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The isoelectronic series of Be, Ne, and Si are investigated using a variational determination of the second-
order density matrix. A semidefinite program was developed that exploits all rotational and spin symmetries in
the atomic system. We find that the method is capable of describing the strong static electron correlations due
to the incipient degeneracy in the hydrogenic spectrum for increasing central charge. Apart from the ground-
state energy, various other properties are extracted from the variationally determined second-order density
matrix. The ionization energy is constructed using the extended Koopmans’ theorem. The natural occupations
are also studied, as well as the correlated Hartree-Fock-like single-particle energies. The exploitation of sym-
metry allows to study the basis set dependence and results are presented for correlation-consistent polarized
valence double, triple, and quadruple zeta basis sets.
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I. INTRODUCTION

The idea of a variational determination of the ground-state
energy for a nonrelativistic many-body problem based on the
second-order density matrix �2DM� has a long history �1–3�
and several highly appealing features. The energy of a sys-
tem is a known linear functional of the 2DM. N-particle
wave functions never need to be manipulated since the en-
ergy is minimized directly in terms of the 2DM. However,
the minimization is constrained because the variational
search should be done exclusively with 2DMs that can be
derived from an N-particle wave function �or an ensemble of
N-particle wave functions�. Such a 2DM is called N repre-
sentable and the complexity of the many-body problem is in
fact shifted to the characterization of this set of
N-representable 2DMs. The complete �necessary and suffi-
cient� set of conditions for N representability of a 2DM is not
known in a constructive form, but it is clear that the energy
from a minimization constrained by a set of necessary
N-representability conditions is a strict lower bound to the
exact energy. Therefore this approach is highly complemen-
tary to the usual variational procedure based on a wave-
function ansatz, which produces upper bounds. In addition,
the method is in principle exact, in the sense that as increas-
ingly accurate set of N-representability conditions are im-
posed in the minimization, the resulting energy converges to
the exact one.

These are fascinating ideas for any many-body theorist, as
it comes close to the “ultimate reduction” of an interacting
many-particle problem to solving a sequence of two-particle
problems. In practice, however, implementing the method
turns out to be very difficult and it is only in the last decade
that serious attempts have been undertaken to turn the idea
into a practical calculational scheme. The massive efforts by
Mazziotti et al. �4–6� and Nakata et al. �7,9� are particularly

notable. The main difficulty is of a technical nature: stringent
N-representability conditions require the positive semidefi-
niteness of matrix functionals of the 2DM, which turns the
variational problem into a so-called semidefinite program
�SDP�. Even applying the simplest “two-index” conditions, a
direct energy minimization using Newton-Raphson methods
requires a matrix operation scaling as M12 �where M is the
number of single-particle states� in each Newton-Raphson
step. This can be circumvented in various ways, so that only
matrix operations scaling as M6 are needed. While these are
nominally M6 methods, the number of iterations required to
reach convergence is very high and seems to rise with system
size; in practice, present implementations are probably about
100–1000 times slower than comparable methods such as
coupled-cluster calculation with single and double excita-
tions �CCSD�. Still, one has the feeling that there is potential
to turn it into a genuine M6 method and it is of interest to
investigate the properties of SDP applied to various systems.

Up to now, most applications covered electronic structure
calculations in atoms and molecules. Attention has been
given primarily to the resulting energy. In this paper, we
focus on three issues: �i� the performance of SDP in multi-
reference situations �strong static correlations�, �ii� the qual-
ity of the variationally obtained 2DM, and �iii� the depen-
dence of the results on M �the size of the basis set�. We do
this by investigating three well-known examples in elec-
tronic structure theory: the isoelectronic series of Be, Ne, and
Si. It is well known that the correlation energy for N elec-
trons in the field of a positive point charge Z has a Z depen-
dence that strongly depends on N. For an increasing central
charge Z, the Hartree-Fock spectrum tends to the hydrogenic
one, which has an “accidental” degeneracy related to a spe-
cial symmetry in the Coulomb Hamiltonian. For the four-
electron series, the incipient degeneracy of the 2p and 2s
orbitals leads to a vanishing particle-hole gap, inducing
strong correlation effects with a correlation energy propor-
tional to Z. For the ten-electron series, this does not happen
because a major shell is closed and the correlation energy*brecht.verstichel@ugent.be
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becomes flat for increasing Z. The 14-electron series again
shows degeneracy effects and in addition is a spin triplet.

In Sec. II, we provide theoretical and calculational back-
grounds on the SDP implementation that is used. �Note that
the techniques developed in this section have been used pre-
viously to study molecular dissociation �10,11�.� In particu-
lar, we pay attention to the way spin and rotational symmetry
are exploited, enabling the use of quite large �correlation-
consistent polarized valence quadruple zeta, cc-pVQZ� basis
sets. In Sec. III, the SDP results for the isolectronic series of
Be, Ne, and Si are discussed. A summary is provided in Sec.
IV. Atomic units are used throughout the paper.

II. THEORY

A. N-representability conditions

We will use second-quantized notation where a�
†�a�� cre-

ates �annihilates� an electron in a single-particle �sp� state �.
The Hamiltonian can be written as

Ĥ = �
��

t��a�
†a� +

1

4 �
����

V��;��a�
†a�

†a�a�, �1�

where t�� is the matrix element of the one-body part of the
Hamiltonian �kinetic energy plus external potential� and
V��;�� is the antisymmetrized matrix element of the Coulomb
interaction. The problem of finding the ground state of a
quantum-mechanical many-body system can be reformulated
in terms of the second-order density matrix

���;�� = ��N�a�
†a�

†a�a���N� . �2�

In principle, � is a complex Hermitian matrix, but for a
Coulomb Hamiltonian, it is sufficient to consider real-
symmetric matrices

���;�� = ���;��. �3�

In addition, � obeys the fermionic relations for antisymmetry
in the sp indices

���;�� = − ���;�� = − ���;�� = ���;��. �4�

The density matrix � can be determined variationally
through the minimization of the energy functional

E��� = Tr��H�2�� =
1

4 �
��;��

���;��H��;��
�2� , �5�

where the reduced two-particle �tp� Hamiltonian is defined as

H��;��
�2� =

1

N − 1
�t����� − t����� − t����� + t������ + V��;��.

