then we can determine all of the properties of
any electronic system, including the ground-state energy. The
ground-state energy is, following Hohenberg and Kohn, de-
termined by a variational principle for minimizing the energy
with respect to all electron densities that are non-negative
and normalized to the number of electrons, i.e., �1�

Egs�v;N� = min

��r��0

���=N

�F��� +� ��r�v�r�dr	 .

�1�

Here, F��� is the sum of the kinetic and the electron-electron
repulsion energies. The second term in the energy expression
is the interaction energy of the electrons with the external
potential due to the atomic nuclei �and an external electric
field, if that is also present�.

B. v- and N-representability problems

DFT is intuitively simple but mathematically subtle. It is
relatively easy to define the Hohenberg-Kohn functional

F��gs� = Egs�v;N� −� �gs�r�v�r�dr �2�

for electron densities that are the N-electron ground state for
some external potential. Unfortunately, not every electron
density is v-representable. In fact, the set of
non-v-representable electron densities is a dense subset of
the domain of the variational principle �1� �2–5�. This makes
it difficult to implement the variational principle.

There are several ways to avoid this problem. First of all,
one can solve a problem in the dual space, where the poten-
tial is the variable instead of the electron density �6,7�. Sec-
ond, one can take the definition in Eq. �2� and use math-
ematical arguments based on continuity to define a functional
over the entire variational domain �5�. These approaches are
mathematically appropriate, but perhaps conceptually unsat-
isfactory: they avoid the issue of how to define F��� for
non-v-representable densities. This is one reason that most of
the work in density-functional theory is based on one of the
two ways to define the Hohenberg-Kohn functional. One ap-
proach, originally due to Levy and Perdew �8,9� �later ex-
tended by Valone �10� and explored by Lieb �11� and others
�12�� is the constrained search, where one minimizes the sum
of the kinetic and the electron-electron repulsion energies
with respect to every wave function that gives a specified
electron density

Fcs��� = min
�→��r�

���T̂ + Vee��� .
�3�

Another approach, due to Lieb, is the Legendre transform

FLeg��� = sup
v�r�
�Egs�v;N� −� ��r�v�r�dr� .

�4�

Both approaches are mathematically rigorous �11� and the
current consensus seems to be that the constrained search is
more useful for determining constraints on the exact func-
tional, while the Legendre transform approach is more useful
for formal work.

One issue that arises in the context of the constrained-
search functional is the problem of N-representability. The
constrained-search functional is not defined unless there ex-
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ists some wave function with the specified density ��r�. For-
tunately for any electron density that satisfies the constraints
in the variational principle �that is, every electron density
that is non-negative and normalized to the number of elec-
trons�, there always exists a wave function such that �13,14�

��r� = ����
i=1

N

��ri − r���	 . �5�

�Not only that, but there exists a Slater determinant with this
electron density.� This proves that every “reasonable” elec-
tron density is N-representable.

C. Generalized density-functional theories

Recently there has been significant interest in what might
be termed “generalized” density-functional theories. Some
workers have attempted to model electronic systems using
alternatives to the electron density �15–17�, some of which
are even simpler �e.g., the density per particle �18–20�� than
the electron density. While this approach seems to be useful
for describing the similarity of different molecules and ma-
terials, it does not appear to give a quantitatively accurate
variational principle �21�. An alternative approach is to con-
sider descriptors of electronic structure that contain more in-
formation than the electron density. Some of these theories
are very well known �e.g., density-functional theory using
the spin densities �22–24� or both the density and the current
density �25,26��. Variational methods based on the first-order
reduced density matrix �8,13,27�, the higher-order reduced
density matrices �28–32�, the electron pair density �33–43�,
the higher-order electron distribution functions, �37,38� the
“polydensities” of various types �44–49�, or the electron
propagator �50,51� can also be considered as generalized
density-functional theories �52,53�, since all of these quanti-
ties contain information about the electron density �and more
besides�.

