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For model two-electron atoms with harmonic confinement, the correlated first-order density matrix can be
expressed in terms of the relative motion wave function �R�r�. Here we demonstrate that the probability
density P�r� associated with this wave function is directly related to the x-ray scattering factor f�G�. This latter
quantity, in turn, is determined by the ground-state electron density n�r�. The Euler-Lagrange equation of the
resulting density-matrix theory is thereby shown to take the form of a third-order integro-differential equation
for n�r� in which the probability density P�r�=�R

2�r� also appears. For two specific choices of the interaction
between the two fermions under consideration, the above integro-differential equation derived here is shown to
lead back to known linear homogeneous differential equations for the electron density. Finally, it is emphasized
that specific equations summarized here will apply directly to theoretical study of the nonrelativistic ground-
state electron density n�r ,Z� in the He-like ions with atomic number Z.
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I. INTRODUCTION AND BACKGROUND

The study of variational methods based on the first-order
density matrix goes back at least to the work of March and
Young �1,2�. These authors were concerned with one-body
problems characterized by the idempotent Dirac density ma-
trices �3�, while in �1� N-fermion systems were studied,
within such an independent electron framework. There is
now considerable interest in density-matrix theory for inter-
acting electrons and the present study falls within this area.
However, we here treat the family of two-electron model
atoms referred to in the title, as proposed by Holas et al. �4�.
While our main focus below is the correlated first-order den-
sity matrix ��r1 ,r2�, let us begin with its diagonal form �4�

n�r� = ��r1,r2��r=r1=r2

=
8

�1/2exp�−
r2

a2��
0

�

dy y2 exp�−
y2

4
�

���R�ay��2
sinh� ry

a �
� ry

a � . �1�

Here the length a= �� /2m��1/2, where the harmonic confine-
ment potential is 1

2m�2r2, with m as the electron mass. The
total ground-state wave function has the spatial form

��r1,r2� = �C� �r1 + r2�
2

��R��r1 − r2�� , �2�

where C denotes center of mass and R denoted the relative
motion. It will be useful below to re-express R and C coor-
dinates appearing in Eq. �2� by

b = r1 − r2, c = �r1 + r2�/2. �3�

We next construct the so-called atomic scattering factor f�G�
defined as the Fourier transform of the ground-state density
n�r�,

f�G� =� n�r�exp�iG · r�dr . �4�

Then one readily obtains by employing Eqs. �1� and �4� the
result that

f�G� =
16�

G
exp�−

G2a2

4
��

0

�

y sin�Gy

2
���R�y��2dy . �5�

We note next that the relative motion wave function �R
appearing in Eq. �5� satisfies the Schrödinger-like equation
�4�,

	−
�2

m
�2 + Vef f�r�
�R�r� = ER�R�r� , �6�

where the effective potential energy Vef f�r� is given by

Vef f�r� =
1

4
m�2r2 + u�r� , �7�

while ER is the energy of the relative motion. The above
equations all hold for a general interparticle interaction u�r�
in the harmonically confined family of two-electron model
atoms. We now turn to consider the off-diagonal extension of
the above result �1�. For general density-matrix theory then
we have from relation �17� in �4� that the correlated first-
order density matrix ��r1 ,r2�, using the vectors b and c de-
fined in Eq. �3�, is given by
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��r1,r2� = ��b,c�

= 2� dx�C�1

2
�x + 2c +

1

2
b��

��C�1

2
�x + 2c −

1

2
b���R��x +

1

2
b��

��R��x −
1

2
b�� . �8�

Here the center-of-mass wave function �C�r� is known once
for all for this family of model atoms as

�C�r� =
1

a3/2�3/4exp�−
r2

2a2� , �9�

where the length a is given following Eq. �1�. With this
background, we proceed below to develop an exact density-
matrix theory based on Eqs. �1� and �8� for the family of
models summarized in the title. From Eq. �5�, �R

2�r� entering
Eq. �1� is known in terms of f�G�.