The problem with this method is that the complete set of
conditions that the density matrix has to fulfill to be deriv-
able from a physical wave function �the so-called
N-representability conditions� is not known in a constructive
form �12�. Therefore one minimizes the energy functional
under a limited set of N-representability conditions. Three
simple conditions, known as the P, Q, and G conditions
�2,3�, are known to give quite good results. The P condition

expresses the fact that the 2DM has to be positive semidefi-
nite. The physical interpretation of the Q condition is that the
two-hole matrix, Q, has to be positive semidefinite; using
basis anticommutation relations, Q can be written as a ho-
mogeneous linear mapping, from the tp matrix space onto
itself:

Q��;�� = ��N�a�a�a�
†a�

†��N�

= ���;�� +
1

n
������� − �������Tr � − ������

+ ������ − ������ + ������. �6�

Here the particle number constraint has been used

Tr � =
N�N − 1�

2
= n ,

as well as the definition of the sp density matrix

��� =
1

N − 1�
�

���;��. �7�

The G condition demands that the particle-hole �ph� matrix
G is positive semidefinite; again, G can be written as a ho-
mogeneous linear mapping, from the tp matrix space onto
the ph matrix space

G��;�� = ��N�a�
†a�a�

†a���N� = ������ − ���;��. �8�

Recently there has been progress on improved
N-representability conditions using the positive semidefinite-
ness of higher-order density matrices, e.g., the three-
positivity conditions known as the T1 and T2 conditions
�5,8�. Also some attempts have been made to improve N
representability while remaining strictly in tp space by con-
sidering Hamiltonian dependent positivity conditions �13� or
sharp bounds on the P, Q, and G operators �14�. However, in
the present paper, we restrict ourselves to the standard P, Q,
and G conditions.

B. Inclusion of spin symmetry

1. General case

When the Hamiltonian of the system is invariant under
rotations in spin space, the eigenstates can be characterized
by their total spin 	 and spin projection 
. Explicitly intro-
ducing the electron spin, a sp state is written as
	���
�asa��, where a is the spatial orbital index and
sa= �

1
2 is the spin projection. Two sp states can couple to a

pair with total spin S=0 or S=1. The corresponding pair-
creation operator is

Bab;SM
† = �aa

†
� ab

†�M
S �9�

=�
sasb

� 1

2
sa

1

2
sb�SMaasa

† absb

† �10�

and the density matrix � in spin-coupled tp space is defined
as
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�ab;cd
SM;S�M� = ��	


N �Bab;SM
† Bcd;S�M���	


N � . �11�

The B†B operator in Eq. �11� can now be further coupled to

an object with good total spin. First one has to introduce B̃,

B̃cd;SM = �− 1�S+MBcd;S−M , �12�

which is again a good spherical tensor operator. Equation
�11� can now be rewritten as

	
�ab;cd
SM;S�M� = �− 1�S�−M��

ST

�SMS� − M��ST0�

���	

N ��Bab;S

†
� B̃cd;S��0

ST��	

N � . �13�

The density matrices on the right of Eq. �13� are classified by
ST=0,1 ,2 and provide an equivalent representation of the
2DM of the 
th member of the spin multiplet. Note that the
2DMs of different members are trivially related through the
Wigner-Eckart theorem,

��	

N ��Bab;S

†
� B̃cd;S��0

ST��	

N �

=
�− 1�	−


�ST�
�	
	 − 
�ST0�

���	
N���Bab;S

†
� B̃cd;S��

ST���	
N� , �14�

in terms of reduced matrix elements. Here, �S�=�2S+1.

2. Singlet ground state

If the ground state has 	=0 �spin singlet�, the number of
matrices involved in the minimization procedure is signifi-
cantly reduced. Obviously for a singlet ground state, the op-
erator in Eq. �13� has to be scalar, i.e., only the ST=0 part is
nonzero, and Eq. �13� reduces to

00�ab;cd
SM;S�M� = �SS��MM��ab;cd

S , �15�

where

�ab;cd
S = ��00

N �Bab;SM
† Bcd;SM��00

N � �16�

is independent of M. This shows that, for a singlet ground
state, the density matrix in a coupled tp basis is diagonal in S
and M and independent of the spin projection M. Instead of
having to work with the full density matrix, all matrix ma-
nipulations can be performed on only two diagonal blocks,
the S=0 and S=1 matrices, which are, respectively, symmet-
ric and antisymmetric in the indices related to the spatial
orbitals.

We now reformulate the minimization problem in the
spin-coupled representation. The Q matrix in the coupled
representation is similarly defined as

Qab;cd
S = ��00

N �Bab;SMBcd;SM
† ��00

N � . �17�

It is clear that the Q matrix has an identical block-diagonal
structure as �. After some recoupling, one can write the Q
mapping, from coupled tp space onto coupled tp space, as

Qab;cd
S = �ab;cd

S +
1

n
��ac�bd + �− 1�S�ad�bc�Tr �

− �ac�bd − �− 1�S�bc�ad − �bd�ac − �− 1�S�ad�bc,

where the sp matrix �,

�ac = �sasc
��00

N �aasa

† acsa
��00

N � �18�

=
1

2

1

N − 1�
S

�S�2�
l

�al;cl
S �19�

and the trace

Tr � =
1

2�
S

�S�2�
ab

�ab;ab
S �20�

can be expressed in terms of the coupled �S.
The G matrix is a bit more involved. The coupled ph

creation operator reads

Aab;SM
† = �aa

†
� ãb�M

S

= �
sasb

�− 1�1/2−sb� 1

2
sa

1

2
− sb�SMaasa

† absb. �21�

The G matrix in coupled ph space can now be written as

Gab;cd
S = ��00

N �Aab;SM
† Acd;SM��00

N � . �22�

Again, one can prove that this matrix has the same block
structure as the � and Q matrices. After some angular-
momentum recoupling, we get the expression for the G map
in the coupled representation