In a recent series of papers, Higuchi and Higuchi present
a family of “extended” density-functional theories that use
more information than the “traditional” extended density-
functional theories used to describe magnetic systems but
less information than the generalized density-functional
theories used to provide an improved description of electron
correlation �54–58�. In particular, they define an extended
constrained-search functional

FX
xCS��� = min

�→�,X

���T̂ + Vee��� ,
�6�

where the usual restriction that the wave function gives the
desired electron density ��→�� is now supplemented by the
additional restriction that the wave function gives the desired
expectation value for some additional property �or proper-
ties� ��→X�. If one chooses the spin density or the para-
magnetic current density as the supplementary property
�54,56�, then one obtains a constrained-search formulation of
spin-DFT or spin-current-DFT �although there are formal
difficulties in the latter case, the Hohenberg-Kohn theorem
fails because different magnetic Hamiltonians can have the
same ground-state wave function �6,23,59–66��. Note that

our notation differs slightly from Higuchi and Higuchi’s who
would write FxCS�� ,X� instead of FX

xCS���. Our notation
seems more appropriate in cases where the property X is
determined by the system of interest and is not varied during
the variational minimization of the energy functional.

Higuchi and Higuchi’s extended constrained search �6�
provides a powerful method for deriving generalized density-
functional theories as long as there exists some wave func-
tion with the specified electron density ��r� and properties X.
That is, the extended constrained search is defined if 
� ,X� is
N-representable, but not otherwise. Higuchi and Higuchi deal
with this by assuming that 
� ,X� is N-representable. This is
satisfactory from a mathematical point of view but perhaps
not from a practical point of view: it is usually very difficult
to find computationally facile N-representability conditions.
�The electron density and the spin-density are well-known
exceptions.�

The problem is well known in the other generalized
density-functional theories discussed above and, indeed, all
of those theories can be treated with special cases of the
extended constrained search. The N-representability problem
also arises in other circumstances, however. For example, in
their second paper Higuchi and Higuchi propose a type of
Hartree-Fock Kohn-Sham theory �54,67–69�

FEx

xCS��� = min
�→�,Ex

���T̂ + Vee��� .
�7�

Not every pairing of electron density and exchange energy is
N-representable, however �70–73�. Every electron density
corresponds to a set of Slater determinants, and these Slater
determinants determine, in turn, a range of reasonable �i.e.,
N-representable� exchange energies associated with this elec-
tron density. Not every choice of the exchange energy is
reasonable. Clearly Ex�0, but there is also a density-
dependent lower bound on the range of N-representable ex-
change energies. This follows from the Lieb-Oxford bound
�74–76�, which indicates that the exchange-correlation en-
ergy should always be greater than

Ex��� � Exc��� � Exc
�LO���� ,

Exc
�LO���� � − 1.6358� �4/3�r�dr . �8�

One cannot perform the extended constrained search for

��r� ,Ex

�trial�� if Ex
�trial��0 or Ex

�trial��Ex
�LO����. Unfortunately,

the Lieb-Oxford bound is not very tight �74,77�, so it is
insufficient for constraining the domain of the constrained
search in Eq. �7�. The exact N-representability bound can be
derived using the general formalism in Ref. �70�, but it is too
complicated to be computationally facile: it is easier to com-
pute the value of Ex exactly.

Higuchi and Higuchi also presented approaches to the
pair-density–functional theory using the extended con-
strained search �41,42,78,79�. The N-representability prob-
lem for the pair density is known to be very difficult
�38,80–84� �although it can be surmounted using either con-
ventional constrained-search �53� or Legendre transform
methods �38,52,53��. In order to circumvent these difficul-
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ties, Higuchi and Higuchi are forced to restrict their search to
pair densities for which they can explicitly reconstruct the
precursor wave functions, e.g., Slater determinants or
Jastrow-type wave functions �85,86�. This gives a practical
approach to pair-DFT, albeit one that is limited by the im-
perfections in the simplified forms of the wave functions
being considered. Already in their first paper, Higuchi and
Higuchi showed that the N-representability problem for other
choices of X can be attacked in the same way, by restricting
oneself choices of X and ��r� that can be produced by Slater
determinants �56�. One advantage of this approach is that it
gives a set of single-particle equations to solve �56�. The
disadvantage, already noted above, is that the set of 
� ,X�
that is obtainable from Slater determinant wave functions
typically contains only a small portion of the space of all
possible pairings between X and ��r� �87�. In particular, the
true ground-state values for X and ��r� may not be
Slater-N-representable. It would be better if there were a way
to attack the N-representability issue directly.

