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We study the influence of optical pumping on Doppler-broadened alkali-metal-atom D line spectra by
solving the time-dependent density matrix for an open two-level system. The time-dependent absorption is
averaged over the distribution of interaction times obtained from the three-dimensional beam geometry and
atomic velocity distribution and over the longitudinal velocity distribution. The optical pumping is significant
at much lower intensities than saturation and depends strongly on the intensity, beam radius, vapor cell length,
and spontaneous-decay branching ratio. The result is in agreement with our earlier steady-state solution for a
wide range of parameters and predicts two interesting line-shape features.
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I. INTRODUCTION

Alkali-metal atoms have long been studied in atomic and
optical physics due to several beneficial properties: with a
single valence electron they have a relatively simple level
structure, the wavelengths of their D lines lie in the visible
and near-infrared, where diode lasers are readily available,
and their relatively high vapor pressures allow significant
absorption at room temperature as well as simple generation
of atomic beams. Applications span from technical to scien-
tific: frequency stabilization of lasers �1�, atomic frequency
standards and atomic clocks �2�, atomic magnetometers �3�,
laser cooling �4–6�, Bose-Einstein condensation �7,8�, coher-
ent population trapping �9�, and controlling the propagation
of light �10�. All of these applications require detailed
knowledge of the atomic spectra and their dependence on the
experimental parameters.

Even though optical pumping �11� has been known for a
long time, there has been a lot of recent interest in the fun-
damental aspects of optical pumping in alkali-metal atoms.
Vanier �12� has analyzed its influence in the case of strong
collisional broadening by an inert buffer gas in an atomic
clock based on coherent population trapping. The influence
of optical pumping on saturated absorption spectra has been
studied by two different groups �13,14� and the influence on
the Doppler-broadened absorption of the rubidium D lines
has been experimentally studied by Siddons et al. �15�.

In a recent paper �16� we showed how optical pumping
affects Doppler-broadened alkali-metal-atom spectra at in-
tensities much lower than saturation. The effect of a finite
laser beam radius and collisions with the glass-cell walls was
accounted for as ground-state relaxation allowing us to use
the steady-state solutions for the density matrix. However, as
pointed out in �13�, optical pumping is really a transient ef-
fect and the absorption should be averaged over the range of
interaction times between the atoms and the laser field.

In this paper, we solve the time-dependent density matrix
equations numerically and derive a practical and accurate
analytical approximation. We derive a distribution for the
interaction time taking into account the three-dimensional

distribution of atoms and their velocity distribution. By
weighting the time-dependent solution with this distribution,
we show that the result from �16� is valid over a wide range
of parameters. Two interesting line-shape features are also
predicted: the velocity-dependent homogeneous line shapes
of the atoms are no longer Lorentzian due to optical pump-
ing, and for beam diameters comparable to the cell length, a
dip is created in the Doppler-broadened spectrum.

II. THEORY

As described in our earlier work �16�, we reduce the
alkali-metal atom level structure to a three-level model by
assuming that the laser field only couples one hyperfine ex-
cited state at a time and by averaging over all relevant mag-
netic sublevels. Figure 1 shows how this effective three-level
system is formed for �+ excitation of the �F=1�→ �F�=1�
transition in an atom with a nuclear spin I=1 /2. The transi-
tion strength C2 and the branching ratios Ag �An� of sponta-
neous emission from the excited state �e� to the ground state
�g� �noncoupled state �n�� are obtained by averaging over the
involved magnetic sublevels. The population of the ground
state at thermal equilibrium depends on the number of mag-
netic sublevels, Pg=ng / �ng+nn�.

The laser field of frequency � and wave number k propa-
gating in the z direction is E=2−1uE exp�i��t−kz��+c.c.,
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FIG. 1. �a� �+ excitation of the �F=1�→ �F�=1� transition in an
atom with nuclear spin I=1 /2. The magnetic sublevels belonging to
each effective energy level are circled. �b� The resulting three-level
system.
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where u is the polarization vector, E is the electric-field
amplitude, and c.c. stands for complex conjugate. The inter-
action Hamiltonian in the electric dipole approximation, V
=−� ·E, becomes

V = − �
C�

2
��e��g� + �g��e���ei��t−kz� + e−i��t−kz�� . �1�

The two-level Rabi frequency is �=�E /�, where � is the
dipole moment of a closed transition �C2=1�. Instead of tak-
ing into account the finite laser beam diameter and collisions
with the vapor cell walls in the form of ground-state relax-
ation, as in �16�, we solve the time-dependent evolution
equations and average over the distribution of interaction
times. As there is no relaxation back from the noncoupled
state �n�, we can neglect it and treat the system as an open
two-level system.