II. EULER-LAGRANGE EQUATION OF DENSITY-
MATRIX THEORY AS AN INTEGRO-DIFFERENTIAL

EQUATION FOR GROUND-STATE FERMION
DENSITY n(r)

To introduce the derivation of the Euler-Lagrange equa-
tion of the density matrix for this family, let us write the
known expression for the difference in kinetic-energy density
tL�r�− tg�r� in terms of the scattering factor f�G�. Here tL
denotes the Laplacian form ��2� in terms of wave func-
tions, while tg is the gradient alternative ����2. The differ-
ence tg− tL is given by

tL�r� − tg�r� = −
�2

4m
�2n�r� . �10�

Then it follows from Eq. �4� that

tL�r� − tg�r� =
�2

4m�2��3� G2f�G�eiG·rdG . �11�

Below in Sec. III, we use a version of this Eq. �11� to obtain
specific results for special cases of the fermion-fermion �ff�
interaction u�r12� in the present class of harmonically con-
fined particles. Equation �11� of course can be inverted to
read as

G2f�G� =
4m

�2 � �tL�r� − tg�r��e−iG·rdr . �12�

This suggests that when f�G� is available �see examples in
�5��, an elegant route to say tg�r� �6� should be via these two
equations above.

However, and quite generally, by differentiation of the
definition of the density n�r� from the total wave function
��r ,r2�, March et al. �7� obtained straightforwardly the
identity

�r��r
2n�r�� = r̂	n��r� +

2

r
n��r� −

2

r2n��r�

= 12� ��r����r

2��dr2 + 4� ��r��r
2��dr2,

�13�

which is essentially equivalent to the derivative of Eq. �11�
with respect to r when the right-hand side of that equation is
written as a constant times the Laplacian of the density n�r�,
the latter step following from Eq. �4� �see also Eq. �15� be-
low�. In Eq. �13�, r̂ is defined as the unit vector r /r. Substi-
tuting now the separable form in Eq. �2� of the total wave
function � for the harmonic confinement models into the
general Eq. �13�, one calculates, in agreement with Eq. �1�,
that n�r� is a functional of �R. Hence from Eq. �10� or Eq.
�11�, the kinetic-energy density difference tL�r�− tg�r�, which
is one focal point below, is a functional of �R. But tg and tL
are defined from the density matrix �8� by

tg�r� =
�2

2m

�2

�r1 · �r2
��r1,r2��r1=r2=r;

tL�r� = −
�2

2m

�2

�r1
2��r1,r2��r1=r2=r. �14�

It follows from the above relations that we can write

��r1,r2� = 	 f�f�G�,�C;r1,r2� = ��n,�C;r1,r2� , �15�

where 	 f and � are now to be regarded as functionals char-
acterizing the whole family of harmonically confined two-
electron models. One could therefore construct the energy
variational principle based on ��b ,c� and the pair function
���r1 ,r2��2 from Eq. �2� since �R�r� is determined from
relation �5� by f�G� and, hence, using Eq. �4�, by the diago-
nal ground-state density n�r�. This in fact turns out not to be
necessary for this family of model atoms since essentially the
Euler-Lagrange equation of the variational principle is al-
ready implicit in the Schrödinger equation �6� for �R�r�,
when the effective potential given in relation �7� is em-
ployed.

Below we illustrate the functional forms in Eq. �15� more
compactly by calculating what amounts to the derivatives of
� in Eq. �14�. Explicitly, we shall first obtain the difference
tL�r�− tg�r� set out in Eq. �10�. But Eq. �1� already gives n�r�
itself as a functional of �R and, hence, Eq. �10� is equivalent
to

tL�r� − tg�r� = T��R;a,r� . �16�

Inserting Eq. �1� into Eq. �10� yields then, after a short cal-
culation,
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T�r� =
2�2

a3m�1/2
e−r2/a2

r
�

0

�

dy y

��4r�ay�cosh� ry

a
� − �4r2 + a2�y2 − 2��sinh� ry

a
�


�exp�−
y2

4
���R�ay��2. �17�

To illustrate one form of the kinetic-energy density, we ap-
peal next to the result given in �4�, namely,

t�r� =
�2

4m
��r�C�r��2 +

�2

m
��r�R�r��2. �18�

For the one model discussed in Appendix B, a numerical
comparison of this result �18� for kinetic-energy density t�r�
will be made with tg�r� from Eq. �14�.

Explicit form of relative motion probability density P(r) in
terms of scattering factor f(G)

To illustrate the functional relation 	 f for the density ma-
trix � written formally in Eq. �15� for the present family, let
us first rewrite Eq. �5� in the form

f�G� = 2 exp�−
G2a2

4
�� �R

2�r�exp�i
G · r

2
�dr . �19�

Then by Fourier inversion, we have

�R
2�r� � P�r� =

1

16�3� f�G�exp�G2a2

4
�exp�− i

G · r

2
�dG .

�20�

Below in Sec. III, we shall use this result �20� in the ff
interaction term, entering the differential virial theorem
�DVT� to which we now turn.