Gab;cd
S = �bd�ac − �

S�

�S��2�
1

2

1

2
S

1

2

1

2
S���ad;cb

S� . �23�

3. Nonsinglet states

For higher-spin multiplets, the same block decomposition
is possible, provided a spin-averaged ensemble is considered.
The density matrix for such an ensemble is defined in spin-
coupled representation as

	�ab;cd
SS�;M =

1

2	 + 1�



��	

N �Bab;SM

† Bcd;S�M��	

N � . �24�

Note that the minimal energy can be reached for such an
ensemble, since all members of the multiplet are degenerate.
Performing the same manipulation as leading to Eq. �13� and
using the Wigner-Eckart theorem as in Eq. �14�, one obtains

	�ab;cd
SS�;M = �




�− 1�S�−M

�	�2 �
ST

�SMS� − M�ST0�
�− 1�	−


�ST�

��	
	 − 
�ST0���	
N���Bab;S

†
� B̃cd;S��

ST���	
N� .

�25�
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Since �−1�	−
 / �	�= �	
	−
 �00�, one can use orthogonal-
ity of the Clebsch-Gordan coefficients to work out the sum
over 
 in Eq. �25�. The result

	�ab;cd
SS�;M =

�SS�

�S��	�
��	

N���Bab;S
†

� B̃cd;S�0���	
N� �26�

implies that the ensemble 2DM is again block diagonal in
spin and the same formulas can be used as for the singlet
case.

C. Inclusion of rotational symmetry

In atomic systems, the rotational symmetry of the Hamil-
tonian further reduces the dimension of the blocks involved
in the density matrix. In exactly the same way as for spin,
one can show that the density matrix of an ensemble, when
averaged over the third component of angular momentum, is
diagonal in the two-particle angular momentum L and its z
component ML and completely independent of the value of
ML. What is more, for atomic systems, there is also the parity
�= �1� of the two-particle states. In the end, one gets a
density matrix that is composed out of blocks with fixed
values for LS, enabling one to solve the variational problem
in large basis sets. The sp basis for systems with rotational
and spin symmetry is written as �amasa�, where a is short-
hand for the radial basis state nala. The tp density matrix in
spin-and-angular-momentum-coupled representation is de-
fined as

�ab;cd
�LS� = ��N�Bab;LS

† Bcd;LS��N� , �27�

where

Bab;LS
† = �aa

†
� ab

†�MLMS

LS

= �
mamb

�
sasb

�lamalbmb�LML�

�� 1

2
sa

1

2
sb�SMSanalamasa

† anblbmbsb

† . �28�

In an analogous way as for spin coupling, the spin-and-
angular-momentum-coupled Q matrix is defined as

Qab;cd
�LS� = ��N�Bab;LSBcd;LS

† ��N� , �29�

out of which the coupled Q map can be derived

Qab;cd
�LS� = �ab;cd

�LS� +
Tr �

n
��ac�bd + �− 1�L+S+lc+ld�ad�bc�

− �bd�lalc
�nanc

�la� − �ac�lbld
�nbnd

�lb� , �30�

with the sp density matrix defined as

�nanc

�la� =
1

2

1

2la + 1

1

N − 1 �
�LS�

�L�2�S�2�
nblb

�nalanblb;nclanblb
�LS� .

�31�

The G matrix is defined as

Gab;cd
�LS� = ��N��aa

†
� ãb��LS���ac

†
� ãd��LS��†��N� , �32�

where again ã is a spherical tensor operator defined as

ãbmbsb
= �− 1�lb+mb+1/2+sbab−mb−sb

. �33�

The spin-and-angular-momentum-coupled G map from tp
space on ph space becomes

Gab;cd
�LS� = �bd�lalc

�nanc

�la� − �
�LS��

�S��2�L��2�ld lc L

lb la L�
�

��
1

2

1

2
S

1

2

1

2
S���ad;cb

�LS��. �34�

D. Energy optimization with a semidefinite program

1. Interior point method

The variational problem for the 2DM can be formulated
as a so-called semidefinite program �15�, a constrained opti-
mization program where it is demanded that certain matrices,
which are functions of the variables being optimized, remain
positive semidefinite. In our case, there is a convex subspace
of the matrix space, which is called the feasible region,
where �, Q���, and G��� are positive semidefinite. In �
space, the direction of energy decrease is given by �−H�2��
�see Eq. �5��. If the energy is to be minimized, the objective
is to go as far as possible in this direction, without leaving
the feasible region. The optimized density matrix is on the
edge of the feasible region. Computationally, this problem is
solved with an interior point method by optimizing the fol-
lowing cost function:

���,t� = Tr �H�2� − t ln det P��� + C , �35�

with

P��� = �� 0 0

0 Q��� 0

0 0 G���
� . �36�

The constant C has no influence on the solution but is added
here in order to take into account the possibility that the
matrices have certain explicit zero eigenvalues connected
with imposing spin constraints �see the discussion following
Eq. �50�; in this case, C can be considered an infinite con-
stant�. Starting from a large value of t �e.g., t=1�, the cost
function is minimized and the resulting density matrix is
used as a seed vector for the next minimization program with
a smaller value of t. This procedure continues until conver-
gence is reached for t→0, when the density matrix is at the
edge of the feasible region.

2. Implementation

In addition to the positive semidefinite constraints, there
are a number of linear constraints which the density matrix
has to fulfill �e.g., particle number�. These conditions are
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imposed by direct substitution. Suppose there are a number
of linear constraints of the form

Tr �K�i� = k�i�. �37�

The way to impose these conditions is to limit the variations
to the subspace orthogonal to the K�i�’s. Suppose the set of
symmetric tp matrices 	f i� is an orthogonal basis of the sub-
space

Tr f if j = �ij Tr f iK�j� = 0. �38�

The tp density matrix can be expanded in the basis

� = �
i

�i f
i + C , �39�

where C is a constant matrix obeying the inhomogeneous
conditions

Tr CK�i� = k�i�. �40�

For the minimization of the cost function at a certain value of
t, Newton’s method is used. At a given point �0 in matrix
space, the gradient of the cost function is

��

��i
= Tr f iH�2� − t�Tr f i	�0

−1 + Q�Q��0�−1� + G�G��0�−1��� .