By this stage, the reader is hopefully convinced that
N-representability issues are a big—and perhaps
insurmountable—problem for the extended constrained-
search procedure. This problem is known in the context of
other generalized density-functional theories, and two solu-
tions have been proposed. The first approach is a “weak con-
strained search” where one relaxes the assumption that the
wave function must give exactly the correct property value
and then compensates for this flexibility with an appropriate
penalty term �53�. The second approach is based on the Leg-
endre transform �52,53� and requires inserting a “dual vari-
able” conjugate to the property being optimized. �The dual
variable is just a Lagrange multiplier.� In the next section of
this paper, we will show how the Legendre transform ap-
proach addresses the N-representability problem in extended
density-functional theories of the Higuchi-Higuchi type. A
short summary will then conclude the analysis. Key theo-
rems are proved in the Appendix.

II. EXTENDED LEGENDRE TRANSFORM

A. Partial Legendre transform

There are three forms of the Legendre transform that will
be considered in this work. First of all, one can perform a
“partial Legendre transform” with respect to only the elec-
tron density

FX��� = sup
v�r�
�Egs�v,X;N� −� ��r�v�r�dr� .

�9�

The expression for the ground-state energy expression that
enters into Eq. �9� is defined by

Egs�v,X;N� = min

����→N,X
� anti.,�����=1�

���T̂ + Vee + �
i=1

N

v	ri
��� .

�10�

The corresponding energy density functional and its varia-
tional principle are

Ev,X��� = FX��� +� ��r�v�r�dr � Egs�v,X,N� . �11�

The variational inequality holds for every choice of the elec-
tron density, even if there does not exist any wave function
with that density that also has the property value X. �How-
ever, in order to define the energy functional in Eq. �10�,
there must be a wave function that has property value X,
even though this wave function may not have the targeted
density.� Notice that Egs�v ,X ;N� is the lowest-energy state
of the system with property value X; it is only equal to the
true ground-state energy if X is chosen as the property value
in the ground state. By choosing X to have non-ground-state
values, one obtains energetic information about select ex-
cited states.

When the supremum in Eq. �9� is a maximum, the elec-
tron density is the ground-state density, with property X, for
the maximizing potential vmax�r�. This establishes an
X-dependent mapping between the electron density and the
external potential.

This partial Legendre transform is very useful when X is
a property �e.g., a specific choice of spatial symmetry or spin
multiplicity� of the state of interest and we do not want to
optimize with respect to that variable. Lieb’s Legendre trans-
form is actually a special case of this form, because in that
case the number of electrons, N, is fixed. �That assumption
can be relaxed, of course, using the form of the energy for
arbitrary electron number �88–90�.�

B. Full Legendre transform

Second, one can perform a “full Legendre transform”
with respect to both variables. When X is the expectation
value of a linear operator related to a term in the Hamil-
tonian, then matters are especially simple, and one has

F��,X� = sup
v�r�,X

�Egs�v,X;N� − �X,X� −� ��r�v�r�dr	 .