III. ALTERNATIVE ROUTE FOR INTRODUCTION
OF INTERACTION u(r12) VIA THE DVT

At this stage, let us introduce the interaction u�r12� by an
alternative route starting from the differential virial theorem
established in �8�. This reads as

− n�r�
�V�r�

�r
= −

n��r�
4

−
n��r�

2r
+

n��r�
2r2 + r̂ · z�r� + r̂ · f f f�r� ,

�21�

where the interfermion force f f f�r�=��ru��r−r2��	�rr2�dr2,
while 	 denotes the pair-correlation function.

We define immediately below the kinetic-energy density
tensor t
��r� quite generally from the 1DM �first-order den-
sity matrix� as �8�

t
��r� =
�2

4m
	 �2

�r
� � r��
��r�,r�� +

�2

�r�� � r
�
��r�,r��


r�=r�=r

.

�22�

Then, inserting the known result �8� for � in Eq. �22� for the
present class of models, it is straightforward though lengthy
�Sec. VI� to obtain the shape of t
��r� as

t
��r� =
r
r�

r2 t1�r� + �
�t2�r� . �23�

The precise form of t1�r� is rather detailed so we first note
that the trace of t
��r�, giving the �gradient� kinetic-energy
density tg�r� in Eq. �14� is evidently

tg�r� = t1�r� + 3t2�r� . �24�

We record the simpler form of t2�r� for the example of the
Moshinsky atom �9� in Appendix A �Eq. �A12��. The scalar
quantity r̂ ·z�r� appearing in Eq. �21� is defined by Holas and
March �8�, z�r� having component z
�r� given by

z
�r� = 2�
�

�t
��r�
�r�

, �25�

with t
��r� as in Eq. �23�. Of course, t1�r� and t2�r� in that
equation depend again on the relative motion wave function
�R�r� as this characterizes the 1DM in Eq. �8�, from which
z�r� via Eq. �25� is obtained. Given t1�r� and t2�r�, the mag-
nitude z�r� of the vector field z�r� can be readily found from
Eqs. �23� and �25� as

z�r� = 4	 t1�r�
r

+
1

2
t1��r� +

1

2
t2��r�
 . �26�

Hence, the main outcome of this section can be expressed via
Eqs. �21� and �26� as the differential equation

n��r�
4

+
n��r�

2r
−

n��r�
2r2 − n�r�

�V�r�
�r

= r̂ ·� �2�r,r2��ru��r − r2��dr2 + z�r� . �27�

Naturally, the last two terms are again functionals of the
relative motion wave function �R�r�. The term involving
�ru is, using Eq. �2�, given by ��C

2 �
�r+r2�

2 �P��r−r2����ru��r
−r2���dr2 with P�r�=�R

2 and as already emphasized from
Eqs. �5� and �20�, P can be replaced by the Fourier transform
of f�G�exp� G2a2

4 �. To be quite specific we have, using Eq.
�20�,

r̂ ·� �C
2� �r + r2�

2
�P��r − r2����ru��r − r2���dr2

= r̂ ·� ��ru��r − r2����C
2� �r + r2�

2
�� f�G�

�exp�G2a2

4
�exp�− i

G · �r − r2�
2

�dGdr2. �28�

Assuming that we can interchange the order of integration in
Eq. �28�, the above term, for a given u��r−r2�� can be written
as �F denotes Fourier transform�

r̂ ·� f�G�exp�G2a2

4
�F���ru��r − r2����C

2� �r + r2�
2

�
dG ,

�29�

where �C is known explicitly from Eq. �9�. We shall illus-
trate Eqs. �28� and �29� for the Moshinsky atom in Appendix
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A. This makes it clear that Eq. �27� is now an integro-
differential equation to be solved for the ground-state den-
sity, after inputting a specific pair interaction u�r12� and the
harmonic confinement potential V�r�= 1

2m�2r2.

IV. INDEPENDENT-PARTICLE LIMIT OF THE INTEGRO-
DIFFERENTIAL EQ. (27)

Due to the relative complexity of the integro-differential
�27�, let us consider next the simplification obtained when
we set the interaction u equal to zero. Then z�r� becomes its
single-particle counterpart zs. This is readily derived from
the idempotent Dirac density matrix ��r1 ,r2� given by