�41�

Using the Hermiticity of the Q and G mappings
�e.g. Tr Q���A=Tr Q�A���, the gradient in matrix form
reads

�� = �
i

��

��i
f i

= P̂�H�2� − t	�0
−1 + Q�Q��0�−1� + ÂG�G��0�−1��� ,

�42�

where P̂ is the operator that projects onto the space spanned

by the f i’s and Â is the antisymmetrizer that projects ph
space on tp space. The Hessian at �0 can be written as

Hij =
�2�

��i � � j

= t	Tr�f i�0
−1f j�0

−1� + Tr�Q�f i�Q��0�−1Q�f j�Q��0�−1�

+ Tr�G�f i�G��0�−1G�f j�G��0�−1�� . �43�

In Newton’s method, the search direction � is found by solv-
ing the linear system

�
j

�2�

��i � � j
� j = −

��

��i
. �44�

This system is solved using the linear conjugate gradient
method �16�. In this method, only one matrix-vector multi-
plication is needed per iteration. The special structure of the
Hessian can be exploited to construct a fast matrix-vector
multiplication. The action of the Hessian on a tp matrix � is

�
j

Hij� j = t	Tr�f i�0
−1��0

−1� + Tr�Q�f i�Q��0�−1Q���Q��0�−1�

+ Tr�G�f i�G��0�−1G���G��0�−1�� , �45�

which can be written in matrix form as

H� = tP̂	�0
−1��0

−1 + Q�Q��0�−1Q���Q��0�−1�

+ ÂG�G��0�−1G���G��0�−1�� . �46�

It is clear that each conjugate gradient step can be calculated
using only manipulations in the tp and ph matrix spaces.

After the convergence of the conjugate gradient cycle, the
direction of the Newton-Raphson step � is known. A line
search in this direction is then performed in order to obtain
the minimum of the cost function. Note that one always stays
in the feasible region since the cost function goes to +� at
the edge.

3. Imposing the spin constraints for �=0

The spin-coupled form of the 	̂z operator can be written
as

	̂z =
1
�2

�
a

�aa
†

� ãa�0
1. �47�

This operator lives in ph space and we can force the vector

		̂z�ab
S =

1
�2

�S1�ab �48�

to be an eigenvector of G��� with eigenvalue zero. In doing
this, we automatically impose the same constraints on G���
for 	x and 	y due to the threefold degeneracy of the S=1
block of the 2DM. It can be easily seen that in this case, the
expectation value of the total spin is zero

��N�	̂2��N� = ��N�	̂x
2 + 	̂y

2 + 	̂z
2��N� = 0. �49�

So the condition to be imposed on the density matrix be-
comes

�
S

�S�2�1

2

1

N − 1
− �− 1�S�

1

2

1

2
1

1

2

1

2
S���

b

�ab;cb
S = 0.

�50�

For the projection of a tp density matrix on a spin singlet
state, there are as many constraint matrices as there are sp
matrix dimensions. Because of the zero eigenvalues in the G
matrix, the projected density matrix is on the edge of the
feasible region during the whole of the minimization process
and as a result, the cost function is infinity. This can be
circumvented by taking the pseudoinverse of the G matrix,
which excludes the 	z state from the inversion process. This
will not alter the result of the program because the contribu-
tion of this state to the cost function is constant.
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4. Imposing the spin constraints for �Å0

For higher-spin multiplets, we use the spin-averaged en-
semble �see Sec. II B 3�, in which the 2DM has the same
simple structure as for the singlet case. The expectation value

of the 	̂2 spin operator is forced to be exact using the linear
constraint

Tr �		̂2� = 	�	 + 1� , �51�

where 		̂2� is the tp matrix representation of the 	̂2 operator

		̂2�ab;cd
S = �3

2

2 − N

N − 1
+ S�S + 1����ac�bd + �− 1�S�ad�bc� .

�52�

There is only one linear constraint for nonzero spin, in con-
trast to the numerous constraints for the projection onto a
singlet state. It can therefore be expected that the spin con-
straints �i.e., the constraints on the 2DM ensuring that it is
derivable from a wave function with good total spin� are less
accurate than those for the singlet case. It is, in fact, known
how to cure this situation �17� by considering not the spin-
averaged ensemble but rather the 2DM derived from the
highest-weight member �
=	� of the multiplet. Similar to
the spin singlet projection, one can then impose the condition

that, since the spin-raising ladder operator 	̂+ destroys the
wave function, the G��� matrix must have a zero eigenvalue

�with an eigenvector in ph space corresponding to the 	̂+
operator�. In such a highest-weight scheme, the spin restric-
tions for the 	�0 case are put on the same footing as for the
singlet case; in fact, the highest-weight and the spin-
averaged ensemble schemes are equivalent for the singlet
case. However, the highest-weight scheme for 	�0 requires
one to keep track of more matrices and is computationally
more demanding by about a factor of 10. We therefore used
the ensemble scheme even for the nonsinglets �i.e., the Si
atom�, though we checked some cases with the highest-
weight method for the spin.