�12�

The quantity X is the dual variable to X,

X =
�Egs�v,X,N�

�X
, �13�

and enters Eq. �12� as a Lagrange multiplier for forcing the
property X to have the desired value. The notation �X ,X	 is
the inner product between X and its dual vector. When X is
a scalar �e.g., the exchange energy�, �X ,X	 is simple multi-
plication. When X is a vector �e.g., the number of electrons
of each spin, �N	 ,N
��, �X ,X	 is a dot product. When X is a
function �or vector of functions� �e.g., the magnetization den-
sity m�r��, �X ,X	 is multiplication �or dot product� followed
by integration. �For example, for the magnetization density,
�X ,X	→ ��Bz�r� ,m�r�	=�Bz�r�m�r�dr.�

The expression for the ground-state energy expression
that enters into Eq. �12� is defined by
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Egs�v,X,N�

= min

����→N
� anti.,�����=1�

���T̂ + Vee + �
i=1

N

v	ri
���+ �X,X���� .

�14�

In the important case where there is a linear operator

X��� = ���X̂��	 , �15�

then �X ,X���	 can be re-expressed as a linear operator on

the wave function ���X̂��	 and the last term in Eq. �14� can
be incorporated into the main energy expression, giving

Egs�v,X,N� = min

����→N
� anti.,�����=1�

���T̂ + Vee + X̂ + �
i=1

N

v	ri
��� .

�16�

The corresponding energy functional and its variational
principle are

Ev,X��,X� � F��,X� +� ��r�v�r�dr + �X,X	 ,

Ev,X��,X� � Egs�v,X,N� . �17�

The variational inequality holds for every choice of the elec-
tron density, even if there does not exist any wave function
with that density that also has the property value X. Notice
that the term �X ,X	 corresponds to an additional term in the
Hamiltonian. Sometimes this term is physically relevant �re-
call that X=�Bz�r� in spin-density functional theory�, but
often it is not. The presence of the additional term causes no
problems, however: the “conventional” energy is computed
using the special case of Eqs. �17� where X=0.

Examples of full Legendre transforms include the
average-pair density-functional theory of Gori-Giorgi and
Savin �46,48,91�, spin-density functional theory �92,93�, and
current density-functional theory �25,26�. Another example
arises when X is the number of electrons, in which case Eq.
�12� recovers the grand canonical formulation of density-
functional theory �88,94,95�.

C. Restricted Legendre transform

Finally, the outer supremum in either Eq. �9� or Eq. �12�
can be restricted when only special classes of systems are of
interest �52�. For example, one can restrict the external po-
tentials to just the Coulombic forms

v�r� = − �
�

q�

�r − R��
�18�

or even only molecular forms �where all of q� are integers�.
This sort of formulation is useful in alchemical transforma-
tions �96–101� and provides links to the “less than density”
generalized density-functional theories �16–18�. In addition,
one can choose to restrict the search over the property po-
tential X in the full Legendre transform �12�. For example,
often the only physically reasonable choice is X=0.

When the supremization is restricted to a subset of the
values of 
v�r� ,X� that are allowed by functional analysis,

we call the functional a “restricted Legendre transform.”
Clearly the restricted Legendre transform functionals are
lower bounds to the corresponding unrestricted Legendre
transform functionals. The corresponding functionals and
variational principles are exact for systems whose external
potential has the special form �e.g., Eq. �18�� used in the
restricted functional. Otherwise, the functional gives a lower
bound �albeit sometimes a tight lower bound� on the energy.
The advantage of restricted functionals is that, by restricting
ourselves to systems of physical relevance, we obtain func-
tionals that are smaller, ergo mathematically “nicer.”

D. Properties of the functionals

These formulations have several key properties, which are
proved in the Appendix. Chief among them are

�1� The suprema are unique.
�2� The functionals are exact.
�3� The variational principle holds, even when 
��r� ,X� is

not N-representable.
�4� The functionals are convex, and so the minimum is

unique.
�5� The unrestricted functionals are infinity for

non-N-representable cases.
�6� The partial Legendre transform functional is an upper

bound to the full Legendre transform functional.
�7� The extended constrained-search functional is an up-

per bound to the partial Legendre transform functional.
Properties �1�–�5� were established by Lieb for the con-

ventional DFT Legendre transform �11� and by Ayers et al.
for some special cases of the full Legendre transform �52�.
The partial Legendre transform �Eq. �9�� is very similar to
the conventional Lieb Legendre transform, while the full
Legendre transform �Eq. �12�� is very similar to the Ayers-
Golden-Levy Legendre transform. We merely extend these
derivations here.