We consider a group of atoms having a longitudinal ve-
locity component vz described by the density matrix ��vz , t�.
After a transformation to the rotating frame �̃ge
=�gee

−i��t−kz� and applying the rotating wave approximation,
the evolution equations are, as in �16� but without ground-
state relaxation,

d�ee

dt
= − C��̃ge

i − ��ee, �2a�

d�gg

dt
= C��̃ge

i + Ag��ee, �2b�

d�̃ge

dt
= − ��

2
+ i��vz�	�̃ge + i

C�

2
��ee − �gg� . �2c�

Here �̃ge
i =Im��̃ge�. The laser detuning including the Doppler

effect is ��vz�=�0−kvz, where �0 is the detuning for an atom
at rest. Before the atoms enter the beam at t=0 they collide
with the cell walls and are in thermal equilibrium �16�. The
initial conditions for the density matrix elements are thus
�gg= Pg, �ee= �̃ge=0. The laser beam is assumed to have a
flat-top profile, i.e., its intensity and thus the two-level Rabi
frequency � are constant within its radius.

Equation �2� can easily be solved by numerically integrat-
ing the equation system. Figure 2 shows −�̃ge

i , upon which
the absorption coefficient depends �16�, as a function of time
for two detunings. We are interested in relatively low inten-
sities, �	�, at which the time dependence can be divided
into three regions: a rapid growth at small t, none or a few
heavily damped Rabi oscillations depending on the param-
eters, and then a slow decay at the optical pumping rate. The
slow optical pumping, compared to the atomic lifetime, of
several microseconds is in agreement with �14�, where satu-
rated absorption spectra were studied.

Since the state of an atom depends on how long it has
interacted with the laser field, we must average the density
matrix elements over the distribution of interaction times,
pt�t �vz�, that will be derived in Sec. II A,

��ij�t�vz� = 

0




�ij�vz,t�pt�t�vz�dt . �3�

Finally, in order to obtain the Doppler-broadened spectrum
of the thermal atomic vapor, we must integrate the result
over the longitudinal velocity distribution,

��ij�vz
=

1
��vmp



−


+


��ij�t�vz�e−vz
2/vmp

2
dvz, �4�

where vmp=�2kBT /m is the most probable velocity of the
atoms.

If we obtain the density matrix elements through numeri-
cal integration of Eq. �2� and then evaluate integrals �3� and
�4� numerically, the calculation of complete absorption spec-
tra will be extremely time consuming and not very conve-
nient for comparison with experimental data. On the other
hand, if we can find an approximate solution for Eq. �2�, only
the two integrals have to be evaluated numerically. Another
motivation for finding an approximate analytical solution for
� is that the numerical solution of Eq. �2� tends to become
unstable as the detuning ��� increases, unless the integration
time step is decreased.

In the following, we will first derive the distribution of
interaction times. Then the time-dependent density matrix
elements will be solved and averaged over the time and lon-
gitudinal velocity distributions.

A. Distribution of interaction times

In our model, the internal state of an atom depends only
on how long it has interacted with the laser field. The distri-
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FIG. 2. �Color online� Numerically integrated absorption coef-
ficient �actually −�̃ge

i � as a function of time for �=0 �black, upper
solid line� and �=� �red, lower solid line�. The analytical approxi-
mations �black and red dashed lines, respectively� cannot be distin-
guished from the corresponding numerical curves. The inset shows
the initial rise and Rabi oscillations for small t. The time scales
�� /2�−1 and �C��−1 are shown. Parameters: C= Pg=Ag=0.5, I / Is

=10−1, other parameters as for rubidium at T=300 K.
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bution of interaction times can be derived from the beam
geometry and the atomic velocity distribution. Harris et al.
�17� have derived such a distribution from the distribution of
path lengths and the velocity distribution of the atoms, but it
is not suitable for our purposes because of two reasons. First,
it only considers the two transversal dimensions. If a large
diameter beam is used, for example, to maximize the signal,
a considerable fraction of the atoms will exit the interaction
region by colliding with the ends of the glass cell and we
need to consider all three dimensions. Second, their distribu-
tion is for the total interaction time and corresponds to an
experiment where one measures the properties of the atoms
as they exit the beam. In a typical absorption or fluorescence
measurement, one measures a signal to which all atoms mo-
mentarily inside the laser beam contribute. Hence one must
integrate also over the spatial distribution of atoms inside the
beam. This will be done in the following.