��r1,r2� = �n�r1��1/2�n�r2��1/2, �30�

after insertion in Eq. �22�. From Eqs. �22�, �25�, and �30�, it
is found after a short calculation that t1 and t2 in Eq. �23� are

t1 = ��2/8m�
n�2�r�

n
, �31�

t2 = 0, �32�

and the magnitude zs�r� of the single-particle vector field
zs�r� is then obtained as

zs�r� =
�2

2m

n��r�
n

	n��r�
r

−
n�2�r�
2n�r�

+ n��r�

= 4	 tw�r�

r
+

1

2

�tw�r�
�r


 . �33�

Here the von Weizsäcker kinetic-energy density tw�r� is
given by ��2 /8m��n�2 /n� and is therefore equal to t1�r� in
this limit. Hence, we find from Eq. �27� with u�r�=0, by
insertion of zs�r� from Eq. �33�, a third-order nonlinear dif-
ferential equation for n�r�. Of course, we already know that
this must have as a “solution,” the well-known single-
particle equation of von Weizsäcker �10� and this is readily
confirmed.

Returning to the family with interaction u�r�, the simplest
case to treat is the Moshinsky atom �9� with u�r12�= 1

2Kr12
2 ,

and this is worked out in detail in Appendix A. When K is
put to zero, Eq. �33� is readily verified in this model, from
the results given in that appendix.

V. GRADIENT KINETIC-ENERGY DENSITY

We first derive tg�r� defined from the wave function �2�
and leave the deduction of t
� in Eq. �23� for next section.
The gradient kinetic energy tg�r� from the wave function �2�
is given by

tg�r� =
�2

m
� ��r��r,r2��2dr2. �34�

Using the explicit form �9� for the center-of-mass wave func-
tion �C in Eq. �2�, we can calculate �r� entering in Eq. �34�
as

�r��r,r2� =
1

a3/2�3/4

�	 r − r2

�r − r2�
�R���r − r2�� −

r + r2

4a2 �R��r − r2��

�exp�−

�r + r2�2

8a2 � . �35�

It is a straightforward, if somewhat complicated matter, to
calculate tg�r� by squaring Eq. �35� and inserting into Eq.
�34�. The desired result for tg�r� emerges then in the func-
tional form

tg�r� = tg��R,�R� ;a� . �36�

One next completes the angular integration to remove the
scalar product r̂ · r̂2 entering the square of Eq. �35�, leaving
simply a radial integration over r2. This yields the explicit
form of the functional in Eq. �36� as

tg�r� =
2�2

a3�1/2m

e−r2/a2

r
�

0

� �2a2s sinh�rs/a2��R�
2�s�

+ ��s2 + 2a2�sinh�rs/a2� − 2rs cosh�rs/a2��

��R�s��R��s� +
s

8a2 ��s2 + 4a2 + 4r2�sinh�rs/a2�

− 4rs cosh�rs/a2���R
2�s�
e−s2/4a2

ds . �37�

But Eq. �17� allows the Laplacian form tL�r� of kinetic-
energy density to be obtained as

tL�r� = tg�r� −
2�2

a3m�1/2
e−r2/a2

r
�

0

�

dy
�y,r,a���R�ay��2,

�38�

where 
�y ,r ,a� is


�y,r,a� = y�4r�ay�cosh� ry

a
�

− �4r2 + a2�y2 − 2��sinh� ry

a
�
exp�−

y2

4
� .

�39�

VI. MAGNITUDE z(r) OF VECTOR FIELD ENTERING
DIFFERENTIAL VIRIAL THEOREM (21) IN TERMS

OF RELATIVE MOTION WAVE FUNCTION �R

As mentioned briefly above, we use the density matrix
�8�, plus �C�r� again from Eq. �9�, to derive the kinetic-
energy density tensor t
� defined in Eq. �22�. Hence, we
extract the key quantities t1�r� and t2�r� entering the form of
t
� in Eq. �23�.

As this is a straightforward but tiresome derivation, we
give here the final result for t
� as
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t
��r� = � 2�2

a3�1/2m
e−�r2�/a2�

o

�

− 	 3

4a2 P�x� +
1

2x
P��x� +

a4

r2 g�x�
a2x

r
sinh� xr

a2� +
x2a4

r2 g�x�cosh� xr

a2�dx
�
�

+ � 2�2

a3�1/2m
e−�r2�/a2�

o

�

2P�x�	� x

r
+

xr

a2�sinh� xr

a2� −
x2

a2cosh� xr

a2�

+ a4xg�x�	�3a2

r3 +
x2

a2r
�sinh� xr

a2� −
3x

r2 cosh� xr

a2�
dx
 r
r�

r2 , �40�

where P�x� is given in Eq. �20� and

g�x� =
2

a4 P�x� +
1

2x3 P��x� +
1

2x2

P�2�x�
P�x�

−
1

2x2 P��x� .