The derivation of properties �6� and �7� is similar to the
argument that the value of the Levy constrained-search func-
tional is greater than or equal to the value of the Legendre
transform functional �9,11�: the key to deriving property �6�
is to notice that the partial Legendre transform includes a
“constrained search” over wave functions restricted to have
property X, while the full Legendre transform does not.
Properties �1�–�7� are derived in the Appendix. Since the
derivations for the full Legendre transform functional are the
most challenging, the Appendix focuses on that functional.

III. SUMMARY

In analogy to the “extended constrained-search” function-
als of Higuchi and Higuchi �54–56�, the functionals defined
in Secs. II A–II C can be considered as “extended Legendre
transform” functionals. These functionals are useful for ex-
tending density-functional theory to cases where not only the
electron density ��r�, but also some property of the system,
X, is of interest. This is particularly important when one
wishes to consider only wave functions with a specific prop-
erty, like a specified symmetry. The extended constrained-
search and extended Legendre transform functionals are
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identical for densities that are 
v�r� ,X�-representable, but in
general the Legendre transform functionals are a lower
bound to the constrained-search functionals. Importantly, the
Legendre transform functionals are defined even when

��r� ,X� is not N-representable, that is, when there is no
wave function with density ��r� and property value X.

We proposed three different forms of Legendre transform
functionals. The first, FX���, is what we call the “partial”
Legendre transform: it corresponds to the Legendre trans-
form of the energy functional, E�v ,X ,N� �cf. Eq. �10�� with
respect to the external potential v�r�. The second functional
F�� ,X� is the Legendre transform of FX��� with respect to
X. Both of these functionals can be “restricted” by including
only certain classes of external potentials in the supremum
�cf. Eqs. �9� and �12��. The restricted functionals have the
advantage of being better behaved �especially for
non-N-representable 
��r� ,X��, but are only exact for sys-
tems with external potentials that are included in the suprem-
ization procedure. We have the general inequalities
Frestricted�� ,X��F�� ,X��FX����FX

xCS���, where FX
xCS��� is

the extended constrained-search functional of Higuchi and
Higuchi in Eq. �6�. However, the extended constrained-
search functional is not defined for all possible densities ��r�
and property values X. The partial Legendre transform is
defined for all densities, as long as there exists at least one
wave function with property value X. �For example, the
exact-exchange partial Legendre transform FEx

��� is unde-
fined for Ex�0. Similarly, the total-spin partial Legendre
transform FS��� is undefined for S�0.� The full Legendre
transform is defined for all densities ��r� and all property
values X, whether or not they are physical. For this reason
the full Legendre transform seems more useful in cases
where it is difficult to assess whether a property density is
reasonable or not. �A good example is average-pair DFT
�46,48,91�, where the N-representability problem is distinctly
nontrivial.� Both the partial Legendre transform and the full
Legendre transform become infinity when there is no wave
function consistent with their argument. The restricted Leg-
endre transform usually does not suffer from this divergence,
and it is still exact for all systems whose external potentials
are included in the domain of the search. The restricted func-
tionals are lower bounds to the true energy for other systems.

Replacing the electron-electron repulsion operator Vee
with Vee in any of these functionals allows one to formulate
the adiabatic connection from the noninteracting �extended
Kohn-Sham� to the interacting system. Then, in the standard
way �58,102–106�, each of the extended Legendre transform
functionals defines the functionals and potentials to be used
with single-particle Kohn-Sham-like equations, analogous to
those derived previously using the extended constrained-
search approach �56,58�.
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APPENDIX

In this appendix we will focus on the total Legendre trans-
form functional �Eq. �12�� because the analogous results for
the other functionals are similar, but usually easier.