We consider an atom at a position r0
= �� cos � ,� sin � ,z� inside the interaction region, defined
by the radius R of the laser beam and the length L of the
glass cell, see Fig. 3. It is traveling in the direction n̂
= �cos 
 sin � , sin 
 sin � , cos �� and has traveled the dis-
tance d inside the beam. Depending on r0 and n̂, it may have
entered the beam through the barrel or the end face of the
cylinder and the distance d is thus the smaller one of the two
distances

d1 =
� cos � + �R2 − �2 sin2 �

sin �
�

�

sin �
, �5a�

d2 =
z

cos �
. �5b�

Because of the circular symmetry of the beam, the uniform
distribution of atoms and their isotropic velocity distribution,
the distance d1 depends on the difference �=�−
 only. We
also assume vz�0 as negative velocities would only corre-
spond to flipping the coordinate system. The transversal pro-

jection � was introduced in Eq. �5a� to keep the expressions
more readable.

The uniform spatial distribution of atoms inside the inter-
action region is

p��,z���,z� =
2�

LR2 . �6�

Since the Doppler shift depends on vz, we have to use the
conditional velocity probability distribution for a fixed vz,

p�v�,���v�,��vz� =
v�

�vmp
2 e−v�

2/vmp
2

. �7�

This expression is identical to the normal two-dimensional
velocity distribution, but for a fixed vz we have the constraint
v= �v�

2+vz
2�1/2=d / t. As sin �=v� /v and cos �=vz /v, we ob-

tain the following two constraints:

t1 = �/v�, �8a�

t2 = z/vz. �8b�

The joint spatial and velocity distribution is then

p��,z,v�,����,z,v�,��vz� = p�,z��,z�p�v�,���v�,��vz�

=
2�v�

�LR2vmp
2 e−v�

2/vmp
2

. �9�

In order to select the correct distance dj, we introduce a truth
function

��T� = 
1, T = true,

0, T = false.
� �10�

Using Eq. �5� and the relations sin �=v� /v and cos �=vz /v,
the condition d1�d2 corresponds to z��vz /v�.

The distribution of interaction times for a fixed vz is then
given by

pt�t�vz� = 

0

2� 

0


 

0

L 

0

R

p��,z,v�,����,z,v�,��vz�

����z �
vz

v�

����t − t2�

+ ��z �
vz

v�

����t − t1�	d�dzdv�d� . �11�

This expression is evaluated in Appendix A and the result is

pt�t�vz� = � 1

�vz


1 − e−�R
2 /t2�I0� �R

2

t2 � + 3I1� �R
2

t2 �	�
+

2

t
e−�R

2 /t2I1� �R
2

t2 �	��t � �vz
� , �12�

where In is the nth order modified Bessel function of the first
kind and we have defined the characteristic transversal inter-
action time �R=�2R /vmp and the velocity-dependent longi-
tudinal interaction time �vz

=L / �vz�. Figure 4 shows this dis-
tribution for different velocity groups. Note that if L
approaches infinity, only the last term in Eq. �12� remains:
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FIG. 3. Geometry of the interaction region. An atom at the po-
sition r0 and traveling in the direction n̂ has traveled the distance d
inside the beam.
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the time distribution is independent of longitudinal velocity
and identical to the vz=0 distribution in Fig. 4. This is of
course exactly the distribution obtained from a two-
dimensional treatment. On the other hand, the smaller the
ratio L /R, the more the distributions for the different velocity
groups will differ.

Even though it is not needed here, it is interesting to cal-
culate the distribution of interaction times averaged over vz,

pt�t� =
1

��vmp



−


+


pt�t�vz�e−vz
2/vmp

2
dvz

=
1

���L

�1 − e−�L
2/t2�
1 − e−�R

2 /t2�I0� �R
2

t2 � + 3I1� �R
2

t2 �	�
+

2

t
erf� �L

t
�e−�R

2 /t2I1� �R
2

t2 � . �13�

Here erf�x� is the error function and we have defined �L
=L /vmp. Also pt�t� is shown in Fig. 4.