5. Spin and angular-momentum projection

When angular momentum is taken into account, every-
thing becomes a bit more complicated, but the principles are
the same as in the last paragraph. It can be shown that in a
spin-and-angular-momentum-coupled basis, the z projections
of 	 and � become

	z =
1
�2

�
nl

�l��anl
†

� ãnl��0+1�, �53�

�z =�2

3�
nl

�l�l̂�anl
†

� ãnl��1+0�. �54�

Following the same argument as before, it can be imposed
that the density matrix is derivable from an eigenstate with
zero eigenvalue of, respectively, the 	 and � operators when

�
c

�lc�G���ab;cc
�0+1� = 0, �55�

�
c

�lc�l̂cG���ab;cc
�1+0� = 0. �56�

This can be translated into linear constraints on the 2DM,
which are given in the Appendix. The projection on spin and
angular momentum not equal to zero is again a less strict
condition. The expectation values of � and 	 are projected
on the desired values

Tr �		̂2� = 	�	 + 1� , �57�

Tr �	�̂2� = ��� + 1� , �58�

where the 		̂2� and 	�̂2� are the tp matrix representations of

the 	2̂ and �2̂ operators, respectively,

		̂2�ab;cd
�LS� = �3

2

2 − N

N − 1
+ Ŝ2���ac�bd + �− 1�L+S+la+lb�ad�bc� ,

�59�

	�̂2�ab;cd
�LS� = �2 − N

N − 1
�l̂a

2 + l̂b
2� + L̂2�

���ac�bd + �− 1�L+S+la+lb�ad�bc� . �60�

III. RESULTS AND DISCUSSION

Using the method explained in the previous section, the
isoelectronic series of Be, Ne, and Si were calculated from
the neutral atom up to a central charge Z=28. Beryllium and
neon are both elements with a singlet ground state. In the
silicon ground state, the total spin and angular momentum
are both one, which allows us to assess the quality of the spin
and angular-momentum constraints for 	 ,��0. In order to
study the basis set dependence, the properties of the ground
state of the Be and Ne series were calculated in a cc-pVDZ,
a cc-pVTZ, and a cc-pVQZ basis set �18�. The Si series was
only calculated in a cc-pVDZ and a cc-pVTZ basis set �19�.
We used spherical harmonic �and not Cartesian� basis func-
tions throughout. With the density matrices obtained from
the SDP, several properties were studied. These are com-
pared to estimates for nonrelativistic energies based on ex-
perimental data �20,21� and to the results of coupled cluster
�CCSD� calculations, and in some cases, with full-
configuration-interaction �CI� calculations.

The basis functions used were those of the neutral atom,
but with a rescaling r→rZ /N for the positive ions with
Z�N. The CCSD and full-CI results were obtained using the
MOLPRO program �22�.

A. Ground-state energy

The ground-state energies, calculated with various basis
sets and methods, are shown in Tables I–III for the Be, Ne,
and Si isoelectronic series, respectively. Even in the best case
�Be in cc-pVQZ�, the calculated energies are at least 20
mhartree removed from the experimental estimate in �20,21�.
This is due to the difficulty of describing the interelectronic
cusp in the exact wave function using finite sp basis sets.
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TABLE I. The ground-state energies �in hartree� of the Be series in the cc-pV�DTQ�Z basis sets using different methods.

Z

cc-pVDZ cc-pVTZ cc-pVQZ basis

Expt.SDP HF CCSD Full CI SDP HF CCSD Full CI SDP HF CCSD Full CI

4 −14.617473 −14.572338 −14.617369 −14.61741 −14.625431 −14.572873 −14.623559 −14.62381 −14.642807 −14.572968 −14.639589 −14.640124 −14.66736

5 −24.275712 −24.216056 −24.27566 −24.275684 −24.300695 −24.234557 −24.299207 −24.29943 −24.321254 −24.236385 −24.317643 −24.31822 −24.34892

6 −36.387458 −36.316267 −36.387421 −36.387439 −36.473162 −36.394215 −36.471944 −36.47214 −36.500934 −36.40257 −36.497178 −36.497761 −36.53493

7 −50.940925 −50.860695 −50.940896 −50.940909 −51.137349 −51.045734 −51.136311 −51.136486 −51.177145 −51.065945 −51.173335 −51.173918 −51.22284

8 −67.931909 −67.844323 −67.931884 −67.931896 −68.290965 −68.186797 −68.290046 −68.290206 −68.347448 −68.22364 −68.343621 −68.344203 −68.41171

9 −87.358767 −87.265015 −87.358746 −87.358755 −87.932793 −87.816285 −87.931958 −87.932107 −88.010503 −87.87405 −88.00667 −88.007254 −88.10113

10 −109.22078 −109.12175 −109.22076 −109.22077 −110.06209 −109.93353 −110.06132 −110.06146 −110.16555 −110.01625 −110.16171 −110.1623 −110.29089

11 −133.51761 −133.414 −133.51759 −133.5176 −134.67837 −134.53811 −134.67764 −134.67778 −134.81213 −134.64967 −134.8083 −134.80889 −134.98088

12 −160.24908 −160.14145 −160.24906 −160.24907 −161.7813 −161.62969 −161.78061 −161.78074 −161.95 −161.77398 −161.94616 −161.94677 −162.17102

13 −189.41511 −189.30392 −189.41509 −189.4151 −191.37066 −191.20808 −191.37 −191.37011 −191.57899 −191.38895 −191.57514 −191.57575 −191.86127

14 −221.01564 −220.90129 −221.01563 −221.01564 −223.44627 −223.27309 −223.44563 −223.44574 −223.699 −223.49443 −223.69514 −223.69577 −224.0516

15 −255.05067 −254.93347 −255.05066 −255.05066 −258.00801 −257.82461 −258.0074 −258.00751 −258.30998 −258.09031 −258.3061 −258.30675 −258.742

16 −291.52018 −291.4004 −291.52017 −291.52017 −295.05582 −294.86255 −295.05522 −295.05533 −295.4119 −295.17653 −295.40801 −295.40867 −295.93244

17 −330.42417 −330.30206 −330.42416 −330.42416 −334.58961 −334.38682 −334.58904 −334.58913 −335.00476 −334.75303 −335.00085 −335.00153 −335.62293

18 −371.76264 −371.63841 −371.76263 −371.76263 −376.60935 −376.39737 −376.60879 −376.60888 −377.08857 −376.81977 −377.08463 −377.08533 −377.81344

19 −415.5356 −415.40942 −415.53559 −415.53559 −421.115 −420.89414 −421.11445 −421.11454 −421.66334 −421.37673 −421.65938 −421.66011 −422.50398

20 −461.74304 −461.61508 −461.74303 −461.74304 −468.10654 −467.87712 −468.106 −468.10609 −468.72912 −468.42388 −468.72513 −468.72588 −469.69455

21 −510.38498 −510.25537 −510.38498 −510.38498 −517.58394 −517.34625 −517.58342 −517.5835 −518.28593 −517.96121 −518.28191 −518.28269 −519.38513