�41�

Therefore, t1�r� and t2�r� are

t1�r� =
2�2

a3�1/2m
e−�r2�/a2�

o

�

2P�x�

�	� x

r
+

xr

a2�sinh� xr

a2� −
x2

a2cosh� xr

a2�
 + a4xg�x�

�	�3a2

r3 +
x2

a2r
�sinh� xr

a2� −
3x

r2 cosh� xr

a2�
dx , �42�

t2�r� =
2�2

a3�1/2m
e−r2/a2�

o

�

− 	 3

4a2 P�x� +
1

2x
P��x�

+
a4

r2 g�x�
a2x

r
sinh� xr

a2� +
x2a4

r2 g�x�cosh� xr

a2�dx .

�43�

Results for t1�r� and t2�r� reduce to the form given in Ap-
pendix A for the Moshinsky atom in Eqs. �A13� and �A14�.
The magnitude of vector field z�r� can then be derived by
insertion of Eqs. �42� and �43� into Eq. �26�, but since the
detail proliferates considerably we shall not give the explicit
form of z�r�.

VII. SUMMARY AND FUTURE DIRECTIONS

It is shown here that the exact density-matrix theory given
in Eqs. �1� and �8� can be viewed variationally as based on
the integro-differential equation �27�. What is unique to the
family of models explained in the title is that the last two
terms in Eq. �27� are calculable explicitly in terms of the
probability density P�r�=�R

2�r� of the relative motion from
the density matrix � in Eq. �8�. But Eq. �5� then shows that
P�r� is uniquely fixed by the Fourier transform of
f�G�exp� G2a2

4 � , f�G� being the x-ray scattering factor defined
in Eq. �4� as the Fourier transform of the desired electron
density n�r�. In the above sense, Eq. �27� has the general
shape

r

4

�

�r
��2n�r�� − rn�r�

�V�r�
�r

= Q�u�r�; f�G�,a� , �44�

which we have chosen to write with the virial of the force
− �V�r�

�r on the left-hand side. This is plainly of the form of an
integro-differential equation to solve for the ground-state
density n�r�, the length a characterizing the harmonic exter-
nal potential V�r�. In Appendix A, a form of Q in Eq. �44� is
displayed which is specific to the Moshinsky atom, and in-
volves f�G� and its derivatives. Further motivation for writ-
ing the functional form �44� of Q is provided by the expres-
sion �29� for the interparticle force entering Eq. �27�.

As to future directions, we wish to emphasize the rel-
evance of parts of the present study for the determination of
the ground-state density n�r ,Z� of nonrelativistic He-like
atomic ions of nuclear charge Ze. This problem has remained
unsolved since the discovery of Schrödinger wave mechanics
some 8 decades ago. So we conclude by emphasizing the
equations in the present paper, which immediately apply to
such He-like ions. The first of these is Eq. �11� relating
kinetic-energy density difference to the x-ray scattering fac-
tor f�G�, which incidentally was measured in early work on
He vapor. Equation �13� is also applicable to He, as is its
expanded form in Appendix C, which now contains also the
ground-state energy E, again known from experiment. The
final equation we single out for its generality and, in particu-
lar, its applicability to He, is the differential virial theorem in
Eq. �21�. However, to date, without some input from experi-
ment these general nonrelativistic equations can be worked
out for He-like atomic ions only in the limit of large atomic
number Z motivated by the pioneering study of Schwartz
�11� on the ground-state electron density n�r ,Z� in this �non-
relativistic� large Z limit. In that limit, Gál et al. �12� derived
the third-order linear homogeneous differential equation sat-
isfied by the Schwartz density, which has therefore a shape
quite reminiscent of the DVT in Eq. �21�.
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APPENDIX A: EXPLICIT FORM OF r̂ ·z(r)+ r̂ · fff(r)
APPEARING IN THE DVT EQ. (21) FOR MOSHINSKY

ATOM AS WELL AS THE KINETIC-ENERGY
DENSITY TENSOR

First, we remind that in Appendixes A and B,
r̂ ·z�r�+ r̂ · f f f�r� has been calculated from Eq. �21� and not
through their definitions. Hence, it must not be used in the
equation since it yields nothing but tautology.