(1) Suprema are unique. The supremum in Eq. �12� is
unique because its argument

F�,X�v,X,N� = Egs�v,X;N� − �X,X	 −� ��r�v�r�dr �A1�

is a concave functional of v�r� and X, i.e., the weighted
average of the functional for two arguments is less than the
value of the functional at the weighted average of its argu-
ments,

F�,X�tv1 + �1 − t�v2,tX1 + �1 − t�X2,N�

� tF�,X�v1,X1,N� + �1 − t�F�,X�v2,X2,N� . �A2�

F�,X�v ,X ,N� is a concave functional because it is a sum of a
concave functional �Egs�v ,X ;N�� and a linear functional.
Egs�v ,X ;N� is concave because, by the variational principle,

Egs�tv1 + �1 − t�v2,tX1 + �1 − t�X2,N�

= min

����→N
� anti.,�����=1	


���t�T̂ + Vee + �
i=1

N

v1�ri�
+ �1 − t��T̂ + Vee + �

i=1

N

v2�ri���� + t�X1,X����

+ �1 − t��X2,X�����
� min

����→N
� anti.,�����=1	

t
���T̂ + Vee + �
i=1

N

v1�ri����

+ �X1,X����� + min

����→N
� anti.,�����=1	

�1 − t�
���T̂ + Vee

+ �
i=1

N

v2�ri���� + �X2,X�����
= tEgs�v1,X1,N� + �1 − t�Egs�v2,X2,N� . �A3�

The inequality follows from the fact that the minimum of a
sum is greater than the sum of the minima. A more detailed
discussion of this argument can be found in Ref. �92�; see
especially footnote 26.

The supremum of a concave functional is unique. This
means that every choice of 
��r� ,X� is assigned to a specific
value of

F��,X� = sup

v,X

F�,X�v,X,N �

�A4�

and that there are no local maxima that could complicate this
optimization. Moreover, if there exists some 
vmax�r� ,Xmax�
such that F�� ,X�=F�,X�vmax,Xmax,N� �i.e., the supremum is
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actually a maximum�, then Eq. �A4� provides a unique map-
ping between 
��r� ,X� and 
vmax�r� ,Xmax�. This is an ex-
tended Hohenberg-Kohn theorem: there cannot be two pairs

vmax

�1� �r� ,Xmax
�1� � and 
vmax

�2� �r� ,Xmax
�2� � �differing by more than

an arbitrary constant� that have the same ground state

��r� ,X�.

The derivation for the partial Legendre transform FX��� is
similar, but even simpler. The key results still hold, but now
the extended Hohenberg-Kohn theorem establishes that there
cannot be two external potentials, differing by more than an
additive constant, with the same ground state 
��r� ,X�.

(2) The functionals are exact. Suppose that one is given
two different systems in their electronic ground state:


�1�r�,X1� → 
v1�r�,X1� ,


�2�r�,X2� → 
v2�r�,X2� . �A5�

Denote the ground-state wave functions for these systems as
�1 and �2, respectively. Then, from the variational principle
for the energy �cf. Eq. �14��,

Egs�v1,X1,N� � ��2�T̂ + Vee + �
i=1

N

v1�ri���2	 + �X1,X��2�	 ,

Egs�v1,X1,N� − �X1,X2	 −� �2�r�v1�r�dr

� Egs�v2,X2,N� − �X2,X2	

−� �2�r�v2�r�dr ,

F�2,X2
�v1,X1,N� � F�2,X2

�v2,X2,N� . �A6�

The equality holds only if 
v1�r� ,X1� and 
v2�r� ,X2� are
trivially different, so that their ground-state wave functions
are interchangeable. Equation �A6� indicates that if one
chooses 
v�r� ,X� incorrectly, then the value of F�,X will be
too small, and that the maximum value for F�,X, if it exists,
occurs for the external potential v�r� and the property poten-
tial X, for which 
��r� ,X� is the ground state. It then follows
from the definition of F�,X that the ground-state energy is
exact, e.g., from Eq. �A6�,

F�2,X2
�v2,X2,N� +� �2�r�v2�r�dr + �X2,X2	 = Egs�v2,X2,N� .