22 −561.46143 −561.3303 −561.46142 −561.46142 −569.5472 −569.30152 −569.54669 −569.54677 −570.33383 −569.9887 −570.32977 −570.33058 −571.57572

23 −614.97237 −614.83983 −614.97237 −614.97237 −623.99631 −623.7429 −623.99581 −623.99589 −624.87286 −624.50634 −624.86877 −624.86961 −626.26633

24 −670.91783 −670.78398 −670.91783 −670.91783 −680.93126 −680.67038 −680.93077 −680.93084 −681.90309 −681.51414 −681.89895 −681.89983 −683.45695

25 −729.29781 −729.16274 −729.2978 −729.2978 −740.35204 −740.08394 −740.35156 −740.35163 −741.42459 −741.01206 −741.4204 −741.42132 −743.14758

26 −790.1123 −789.97609 −790.11229 −790.1123 −802.25866 −801.98356 −802.25818 −802.25825 −803.43742 −803.00013 −803.43318 −803.43414 −805.33822

27 −853.36132 −853.22404 −853.36131 −853.36131 −866.65111 −866.36925 −866.65064 −866.65071 −867.94167 −867.47832 −867.93738 −867.93838 −870.02886

28 −919.04486 −918.90659 −919.04486 −919.04486 −933.5294 −933.24098 −933.52894 −933.529 −934.93744 −934.44663 −934.93309 −934.93413 −937.21951
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TABLE II. The ground-state energies �in hartree� of the Ne series in the cc-pV�DTQ�Z basis sets using different methods.

Z

cc-pVDZ cc-pVTZ cc-pVQZ basis

Expt.SDP HF CCSD Full CI SDP HF CCSD SDP HF CCSD

10 −128.70843 −128.48878 −128.67964 −128.68088 −128.86088 −128.53186 −128.81081 −128.92686 −128.54347 −128.87106 −128.9376

11 −161.80049 −161.59591 −161.77283 −161.77411 −161.97703 −161.65496 −161.92829 −162.05038 −161.67155 −161.99595 −162.0659

12 −198.88784 −198.70208 −198.86199 −198.86309 −199.11372 −198.79861 −199.06598 −199.19913 −198.82303 −199.14502 −199.2204

13 −239.97194 −239.80393 −239.94802 −239.94883 −240.26728 −239.9582 −240.22028 −240.36392 −239.98965 −240.30977 −240.3914

14 −285.04223 −284.88894 −285.02004 −285.02061 −285.43166 −285.12786 −285.38525 −285.53886 −285.16605 −285.48453 −285.5738

15 −334.08381 −333.94195 −334.06299 −334.06338 −334.6021 −334.30313 −334.55624 −334.72067 −334.3492 −334.66615 −334.7642

16 −387.08194 −386.94882 −387.06219 −387.06246 −387.77553 −387.48107 −387.73017 −387.90757 −387.53731 −387.85281 −387.9608

17 −444.02427 −443.89781 −444.00531 −444.00551 −444.95002 −444.6598 −444.9051 −445.09826 −444.72921 −445.04331 −445.1622

18 −504.90101 −504.77972 −504.88268 −504.88282 −506.12426 −505.83808 −506.07977 −506.29194 −505.92402 −506.23681 −506.3673

19 −569.70474 −569.58754 −569.68689 −569.68701 −571.29734 −571.01502 −571.25329 −571.48788 −571.12105 −571.43261 −571.5754

20 −638.42981 −638.31595 −638.41239 −638.41248 −640.46864 −640.18995 −640.42496 −640.68561 −640.31973 −640.63013 −640.7891

21 −711.07205 −710.96091 −711.05497 −711.05505 −713.63756 −713.36231 −713.59424 −713.88444 −713.51958 −713.8289 −713.9988

22 −787.6282 −787.51937 −787.61143 −787.6115 −790.80365 −790.53161 −790.76063 −791.08414 −790.72018 −791.02848 −791.2132

23 −868.09589 −867.98895 −868.07932 −868.07938 −871.96637 −871.69743 −871.9237 −872.28418 −871.92117 −872.22853 −872.4291

24 −952.47304 −952.36781 −952.45674 −952.45679 −957.12544 −956.85936 −957.08305 −957.48456 −957.12224 −957.42872 −957.6463

25 −1040.7584 −1040.6545 −1040.7422 −1040.7422 −1046.2804 −1046.0171 −1046.2383 −1046.6846 −1046.3231 −1046.6288 −1046.8646

26 −1132.9505 −1132.8479 −1132.9345 −1132.9345 −1139.431 −1139.1702 −1139.3892 −1139.8845 −1139.5236 −1139.8285 −1140.0838

27 −1229.0485 −1228.9471 −1229.0327 −1229.0328 −1236.5769 −1236.3184 −1236.5353 −1237.0837 −1236.7235 −1237.0277 −1237.3039

28 −1329.0518 −1328.9514 −1329.0361 −1329.0361 −1337.7178 −1337.4616 −1337.6764 −1338.2821 −1337.9226 −1338.2261 −1338.5247
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More relevant is the difference between the SDP �and
CCSD� energies as compared to full-CI in the same basis set.
This is shown in Fig. 1 for the case of the Be series. Note
that the CCSD energy is always above, the SDP energy be-
low, the full-CI energy. For SDP, this simply reflects the
nature of the variational problem. For the smallest cc-pVDZ
basis set, SDP and CCSD have about the same level of ac-
curacy. The difference with full CI grows as the basis set size
increases for both CCSD and SDP, but this effect is worse for
the SDP.

As far as the Z dependence is concerned, the trend differs
markedly for the cc-pV�D,T�Z and for the cc-pVQZ basis
set. As Z increases, there is a growing accuracy for the
smaller basis sets in both CCSD and SDP, whereas for cc-
pVQZ the accuracy decreases for CCSD and becomes con-
stant for SDP. The reason for this difference is not clear,
though it is probably connected to the incipient degeneracy
of the 2s and 2p states and the quality of its description in
the various basis sets, as is more fully described in the next
section. It should be noted that the SDP results are overall

TABLE III. The ground-state energies �in hartree� of the Si series in the cc-pV�DT�Z basis sets using different methods. The results under
SDP were calculated using the ensemble averaged spin projection. Those under SDP� were calculated using the maximal weight method.