As one of our aims, this appendix gives the explicit forms
of the quantity r̂ ·z�r�+ r̂ · f f f�r� appearing in DVT Eq. �21�
for the totally harmonic Moshinsky model. The known
ground-state density for harmonic confinement potential
V�r�= 1

2r2 and interparticle interaction u�r12�= 1
2Kr12

2 is

n�r� =
2�3/2

�3/2 exp�− �r2� , �A1�

where �= 2
−1

 while 
 is given by


 =
1

2
��1 + 2K�1/2 + 1� . �A2�

To compare with the DVT Eq. �21�, we need the third-order
differential equation satisfied by n�r� in Eq. �A1�. This is
readily verified to be

r2n� + 2rn� − �4�2r4 − 6�r2 + 2�n� − 8�2r3n = 0. �A3�

Using Eq. �27� with V�r�= 1
2r2, the right-hand side is simply

r̂ ·z�r�+ r̂ · f f f�r�. Hence, one finds the exact expression

r̂ · z�r� + r̂ · f f f�r� = 	�2r2 −
3

2
�
n��r� + �2�r − r�n�r� .

�A4�

The single-particle limit zs�r� is readily found from Eq. �A4�
by putting K=0, when one has the left-hand side of Eq. �A4�
simply as zs�r�, while the right-hand side in the same limit
has 
=1 from Eq. �A2� and hence �=1. Thus, for this har-
monic case

zs�r� = �r2 −
3

2
�n��r� + rn�r� . �A5�

Using again Eq. �A1� in the von Weizsäcker form
tw= ��2 /8m��n�2 /n�, we find tw= �1 /2��2r2n and, hence,

zs�r� = �4r − 2r3�n�r� . �A6�

This is equivalent to Eq. �A5� when we use the explicit form
�A1� of n�r� for which n��r�=−2�rn with �=1 in the
K→0 limit.

Using the explicit form of ��r ,r�� in terms of n�r� given
in �13�

��r,r�� = �2�3/2

�3/2 �
2/4
−2

�n��r2 + r�2�1/2��
2/4
−2

��n� �r2 + r�2 + 2r · r��1/2

2
�
−��
 − 1�2�/2
−1

,

�A7�

we have obtained the element t12�r� of the kinetic-energy
density tensor t
��r� in Eq. �22� as

t12�r� =
�2

16m�2
 − 1�2�2�3/2

�3/2 �
2/4
−2xy

r4 �n�r���1−
�
+2��/2
−1�n��2r����
2�/�4
−2��−2

��2r2�
 − 1�2
2n2��2r�n�2�r� + 2�
 − 1�2n�r�n��2r���2r2
2n��r�n���2r�� − �2
 − 1�n��2r��rn��r� − r2n��r��

+ 
2n2�r��r2�
�
 − 4� + 2�n�2��2r� − �2
 − 1�n��2���2rn���2r� − 2r2n���2���� . �A8�

In the independent-particle limit K→0, or equivalently 
→1, Eq. �A8� becomes

t12�r� = � 2

�3/2�1/2 �2

16mn3/2��2r�
xy

r3 �rn�2��2r� + n��2r���2n���2r� − 2rn���2r��� . �A9�

Thus, we confirm the shape of t
��r� in Eq. �23� and find for the Moshinsky model the form of t1�r� to be

t1�r� =
�2

16m�2
 − 1�2r2�2�3/2

�3/2 �
2/4
−2

�n�r���1−
�
+2��/2
−1�n��2r����
2�/�4
−2��−2

��2r2�
 − 1�2
2n2��2r�n�2�r� + 2�
 − 1�2n�r�n��2r���2r2
2n��r�n���2r�� − �2
 − 1�n��2r��rn��r� − r2n��r�� + 
2n2�r�

��r2�
�
 − 4� + 2�n�2��2r� − �2
 − 1�n��2���2rn���2r� − 2r2n���2���� . �A10�

This has the independent-particle limit when 
→1 given by

t1�r� = � 2

�3/2�1/2 �2

16mrn3/2��2r�
�rn�2��2r� + n��2r���2n���2r� − 2rn���2r��� . �A11�

Similarly, we have obtained t2�r� in Eq. �23� as
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t2�r� = − �2�3/2

�3/2 �
2/4
−2 �2�
 − 1�2

8m�2
 − 1�r
�n�r��
2/1−2
�n��2r��
2/4
−2n��r� , �A12�

which tends to zero in the independent-particle limit 
→1.
Hence, it follows from Eq. �24� that t1�r� in Eq. �A11� is
equal to the gradient form tg�r� of the kinetic-energy density
in Eq. �24�. Using the explicit ground-state electron density,
it is readily verified that Eq. �A11� gives back the von
Weizsäcker form tg�r�= tw�r�= ��2 /8m��n�2�r� /n�r��.