�A7�

(3) The variational principle holds, even when 
��r� ,X� is
not N representable. Given any electron density ��r� and a
property value X, then for every 
v0�r� ,X0�,

F��,X� +� ��r�v0�r�dr + �X0,X	 � Egs�v0,X0,N� .

�A8�

That the equality only holds if 
��r� ,X� is the ground state
for 
v0�r� ,X0� was established in the previous paragraph.
Notice that the variational relation in Eq. �A8� holds for ev-

ery possible 
��r� ,X�, whether it is N-representable or not.
The variational relation even holds for absurd choices; one
can, for example, choose an electron density that is negative
in some regions. If the property of interest is the exchange
energy, a positive exchange energy can be chosen, even
though this is physically absurd. The functional is still de-
fined.

(4) The functionals are convex, so the minimum is unique.
This result follows from the definition of the functional and
the fact that the maximum �or supremum� of a sum is greater
than the sum of the maxima �or suprema�. Specifically,

F�t�1 + �1 − t��2,tX1 + �1 − t�X2�

= sup
v�r�,X

�t�Egs�v,X,N� −� �1�r�v�r�dr − �X,X1	

+ �1 − t��Egs�v,X,N� −� �2�r�v�r�dr − �X,X2	
�

� t sup
v�r�,X

�Egs�v,X,N� −� �1�r�v�r�dr − �X,X1	

+ �1 − t� sup

v�r�,X
�Egs�v,X,N� −� �2�r�v�r�dr − �X,X2	


= tF��1,X1� + �1 − t�F��2,X2� . �A9�

(5) The unrestricted functionals are infinity for

non-N-representable cases. Suppose that 
�̃�r� , X̃� are not
ensemble-N-representable. That is, there is no N-electron
density matrix that has electron density �̃�r� and property

value X̃. It follows from the expression for the N-electron
density matrix in terms of pure states

�N = �
i=1

�

wi��i	��i� ,

0 � wi � 1, 1 = �
i=1

�

wi �A10�

that the set of ensemble-N-representable 
��r� ,X� is closed

and convex. This means that the distance between 
�̃�r� , X̃�
and the set of ensemble-N-representable 
��r� ,X� is some

positive number d̃.

A lower bound to F��̃ , X̃� can be constructed by consid-
ering any guess that arises as an intermediate step in the
supremization procedure

F��̃,X̃� � F�̃,X̃�v0,X0,N�

= Egs�v0,X0,N� −� �̃�r�v0�r�dr − �X0,X̃	 .

�A11�

We will try to find a way to change 
v0�r� ,X0� to form a
tighter lower bound. From the dual relationship between ��r�
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and v�r�, and between X and X, we have that

�Egs�v0,X0,N�
�v�r�

= �0�r� ,

�Egs�v0,X0,N�
�X�r�

= X0, �A12�

where �0�r� and X0 are the ground-state density and the
property value from the variational principle for the energy
in Eq. �14�. 
�0�r� ,X0� is obviously N-representable so the

distance between 
�0�r� ,X0� and 
�̃�r� , X̃� is at least d̃. From
Eq. �A12� and the definition of the functional derivative,

Egs�v1,X1,N� − Egs�v0,X0,N�

� � �0�r��v1�r� − v0�r��dr + �X1 − X0,X0	 ,

�A13�

and so

F�̃,X̃�v1,X1,N� − F�̃,X̃�v0,X0,N�

� � ��0�r� − �̃�r���v1�r� − v0�r��dr + �X1 − X0,X0 − X̃	 .