Z

cc-pVDZ cc-pVTZ

Expt.SDP SDP� HF CCSD SDP HF CCSD

14 −288.93962 −288.92921 −288.84644 −288.91895 −289.02515 −288.85215 −288.9835 −289.359

15 −340.36765 −340.27338 −340.34709 −340.50472 −340.33467 −340.46205 −340.872

16 −396.10801 −396.01679 −396.08749 −396.43974 −396.27384 −396.39711 −396.869

17 −456.09635 −456.00926 −456.0759 −456.80372 −456.64236 −456.7617 −457.337

18 −520.29362 −520.27860 −520.21067 −520.27348 −521.58 −521.42294 −521.53858 −522.269

19 −588.68067 −588.60149 −588.66097 −590.75683 −590.60373 −590.7159 −591.66

20 −661.24791 −661.17202 −661.22871 −664.32396 −664.17433 −664.28328 −665.507

21 −737.99017 −737.91714 −737.97148 −742.2714 −742.12467 −742.23072 −743.808

22 −818.90446 −818.88808 −818.83388 −818.88621 −824.58949 −824.44532 −824.54882 −826.559

23 −903.98889 −903.92042 −903.97105 −911.27007 −911.12778 −911.22912 −913.762

24 −993.24222 −993.1756 −993.22475 −1002.3054 −1002.1648 −1002.2643 −1005.413

25 −1086.6636 −1086.5986 −1086.6465 −1097.6895 −1097.5501 −1097.6482 −1101.513

26 −1184.2525 −1184.2381 −1184.1889 −1184.2357 −1197.4173 −1197.2789 −1197.3759 −1202.061

27 −1286.0084 −1285.9461 −1285.9919 −1301.4847 −1301.347 −1301.4431 −1307.057

28 −1391.9311 −1391.8699 −1391.9147 −1409.8882 −1409.7512 −1409.8466 −1416.5

FIG. 1. Difference between
approximate �CCSD or SDP� and
full-CI energies for the Be series
in all three basis sets.
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very accurate, even in the worst case �Z=28, cc-pVQZ�, dif-
fering less than 3 mhartree from full CI.

For the Ne series, full-CI calculations were only possible
in the cc-pVDZ basis. From the results collected in Table II,
it is seen that the SDP accuracy is significantly less than for
Be, the largest deviation �28 mhartree� appearing for the neu-
tral atom. This is actually consistent with PQG-condition
SDP results for molecules, so it is likely that because of the
small number of electrons, the Be results are not representa-
tive. This is also borne out by the Si results in Table III,
showing a maximal deviation between CCSD and SDP ener-
gies of 21 mhartree for the neutral atom.

B. Correlation energy

The correlation energies were calculated by taking the
difference of the SDP and CCSD energies with the Hartree-
Fock results in the same basis set. The results labeled “ex-
perimental” are the estimates in �21�.

1. Beryllium series

In Fig. 2, the SDP correlation energy is shown as a func-
tion of central charge Z for the different basis sets. Note that
on the plot, the difference between the CCSD and full-CI
correlation energies would not be visible. The experimental
curve is linear in Z, as a direct consequence of the near
degeneracy of the ground state �21�. One can calculate a
perturbative series expansion of the exact and Hartree-Fock
energy in powers of 1

Z ; the corresponding series for the cor-
relation energy starts with a constant if the hydrogenic
ground state is nondegenerate or with a linear term in Z in
case of degeneracy. The SDP correlation energy does not
follow this trend: it goes linear in the beginning, but becomes
concave in the cc-pVDZ and cc-pVTZ basis or convex in the
cc-pVQZ basis. This failure, however, is not related to the

SDP method as the trend is the same in full CI. It simply
reflects the fact that the incipient degeneracy is not well de-
scribed in these basis sets. This can also be seen by calculat-
ing the Z=1 hydrogen spectrum �corresponding to the
Z→� situation, when the electron-electron interaction can
be neglected� in the basis sets: the 2s and 2p energies are not
degenerate, but differ by 5.8 mhartree �cc-pVDZ�, 2.0 mhar-
tree �cc-pVTZ�, and −2.3 mhartree �cc-pVQZ�. Note that for
CC-pVQZ, the 2p energy actually drops below the 2s energy,
explaining the different �convex or concave� behavior of the
curves. To make sure, we also performed calculations in the
cc-pVDZ basis after rescaling �r→�r� it in such a way that
the hydrogenic 2s-2p degeneracy is exact. In this basis, the
SDP correlation energy �also shown in Fig. 2� indeed has the
correct linear behavior. It is clear from the above discussion
that SDP is indeed capable of providing accurate correlation
energies in the presence of near degeneracies, when other
many-body techniques �such as density-functional theory or
second-order Moller-Plesset theory, MP2� can fail.

2. Neon series

In Fig. 3, the correlation energy is shown for all three
basis sets as a function of Z. Because Ne is a closed-shell
atom, there is no near degeneracy for large Z values and the
exact correlation should be asymptotically constant in Z, as
is indeed visible in the experimental curve. Due to basis set
effects, this constant behavior is imperfectly realized, but the
SDP follows the same trends as CCSD for all basis sets. Note
that the approximation to a constant behavior at large Z is
best for the largest basis set. The decrease in correlation en-
ergy for increasing Z, in contrast to the slight rise in the
experimental correlation energy, can be attributed to the fact
that the basis sets were optimized for the neutral atom. While
the rescaling procedure fixes the nuclear cusp, the resulting

FIG. 2. The SDP correlation
energy for the Be series in all
three basis sets and in a rescaled
basis set that exhibits hydrogen-
like behavior �degeneracy be-
tween the 2s and 2p levels�. For
comparison, the CCSD and ex-
perimental values are also shown.
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basis set is obviously far from optimal for highly charged
ions.