B. Optical pumping rate: first estimate

If we neglect the initial rise and possible Rabi oscillations,
we can use an approximation valid for t��−1��−1. We
assume that the optical coherence and the excited-state popu-
lation follow the changes in the ground-state population due
to optical pumping so that we can use the steady-state ex-
pressions obtained by setting Eqs. �2c� and �2a� equal to
zero,

�ee =
�C�/2�2

�2�vz� + ��/2�2 + �C�/2�2�gg, �14a�

�̃ge = −
���vz� + i�/2�C�/2

�2�vz� + ��/2�2 + �C�/2�2�gg. �14b�

Substituting Eq. �14� into Eq. �2b� yields

d�gg

dt
= −

�C�/2�2An�

�2�vz� + ��/2�2 + �C�/2�2�gg. �15�

With the initial condition �gg�t=0�= Pg, this gives �gg�t�
= Pg exp�−�op,estt�, that is, the ground-state population de-
cays at the optical pumping rate

�op,est =
�C�/2�2An�

�2�vz� + ��/2�2 + �C�/2�2 . �16�

The imaginary part of the optical coherence is then given by

�̃ge
i �t� = �̃ge,est

i e−�op,estt, �17�

with the initial value

�̃ge,est
i = −

��/2��C�/2�Pg

�2�vz� + ��/2�2 + �C�/2�2 . �18�

We see that expressions �16� and �18� lack the familiar factor
of 2 in front of the saturation term in the denominator.

C. Full time dependence

A common way to solve time-dependent density matrix
equations is to use the Laplace transform R�s�=�0


��t�e−stdt.
Equation �2� becomes

sRee = − C�Rge
i − �Ree, �19a�

sRgg − Pg = C�Rge
i + Ag�Ree, �19b�

sRge = − ��

2
+ i��vz�	Rge + i

C�

2
�Ree − Rgg� , �19c�

where the initial conditions �gg�0�= Pg and �ee�0�= �̃ge�0�
=0 were used. This algebraic equation system can easily be
solved and yields

Rge
i �s� = − �s + �/2��s + ���C�/2�Pg�s4 + 2�s3

+ ��2�vz� + 5�2/4 + �C��2�s2 + ��2�vz� + �2/4

+ �1 + An��C��2/2��s + An�2�C��2/4�−1. �20�

If we can solve the roots sj of the fourth-order polynomial in
the denominator, we can write Eq. �20� as a partial fraction
Rge

i �s�=� j=1
4 Bj / �s−sj�, where the coefficients Bj can be

solved from Bj =lims→sj
�s−sj�Rge

i �s�. The general time de-
pendence can then be written as

�̃ge
i �t� = �

j=1

4

Bje
sjt. �21�

The exact solution of the fourth-order polynomial in the
denominator of Eq. �20� is not very transparent. However,
the major contribution to the interaction-time averaged ab-
sorption comes from the term in Eq. �21� that describes op-
tical pumping. It is therefore enough to calculate that term as
accurately as possibly and include the other ones with a rea-
sonable accuracy to account for the initial rise and Rabi os-
cillations.

Appendix B describes how to obtain approximative roots
and amplitudes and the time dependence can be written as
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FIG. 4. �Color online� Interaction time distributions pt�t �vz� for
the velocity groups vz=0 �solid�, vz=vmp �dashed�, and vz=2vmp

�dotted�. The average over vz, pt�t�, is shown in red �in between the
dashed and solid black lines�. R=10 mm, L=50 mm.
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�̃ge
i �t� = �

j=1

3

Bje
sjt = B1es1t + 2 Re�B2es2t� , �22�

where

s1 = −

An��C�

2
�2

�2�vz� + ��

2
�2

+ �2 +
�2�vz� − 3��/2�2

�2�vz� + ��/2�2 An	�C�

2
�2 ,

�23a�

s2,3 = −
�

2
� i��vz� −

Ag� � 2i��vz�

�2�vz� + ��

2
�2�C�

2
�2

, �23b�

and

B1 = −

�

2

C�

2
Pg

�2�vz� + ��

2
�2

+ �2 +
3�2�vz� − 5��/2�2

�2�vz� + ��/2�2 An	�C�

2
�2 ,

�24a�

B2,3 =

1

2
��

2
� i��vz�	C�

2
Pg

�2�vz� + ��

2
�2

+ �2 +
3�2�vz� − 5��/2�2

�2�vz� + ��/2�2 An	�C�

2
�2 .