If we use the form of the density in Eq. �A1�, t1�r� and
t2�r� simplify to

t1�r� =
�2

2m
�2
 − 1



�2

r2n�r� , �A13�

and

t2�r� =
�2

4m

�
 − 1�2



n�r� . �A14�

Inserting Eqs. �A13� and �A14� into Eq. �26� yields z�r�, an
example of which we have plotted in Fig. 1.

Of course, there is no claim to universality or, for this
model, uniqueness of functionals of n displayed in this ap-
pendix. Also, the external potential has been chosen here for
simplicity as V�r�= �1 /2�r2, and for other choices the length
a characterizing the harmonic external potential V�r� in gen-
eral will also appear in such functionals of the ground-state
density.

To conclude this appendix, we exemplify Eq. �44� of the
main text by displaying an explicit form of Q entering that
equation for the Moshinsky model. It is readily verified from
Eq. �A3� that

r

4

�

�r
��2n�r�� − rn�r�

�V�r�
�r

= �5�2r2 − r2 − 2�3r4�n�r� .

�A15�

Thus, in atomic units, it results in

Q = �5�2r2 − r2 − 2�3r4�n�r� . �A16�

But in terms of the x-ray scattering factor f�G� defined in
terms of the density n�r� in Eq. �4�

�G
2 f�G� = −� r2n�r�exp�iG · r�dr , �A17�

while

�G
2 ��G

2 f�G�� =� r4n�r�exp�iG · r�dr . �A18�

Hence, for this example, using the Fourier inversion of Eqs.
�A17� and �A18�, we have Q explicitly in terms of deriva-
tives of f�G� and the pair interaction u�r�= �1 /2�Kr2 since �
entering Eq. �A16� characterizes the strength K of u�r�.

APPENDIX B: INVERSE SQUARE-LAW MODEL

For the inverse square-law model, the wave function of
Crandall et al. �14� reads as

��r,r2� = 	4�	�3

2
+ 
�4
+1a3+2

−1/2

�r − r2�


�exp�− m�r2/2��exp�− m�r2
2/2�� , �B1�

where u�r12�=� /r12
2 , 
 being related to the strength � by

��1+4�m /�2�1/2−1� /2. For general interaction strength 
,
the differential equation for the density in �15� has the form

�

4m�
rn��r� + � �

2m�
+

3

2
r2�n��r� + r�3

2
− 
 +

2m�

�
r2�n�r�

= 0. �B2�

Inserting into the DVT Eq. �21�, we obtain an explicit ex-
pression in terms of n and its derivatives for r̂ ·z�r�
+ r̂ · f f f�r�, which reads as

r̂ · z�r� + f f f�r� = − n�r�
�V�r�

�r
+

n��r�
2r

−
n��r�
2r2 +

1

4
n��r� .

�B3�

Multiplying Eq. �B2� throughout by m�
�r , we readily obtain

n��r�
4

+ � 1

2r
+

3

2

m�r

�
�n��r� +

m�

�
�3

2
− 
 +

2m�r2

�
�n�r� = 0.

�B4�

FIG. 1. �Color online� Shows magnitude z�r� of the vector field
z�r� entering the DVT Eq. �21� for the Moshinsky atom for param-
eter �=3 /2 measuring the interparticle interaction strength.
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Dividing both sides of Eq. �B3� by n�r� and then differenti-
ating with respect to r yields

4�m�

�
�2

r +
1

4
�nn� − n�n�

n2 � + �−
1

2r2 +
3

2

m�

�
�n�

n

+ � 1

2r
+

3

2

m�

�
r��nn� − n�2

n2 � = 0. �B5�

Substituting for n��r� in Eq. �B3� using Eq. �B5� results in
an equation for r̂ ·z�r�+ r̂ · f f f�r� in terms of n�r� and its de-
rivatives n��r� and n��r� plus V�r�. The result reads as

z�r� + r̂ · f f f�r� = − m�2rn�r� − 4�m�

�
�2

rn�r� +
1

4

n�n�

n

−
3

2

m�

�
n� − � 1

2r
+

3

2

m�

�
r��n� −

n�2

n
� .

�B6�

Equation �B6� is a general expression for the basic f f inter-
action term in the inverse square-law model, z�r� correcting
the single-particle form zs�r� in Eq. �33�, which has already
the von Weizsäcker inhomogeneity kinetic energy embedded
in it. It is surprising that Eq. �B6� does not have any explicit
dependency on value of 
, which has a connection to the
strength of the interparticle interaction.