3. Silicon series

For silicon, only the cc-pVDZ and cc-pVTZ basis have
been used �Fig. 4�. As was the case for Be, the theoretical
linear rise with Z is thwarted by imperfections in the basis
sets. However the SDP correlation energy closely tracks the
CCSD one. The Si ground state is a spin triplet. The results
in Table III have been obtained using the spin-averaged en-
semble as explained in Sec. II. In order to assess the quality

of the spin constraints, we have also performed calculations
using the highest-weight method for Z=14, 18, 22, and 26
with the cc-pVDZ basis set. The resulting energies are also
reported in Table III. The energy differences between the
approaches are sizeable, with differences as large as 20
mhartree, reflecting the weaker nature of the spin constraints
imposed in the spin-averaged scheme. However, the discrep-
ancy between the two approaches is stable for increasing Z.

C. Ionization energies

Other properties can be used to gauge the quality of the
2DM, e.g., the ionization energies of the different atomic

FIG. 3. The SDP correlation
energy for the Ne series in all
three basis sets. For comparison,
the CCSD and experimental val-
ues are also shown.

FIG. 4. The SDP correlation
energy for the Si series in the cc-
pVDZ and cc-pVTZ basis sets.
For comparison, the CCSD and
experimental values are also
shown.
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ions, which can be easily calculated using the extended
Koopmans’ theorem �EKT� �23–25�. The EKT provides a
single-particle picture of the ground state, with sp energies
and spectroscopic factors. The ionization energies are shown
in Fig. 5; the agreement between calculated and experimental
values is very good, pointing to the realistic nature of the
variationally obtained 2DM. The good agreement with ex-
periment reflects the fact that the error in the description of
the interelectronic cusp largely cancels since the ionization
energy is an energy difference. For Be and Ne, it is clear that
the basis set limit is nearly reached at the cc-pVTZ–cc-
pVQZ level. Even for Si, the experimental ionization energy
is closely reproduced.

D. Correlated Hartree-Fock-like single-particle energies

A different sp picture is given by the correlated Hartree-
Fock-like sp orbitals and energies. These are constructed by
diagonalizing the sp Hamiltonian

h�� = �T + U��� + �
��

V��;�����, �61�

where the first-order density matrix �1DM� ��� is constructed
from the variationally determined 2DM. As an example of
this method, the sp energies for the isoelectronic series of Be
in a cc-pVDZ basis are shown in Fig. 6. Notice that when Z
increases, the energy levels approach those of the hydrogen

FIG. 5. The ionization energy
scaled with 1

Z2 for the Be, Ne, and
Si series in the different basis sets
compared to experimental results.

FIG. 6. The single-particle lev-
els obtained in a correlated
Hartree-Fock-like scheme �see
text� for the Be series in a cc-
pVDZ basis set.
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atom. Similar behavior is present for the other basis sets and
for the Ne and Si isoelectronic series.

E. Natural occupations

The eigenvalues of the sp density matrix �i.e., the natural
orbital occupation numbers� provide insight into the extent
of correlation. The occupation numbers from SDP are always
very close to those from full CI, differing by at most 0.005.
Of particular interest are the occupations of the quasidegen-
erate 2s and 2p orbitals in Be. These are shown in Fig. 7.
The sum of the 2s and 2p occupations is nearly 1 and in-
creasingly so for large Z. This implies that only the 2s and
2p are partially occupied in the large-Z limit. The shapes of
the curves reflect the aforementioned imperfections in the
basis sets, with the 2s below the 2p for cc-pVDZ and cc-
pVTZ and above the 2p for cc-pVQZ.

IV. SUMMARY

Variational methods based on the second-order density
matrix seem to hold great promise as an ab initio many-body
technique, but there is room for improvement, especially as
regards computational efficiency �improved algorithms� and
accuracy �better characterization of the N-representable set�.
We investigated the isoelectronic series of Be, Ne, and Si
using the P, Q, and G N-representability conditions. A sig-
nificant speedup is obtained when spin and rotational sym-
metry is taken into account. This allowed us to investigate
the properties of the SDP method with increasing basis set
size �cc-pV�D,T,Q�Z�. The energies so obtained are reason-
ably accurate, but the accuracy seems to diminish with in-
creasing basis set size. The SDP method is capable of de-
scribing the strong static electron correlations appearing in
the beryllium and silicon series due to the incipient degen-
eracy in the hydrogenic spectrum for increasing central

charge. The ionization energies, constructed using the ex-
tended Koopmans’ theorem, are surprisingly good. Also the
natural occupations are reproduced very well when com-
pared to full-CI results in the same basis sets. Hence, the
physical content of the variationally determined second-
order density matrix seems to be reliable.

Apart from a study of the potential-energy surface for
some diatomic 14-electron molecules �11�, we intend to in-
vestigate fermionic and bosonic Hubbard models on one-
and two-dimensional lattices. Further work is also needed to
ameliorate the computational cost of the method and to in-
crease the accuracy without introducing three-index condi-
tions.
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APPENDIX: CONSTRAINT MATRICES

The linear constraints for imposing the spin singlet con-
dition are given by

∀k � l : Tr � �kl�K = 0, �A1�

where the constraint matrices �kl�K have the following
form

FIG. 7. The natural occupation
of the 2p orbital and one minus
the occupation of 2s orbital for the
Be series in all three basis sets.
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The constraints for spin and angular-momentum singlet pro-
jections are

∀k � l : Tr � J
�kl�K = 0, �A4�

where the constraint matrices �kl�K have the following form:

J
�kl�Kab;cd

�LS� = J
�kl�fab;cd

�LS� + �− 1�L+S+la+lbJ
�kl�fba;cd

LS + J
�kl�fba;dc

�LS�

+ �− 1�S+L+la+lbJ
�kl�fab;dc

�LS� + J
�kl�fcd;ab

LS

+ �− 1�S+L+la+lbJ
�kl�fdc;ab

LS + J
�kl�fdc;ba

LS

+ �− 1�L+S+la+lbJ
�kl�fcd;ba

LS , �A5�

where J can mean either 	 or � and
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