�24b�

The optical pumping rate is �op=−s1. Writing the root s1 and
the amplitudes in this form, we can associate the terms
2�C� /2�2 in the denominators with saturation, whereas the
terms that are proportional An describe the effect of optical
pumping. Figure 2 shows that this solution hardly can be
distinguished from the numerical solution.

D. Average over interaction-time and velocity distributions

Using Eqs. �22�, �23a�, �23b�, �24a�, �24b�, and �12� and
introducing the dimensionless variables u= t /�R, Pj =−sj�R,
and �=�vz

/�R, the average over interaction times �3� be-
comes

��̃ge
i �t�vz� = �

j=1

3

Bj

0

� � 1

�

1 − e−1/u2�I0� 1

u2� + 3I1� 1

u2�	�
+

2

u
e−1/u2

I1� 1

u2�	e−Pjudu . �25�

The integral is a function of the two variables Pj and � only,
but can unfortunately not be evaluated in closed form. Hence
we have to evaluate this integral as well as the integral over
the velocity distribution numerically.

Figure 5 shows homogeneous line shapes for different
velocity groups. For a moderate intensity and large beam
�I / Is=10−1 and R=10 mm�, the line shape depends strongly

on the longitudinal velocity; see Fig. 5�a�. The amplitude is
much smaller for “slow” atoms that experience more optical
pumping, and even when scaled with the velocity distribu-
tion, there is a slight dip at zero velocity �right-hand figure�.
At lower intensity and smaller beam size �I / Is=10−3 and R
=1 mm�, the line shape is almost velocity independent and
no dip occurs, Fig. 5�b�.

The absorption coefficient is given by �16�

� = −
2kNC�

�0E
��̃ge

i �vz
, �26�

where N is the number density of the atoms. Figure 6 com-
pares the absorption coefficient obtained by numerically in-
tegrating Eq. �22� over t and vz to the one calculated in �16�
for different intensities. The dependence on the beam radius
is similar; see Fig. 7.

The behavior of the absorption coefficient can be de-
scribed using the on-resonance optical pumping rate �op��
=0��An�C��2 /�, the inverse of the transversal interaction
time �R

−1=vmp /�2R, and the ratio of cell length to beam ra-
dius L /R. For L /R�1 and �op��=0���R

−1, the absorption
coefficient is practically identical to the result from �16� �see
the highest curves in Figs. 6 and 7�. When these two rates are
of the same order, the difference between the amplitudes is
maximum �middle curves in Fig. 6 and second lowest curves
in Fig. 7�. Keeping the ratio of the two rates constant, the
difference increases with intensity. Finally, when �op��=0�
��R

−1, the amplitudes are again close, but the numerically
obtained curve is clearly not a Voigt profile, but has a flatter
top or even a dip at the center �lowest curves in Figs. 6 and
7�.
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FIG. 5. �Color online� Homogeneous line shapes �−�̃ge
i � for the

velocity groups vz /vmp=0,0.2, . . . ,2. The left figures show the line
shapes on top of each other, the right figures show the line shapes at
their Doppler-shifted positions and scaled by the velocity distribu-
tion, which is also shown �red dashed curve, in arbitrary units�. �a�
I / Is=10−1, R=10 mm and �b� I / Is=10−3, R=1 mm. In all figures
C= Pg=Ag=0.5, L=50 mm, other parameters as for 85Rb at 300 K.
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Figure 8 shows the absorption coefficients for different
cell lengths. The result from �16� is always a Voigt profile
and the amplitude increases when the length decreases. In the
current model, however, atoms with a longitudinal velocity
close to zero exit the interaction region mainly in the trans-
versal direction. They are therefore almost unaffected by the
cell length, whereas atoms with nonzero longitudinal veloc-
ity experience less optical pumping for shorter cell lengths.
As the cell length approaches the beam diameter, this causes
a dip in the Doppler profile, as anticipated based on Fig. 5�a�.

III. RUBIDIUM D2 SPECTRA

D line spectra for the alkali-metal atoms can be obtained
by summing over all transitions between the involved hyper-

fine levels. As an example, we consider the D2 spectrum of
natural rubidium. The transition frequencies are from �18�
and the vapor pressure calculated according to �19�. Other
parameters are given in Appendix C.