�A14�

Because the distance between 
�0�r� ,X0� and 
�̃�r� , X̃� is at

least d̃, there exists a linear operator


�v�r�,�X� �A15�

with norm 1 for which

d̃ �� ��0�r� − �̃�r���v�r�dr + ��X,X0 − X̃	 . �A16�

Find one such linear operator and define v1�r�=v0�r�
+�(�v�r�) and X1=X0+���X�. Choose the value of �, so
that F�̃,X̃�v1 ,X1 ,N� is as large as possible. �Note that � may
be less than 1, because the perturbation formula �A13� is not
valid for large perturbations.�

The ground-state density and the property value for


v1�r� ,X1� is also at least d̃ units from 
�̃�r� , X̃�, so we can
repeat the procedure and construct a new lower bound
F�̃,X̃�v2 ,X2 ,N� that is appreciably bigger than
F�̃,X̃�v1 ,X1 ,N�. Continuing this procedure ad infinitum al-
lows one to produce a sequence of lower bounds,

F��̃,X̃� � F�̃,X̃�vk,Xk,N� . �A17�

However, the preceding argument means that we can con-
struct a sequence of lower bounds that diverges:

F�̃,X̃�vk ,Xk ,N�→� as k→�. So it must be that F��̃ , X̃�=�

for non-ensemble-N-representable 
�̃�r� , X̃�. This result is a
generalization of several special cases that are known in the
literature �11,52�.

(6) If both functionals are defined, then the partial Leg-
endre transform functional is an upper bound to the full Leg-
endre transform functional. We will show that F�� ,X� is the

smallest possible functional that is consistent with the varia-
tional principle. It then follows that any other functional that
is also exact must be greater than or equal to this functional.
Ergo, FX����F�� ,X�.

Suppose that there is a functional F��� ,X� that is less
than F�� ,X� for some 
�0�r� ,X0�. Then there exists some
��0 such that F��0 ,X0�−F���0 ,X0���. Since

sup
v�r�,X

�Egs�v;X,N� −� �0�r�v�r�dr − �X,X0�	 − F���0,X0�

� � , �A18�

there must exist some external potential and property poten-
tial such that

Egs�ṽ;X̃,N� −� �0�r�ṽ�r�dr − �X̃,X0	 − F���0,X0� � � ,

�A19�

and so

Egs�ṽ;X̃,N� � � + F���0,X0� +� �0�r�ṽ�r�dr + �X̃,X0	

� F���0,X0� +� �0�r�ṽ�r�dr + �X̃,X0	 .

�A20�

That is, there is some system for which the variational prin-
ciple is invalid. Notice that this need not be a physically
relevant system. The restricted Legendre transform function-
als are a special case where F��� ,X� is guaranteed to be
exact and variational for the systems that the user finds
“physically relevant,” even though the functional may fail
�and fail infinitely badly� for other systems.

(7) If both functionals are defined, then the extended
constrained-search functional is an upper bound to the par-
tial Legendre transform functional. This result could be
proved using an argument very similar to the one in the
previous paragraph, but it is perhaps more interesting to pro-
vide a totally different derivation, based on the result in Ref.
�9�. The extended constrained-search functional is

FX
xCS��� = min

�→���r�,X�

���F̂��	 ,

�A21�

where F̂= T̂+Vee. Add and subtract ��r�v�r�dr to obtain

FX
xCS��� = � min

�→���r�,X�
��	F̂ + 


i=1

N

v�ri�	��� − ��r�v�r�dr .

�A22�
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Now, relax the constraint that the wave function must have
the density ��r�. Relaxing the constraint gives the inequality

FX
xCS��� � �min

�→X

���F̂ + �
i=1

N

v�ri���	
 −� ��r�v�r�dr

= Egs�v,X;N� −� ��r�v�r�dr .
�A23�

This inequality is true for any external potential, so one can
take the supremum of the right-hand side as

FX
xCS��� � sup

v

�Egs�v,X;N� −� ��r�v�r�dr� = FX��� .
�A24�

The equality is true only if there exists some external poten-
tial for which the equality in Eq. �A23� holds, so that

FX
xCS��� +� ��r�v�r�dr = Egs�v,X;N� . �A25�

That is, the equality is true only if, among systems with
property X, ��r� is pure-state v-representable.
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