Gradient kinetic-energy density for inverse square-law
interparticle interaction

Let us take as starting point the result of �7� for the wave
function �14� in Eq. �B1�. Then the gradient kinetic-energy
density may be written �7� as

tg�r� =
m2�2r2

�2

n�r�
2

+ 
2� ��r�r − r2��2

�r − r2�2
�C

2� �r + r2�
2

�
��R

2��r − r2��dr2 − 2

m�r

�
� 1

�r − r2�
�r̂ · �r�r − r2��

��C
2� �r + r2�

2
��R

2��r − r2��dr2. �B7�

Inserting the explicit form of �C�r� in Eq. �9� and �R�r�
thereby obtained from Eqs. �2� and �B1� one finds

tg�r� =
2−�7/2�−


a7�3/2�1 + 2
�	�r2 − 4a2
�F1�1

2
+ 
;

1

2
;

r2

2a2�
+ 2
�r2 + 2a2�1 + 
��F1�1

2
+ 
;

3

2
;

r2

2a2�
e−r2/a2
,

�B8�

where F1�a ;b ;z� is the confluent hypergeometric function of
the first kind �16�.

Figure 2 makes a numerical comparison, in atomic units,
between the radial kinetic-energy density 4�r2tg�r� and the

uncorrelated von Weizsäcker form 4�r2tw�r�. The example
chosen corresponds to a=2−1/2 a.u. and for the inverse
square-law model with 
=1. In that case, tg�r� can be evalu-
ated analytically as

4�r2tg�r� = 4�r2 �2 − r2 + 2r4�
6�3/2 e−r2

, �B9�

while 4�r2tw�r� has been calculated, for comparison, with
the same density n�r� using tw= �1 /8�n�2 /n. The effect of
interfermion interaction is very appreciable as seen from Fig.
2. This result can be expressed immediately in terms of the
probability density P�r�=�R

2�r� of the relative motion.
But again, from Eq. �5�, P�r� is the Fourier transform of

the product of f�G�exp� G2a2

4 �, so that Eq. �B1� is immediately
characterized by the density n�r� and, via Eq. �4�, its Fourier
transform f�G�. Equation �B1� evidently therefore provides a
concrete example of a major theme of the present article
�compare also the formal Euler-Lagrange Eq. �29��. Explic-
itly, for 
=2 in Eq. �B1�, the scattering factor f�G� is known
to be �5�

FIG. 2. �Color online� Comparison of correlated and
independent-particle energy densities 4�r2tg�r� �continuous curve�
given analytically in Eq. �B9� and 4�r2tw�r�, respectively, tw�r�
being the von Weizsäcker density �10�.

FIG. 3. �Color online� Comparison of different radial kinetic-
energy densities 4�r2t�r� and 4�r2tg�r� for the inverse square-law
model with 
=1. t�r� �continuous curve� is taken from Eq. �18�,
while 4�r2tg�r� is given in Eq. �B9�. The areas under the two
curves, of course, are equal, corresponding to the same total kinetic
energy. Atomic units are used; the length a being chosen as 2−1/2.
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f�G� = 2	1 −
G2a2

3
+

G4a4

60

exp�−

G2a2

2
� . �B10�

To conclude this appendix, we have compared in Fig. 3 the
two definitions of kinetic-energy density given in Eqs. �18�
and �B9�. Of course, the total kinetic energy is the same from
both equations, that is, �tg�r�dr=�t�r�dr.

APPENDIX C: EFFECT OF INTERPARTICLE
INTERACTION ON THE DIFFERENTIAL EQUATION

GENERATED BY THE EXTERNAL POTENTIAL ALONE

The present appendix retains a general confinement po-
tential energy V�r� and also an interparticle interaction
u�r12�. Then the arguments of March et al. in �7� are readily
employed to yield, with r̂ denoting the unit vector r /r,

r̂	n��r� +
2

r
n��r� −

2

r2n��r�
 + 24�E − V�r��� ��r�dr2

− 24� ��r��V�r2��dr2 + 8E� ���r��dr2

−
�V�r�

�r
� ���r��dr2 + 24� ��r����r

2��dr2

+ 8� ��r��r
2��dr2 − 4� �V�r2���r��dr2

= 32� �u��r − r2����r��dr2. �C1�

This equation separates quite generally the external potential
terms on the left from the electron-electron term on the right
and is therefore applicable to nonrelativistic He-like ions
with nuclear charge Ze. However, the ground-state energy E
now enters.
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