In �16� we took into account that the absorption coeffi-
cient depends on the intensity, which decreases along the
length of the cell, by formally dividing the cell into many
thin slices. However, it was seen that the effect is relatively
small and for simplicity it is neglected here.

The dependence of the rubidium spectra on the param-
eters follows the behavior outlined for a single transition in
Sec. II D. Figure 9 shows D2 spectra for natural rubidium
obtained by numerically integrating Eq. �22� compared to the
result from �16� and to spectra calculated by neglecting op-
tical pumping but including saturation. In Fig. 9�a� the opti-
cal pumping is strong. The differences in line shape seen in
Figs. 6 and 7 are not as visible as each Doppler line consists
of three overlapping transitions. Figure 9�b� represents the
case where �op��=0���R

−1 and the difference between the
two methods of accounting for optical pumping is largest.
They are still close compared to the spectrum neglecting op-
tical pumping. Figure 9�c� shows how the two results again
approach each other as the optical pumping is reduced when
the intensity and beam radius are decreased.

The influence of optical pumping on the absolute absorp-
tion on the rubidium D lines has been experimentally studied
in a recent paper �15�. The authors measured the spectra
using a linearly polarized laser beam without nulling or con-
trolling the laboratory magnetic field. This means that the
polarization experienced by the atoms depends on the local
field, which consists of the magnetic field of the Earth and
the fluctuating fields caused by electronic equipment. Figure
10 shows numerically integrated rubidium D2 absorption
spectra for parameters corresponding to Fig. 6 in �15� and for
the following cases: � or �+ polarization, � polarization
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FIG. 6. �Color online� Absorption coefficients obtained from Eq.
�22� �black solid curves� and from �16� �red dashed curves� for
different intensities. R=10 mm, L=50 mm, C=Ag= Pg=0.5, other
parameters as for 85Rb at 300 K.
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FIG. 8. �Color online� Absorption coefficients obtained from Eq.
�22� �black solid curves� and from �16� �red dashed curves� for �a�
L=100 mm, �b� L=50 mm, �c� L=20 mm, and �d� L=10 mm.
I / Is=0.1, R=10 mm, C=Ag= Pg=0.5, other parameters as for 85Rb
at 300 K.

THOMAS LINDVALL AND ILKKA TITTONEN PHYSICAL REVIEW A 80, 032505 �2009�

032505-6



�equal amounts of �+ and �−�, and randomly distributed
quantization axis �equal amounts of �, �+, and �−�. The
more polarization components that are involved, the fewer
uncoupled magnetic sublevels there will be in the ground
state and the less prominent the optical pumping will be. The
only difference between � and random polarization in this
case occurs for the �F=1�→ �F�=0� transition of the 87A
line, where the ground sublevel mF=0 is uncoupled for �,
but coupled for random polarization.

The absolute vapor pressure �number density� must in
practice be kept as a free parameter, or be calibrated, because
the uncertainty of the empirical formula �19� has been re-
ported to be as high as 1.5 �20�. Taking this into account, the
spectrum in Fig. 6 of �15� agrees well with our results for the
following parameters: a vapor pressure almost 10% higher
than that given by �19� and a polarization which consists of
about 80% � and 20% �.

IV. CONCLUSIONS AND FURTHER RESEARCH

We have shown that the result from �16� is valid over a
wide range of parameters and can be used for straightforward
comparison with experimental data. The solution obtained by
numerically integrating Eq. �22� reveals some additional fea-
tures and can still be used to plot full spectra, although it is
significantly more computer time consuming.

We have also shown how the optical pumping causes at-
oms with a longitudinal velocity around zero to have clearly
non-Lorentzian homogeneous lines. It would thus be inter-
esting to study saturation spectroscopy. It has been studied
numerically in �13,14�, but analytical �approximative� results
may be hard to obtain as the longitudinal intensity depen-
dence of the �partial� standing wave makes it difficult to
decouple the transversal and longitudinal motion as was
done in this paper.

The effect of the finite laser beam size can be considered
as a form of transit-time broadening, which is known to af-
fect the line shape and depend on the intensity distribution of
the beam �21�. It would therefore be interesting to study this
effect also for other laser beam profiles, in particular a �trun-
cated� Gaussian profile. However, in this case the evolution
of an atom does not depend on the interaction time only, but
also on the particular path it travels. This would require nu-
merical simulations.
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APPENDIX A: DISTRIBUTION OF INTERACTION TIMES

Substituting Eqs. �8� and �9�, Eq. �11� becomes
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FIG. 10. �Color online� Rubidium D2 spectra for � or �+ polar-
ization �blue dotted curve�, � polarization �red dashed curve�, and
random quantization axis �black solid curve�. I / Is=10−1, L
=75 mm, R=2 mm, and T=298.55 K.
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FIG. 9. �Color online� Rubidium D2 spectra for � or �+ polar-
ization obtained from Eq. �22� �black solid curves�, from �16� �red
dashed curves�, and neglecting optical pumping, but including satu-
ration �blue dotted curves�. �a� I / Is=0.1, R=10 mm, �b� I / Is=0.1,
R=1 mm, �c� I / Is=0.01, R=1 mm. L=50 mm, C=Ag= Pg=0.5,
other parameters as for natural Rb at 300 K.
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Using the property ��ax�=��x� / �a�, one can integrate the first
term over z and the second term over v�. One has to pay
attention to the relation between the integration limits and
the argument of the � functions. Further � functions can be
used to account for the different possible cases. For example,
integrating the first term over z gives



0

L

��z �
vz

v�

��vz��z − vzt�dz

= vz���L �
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0
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In the last step, we were able to recombine the two terms
based on how they limit the possible v� values. We see that
the first � function gives the upper limit for the integral over
v�. The last � function will of course be present in the final
expression, as the maximum interaction time for the velocity
group vz is equal to L / �vz�.

Integrated over z and v�, Eq. �A1� becomes

pt�t�vz� =
2��t � L/vz�
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We change integration variables to y=r sin � and �
=� cos �+�R2−�2 sin2 � and can then easily integrate over
y,

pt�t�vz� =
4��t � L/vz�
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One more change in variable, cos � /2=� /2R, yields the in-
tegral

pt�t�vz� =
4��t � L/vz�
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Using sin2 x= �1−cos 2x� /2 and cos2 x= �1+cos 2x� /2, this
can be written as

pt�t�vz� =
2��t � L/vz�

�Lvmp
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Using the integral representation I �z�
=�−1�0

�exp�z cos ��cos� ��d� �22� for the modified Bessel
functions of the first kind and defining the transversal inter-
action time scale �R=�2R /vmp and the velocity-dependent
longitudinal time scale �vz

=L / �vz�, Eq. �A6� becomes
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Using the recurrence relation I −1�z�− I +1�z�= �2 /z�I �z�
�22�, the fact that I0�z� is even and I1�z� is odd, and rearrang-
ing, Eq. �A7� becomes

pt�t�vz� = � 1

�vz
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This is a convenient form, as exp�−�x��I1�x� is a frequently
used function that is available in, for example, MATLAB.

APPENDIX B: FOURTH-ORDER ROOTS

We want to solve the roots of the fourth-order polynomial
in the denominator of Eq. �20�,
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s4 + 2�s3 + ��2 + 5�2/4 + �C��2�s2 + ��2 + �2/4 + �1 + An�

��C��2/2��s + An�2�C��2/4 = 0. �B1�

The exact solution of Eq. �B1� is not very transparent. An
approximate solution valid for �C� /��2�1 can be obtained
by substituting a series expansion in x��C� /��2, s
=�kskx

k, into Eq. �B1�. The first two nonzero terms of the
roots are

s1 = −
An�

�2 + ��

2
�2�C�

2
�2

+

An���2 + An��2 + �2 − 3An���

2
�2	

��2 + ��

2
�2	3 �C�

2
�4

+ O�x3� ,

�B2a�

s2,3 = −
�

2
� i� −

Ag� � 2i�

�2 + ��

2
�2�C�

2
�2

+ O�x2� , �B2b�

s4 = − � +
�1 + Ag��

�2 + ��

2
�2�C�

2
�2

+ O�x2� . �B2c�

From the original Eq. �2�, we see that s2,3 are related to the
evolution of the optical coherence while s4 is related to the
decay of the excited state. The first root s1 describes the
optical pumping.

If we study the exact roots of Eq. �B1� numerically, we
note that for �=0 all four roots are real and different. Then,
for a certain small value of ���, the two roots s2 and s3 be-
come degenerate and evolve into a complex conjugate pair.
Because the four roots are not distinguishable everywhere,
we expect convergence problems for the series solution. In-
deed, the x2 terms of the roots s2,3 do diverge for �=0.

As mentioned in Sec. II C, we only need s1 as exactly as
possible. The drawback with expression �B2a� is that the
�C� /2�4 term does not give much physical insight. We
would rather have a �C� /2�2 term in the denominator as in
Eq. �16�. To achieve this, we use a Padé approximant, which
is a rational function whose power series expansion agrees
with the series expansion in Eq. �B2a� �23�. Using functions
of order x1 in both the numerator and denominator, we obtain

s1,P = −
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2
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�B3�

Using the formula

Bj = lim
s→sj

�s − sj�Rge
i �s� , �B4�

we can obtain the amplitudes for the exponential functions.
Using terms up to x2 for the roots sj, we obtain

B1 = −

�

2

C�

2
Pg

�2 + ��

2
�2

+ �2 +
3�2 − 5��/2�2

�2 + ��/2�2 An	�C�

2
�2 ,

�B5�

where we have discarded higher-order terms from the de-
nominator. It turns out that Eqs. �B3� and �B5� describe the
slow decay due to optical pumping very well.

The amplitudes B2,3 are approximately

B2,3 �

1

2
��

2
� i��C�

2
Pg

�2 + ��

2
�2 , �B6�

but again the higher-order terms lead to divergence at �=0.
However, the amplitude B4 is of the order �C� /��3, so it can
be neglected compared to B1 and B2,3. Then, since we require
�̃ge

i �0�=B1+B2+B3=B1+2 Re�B2�=0, we have to set

B2,3 =

1

2
��

2
� i��C�

2
Pg

�2 + ��

2
�2

+ �2 +
3�2 − 5��/2�2

�2 + ��/2�2 An	�C�

2
�2 .

�B7�

We will see that Eq. �B7� together with s2,3 as given in Eq.
�B2b� describes the initial rise and Rabi oscillations well
enough for our purpose.

TABLE I. Numerical parameters for the rubidium D2 transi-
tions: ground-state populations Pg, branching ratios Ag, and transi-
tion strengths C2 for � or �+ and � polarization.

Transition

� /�+ �

Pg Ag C2 Pg Ag C2

87Rb �1�→ �0� 1
8

40
120

120
360

2
8

80
120

60
360

�1�→ �1� 2
8

50
120

150
360

3
8

100
120

100
360

�1�→ �2� 3
8

60
120

100
360

3
8

60
120

100
360

�2�→ �1� 3
8

12
120

20
360

5
8

20
120

12
360

�2�→ �2� 4
8

45
120

75
360

5
8

60
120

60
360

�2�→ �3� 5
8

120
120

168
360

5
8

120
120

168
360

85Rb �2�→ �1� 3
12

2268
3780

3780
11340

5
12

9
9

2268
11340

�2�→ �2� 4
12

2205
3780

3675
11340

5
12

7
9

2940
11340

�2�→ �3� 5
12

1680
3780

2352
11340

5
12

4
9

2352
11340

�3�→ �2� 5
12

600
3780

840
11340

7
12

2
9

600
11340

�3�→ �3� 6
12

1750
3780

2450
11340

7
12

5
9

2100
11340

�3�→ �4� 7
12

3780
3780

4860
11340

7
12

9
9

4860
11340
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APPENDIX C: PARAMETERS FOR RUBIDIUM D2 LINE

Natural rubidium consists of the isotopes 85Rb �72.17%�
with an atomic mass of 84.911 789 74 u and 87Rb �27.83%�
with an atomic mass of 86.909 180 53 u �24�. Table I con-
tains the ground-state populations Pg, branching ratios Ag,
and transition strengths C2 for � or �+ polarization and �
polarization for all the hyperfine transitions of the D2 lines of
both isotopes. The parameters for randomly distributed quan-
tization axis �equal amounts of �, �+, and �−� are identical to

those for � polarization, except for the 87Rb �1�→ �0� transi-
tion, for which they are Pg=3 /8, Ag=1, and C2=1 /9. The
values are obtained by averaging over all involved magnetic
sublevels as described in �16�. The strengths of the transi-
tions between the magnetic sublevels are from �25�. For
simplicity, we have used the wavelength !=780 nm and
the natural linewidth �=38 s−1 for all transitions in both
isotopes corresponding to the dipole moment �
= �3��"0!3 /8�2�1/2�2.5�10−29 Cm.
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