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The scaled static dipole polarizabilities of 1s and 2s states of hydrogenlike ions embedded in a plasma
environment are calculated as function of the interaction screening. The plasma screening of Coulomb inter-
action is described by the Debye-Hückel potential. The electron energies and wave functions of bound and
continuum states are calculated by solving numerically the Schrödinger equation with this potential in a
symplectic integration scheme. The screening of Coulomb interactions reduces the number of bound states,
decreases the energies of bound states and broadens the radial extension of the wave functions of bound and
continuum states. All these effects result in a dramatic increase in static polarizability when the interaction
screening increases. Comparison of present results with those of other authors is made when available.
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I. INTRODUCTION

The effects of screened Coulomb interaction between
charged particles in hot, dense plasmas on the atomic struc-
ture and collision properties have been subject to extensive
studies in the last 30–40 years �see, e.g., �1,2� and references
therein�. These studies have been motivated mainly by the
research in laser produced plasmas, extreme ultraviolet and
x-ray laser development, inertial confinement fusion, and as-
trophysics �stellar atmospheres and interiors�. The densities
�n� and temperatures �T� in these plasmas span the ranges
n�1015–1018 cm−3, T�0.5–5 eV �stellar atmospheres�,
n�1019–1021 cm−3, T�50–300 eV �laser plasmas�, and
n�1022–1026 cm−3, T�0.5–10 keV �inertial confinement
fusion plasmas�. The Coulomb interaction screening in these
plasmas is a collective effect of the correlated many-particle
interactions and in the lowest particle correlation order �pair-
wise correlations� it reduces to the Debye-Hückel potential
�for the interaction of an ion of charge Z with an electron�
�1,2�

V�r� = −
Ze2

r
exp�−

r

D
� , �1�

where D= �kBTe /4�e2ne�1/2 is the Debye screening length, Te
and ne are the plasma electron temperature and density, re-
spectively, and kB is the Boltzmann constant. The represen-
tation of charged particle interaction in a plasma by the po-
tential Eq. �1� is adequate only if the Coulomb coupling
parameter �=e2 / �akBTe� and plasma nonideality parameter
�=e2 / �DkBTe� satisfy the conditions ��1, ��1, where a
= �3 / �4�ne��1/3 is the average interparticle distance. There is,
however, a wide class of laboratory and astrophysical plas-
mas in which these conditions are fulfilled �Debye plasmas�.
Expressions for the screened Coulomb interaction for
strongly coupled and nonideal plasmas can be found else-
where �see, e.g., �1,2��.

The polarizability is an important characteristic of an
atomic system describing its response to an external electric
field. It, therefore, describes the long-range dipole interaction
of a charged particle with an atomic system and, thus, has an

important role in collision processes involving such particles
�see, e.g., �3,4��. For the isolated atoms and molecules, there
exists a significant body of experimental and theoretical in-
formation on the static polarizabilities �see, e.g., �5��. How-
ever, for atomic systems embedded in a plasma environment
where the Coulomb interaction is screened such information
is virtually absent. The only work of this kind we are aware
of is that of Saha et al. �6� in which the static polarizability
of the ground-state hydrogen atom has been calculated by
using the Debye-Hückel interaction Eq. �1� �Z=1�. The ei-
genvalue problem in Ref. �6� was solved by the variational
method employing a large Slater-type orbital �STO� basis for
the discrete states. The continuum states �and their contribu-
tion to the polarizability� were not considered at all. These
authors have found a significant increase in the static polar-
izability in the screened Coulomb potential with respect to
the unscreened case. The values of polarizabilities for the 1s
state of hydrogenlike ions in a Debye plasma calculated in
the present work are even larger than those in Ref. �6� due to
the inclusion of the contribution from transitions to con-
tinuum states �e.g., about twice larger for a Debye screening
length of D�2a0 than its value in the plasma free case, a0
being the Bohr radius�. Just like in the unscreened Coulomb
interaction case, the interaction of a hydrogenlike ion �as a
whole� with a charged structureless particle �e.g., electron, or
bare nucleus� will be significantly affected by the dipole term
of the multipole expansion of the interaction, the polarization
interaction �3�. This will have a significant effect on the low-
energy electron scattering �as described by the modified ef-
fective range theory �7�� but also on the low-energy heavy-
particle collision processes �within their quasimolecular
description �8��. The polarization interaction between the
particles in Debye plasmas also affects the transport and ther-
modynamic properties of these plasmas �9�.

In the present work we shall investigate the static polar-
izabilities of hydrogenlike ions in the 1s and 2s states with
electron—nucleus interaction of Debye-Hückel type. We
shall solve the Schrödinger equation in both the discrete and
continuous spectrum of the potential Eq. �1� by employing
the symplectic integration scheme �10,11�. This direct nu-
merical integration method has been used also in our recent
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investigations of photo excitation �12�, photo ionization �13�,
and electron-impact excitation �14� processes in a Debye
plasma. Compared with the variational method, the symplec-
tic integration scheme should provide a more accurate solu-
tion of the eigenvalue problem with the potential Eq. �1�. The
inclusion of the continuum in the polarizability calculations
is particularly important for the large screening parameters,
1 /D, when the electron binding energy is small and the cou-
pling with the continuum is strong.

In the remaining part of the paper we shall use atomic
units, unless otherwise is explicitly stated.

II. THEORETICAL CONSIDERATIONS
AND COMPUTATIONAL METHOD

The static polarizability of an atomic system in the dis-
crete quantum state 	n
 can be expressed, within the pertur-
bation theory framework, as �see, e.g., �15��

� = − 2�
k�n

	Hnk	2

En − Ek
, �2�

where Hnk= ��n
�0�	ẑ	�k

�0�
 is the dipole matrix element due to
the presence of the external electric field oriented along the z
direction, and �n

�0� ,�k
�0� and En ,Ek are the wave functions and

energies of unperturbed states 	nlm
 , 	kl�m�
, respectively. It
should be noted that �k

�0� in Eq. �2� denotes both a discrete
and a continuum state; in the latter case the sum in Eq. �2� is
replaced by an integral over the continuous variable k=2�,
� being the energy of the continuum state. For a central-
symmetric potential, such as Eq. �1�, the wave functions �n

�0�

and �k
�0�, as well known, can be represented in the form

�n
�0��r��=

Pnl�r�
r Ylm�	 ,
� �and similarly for �k

�0��, that trans-
forms the expression �2� into

� = −
2

3 �
k�n

	Rnk	2

En − Ek
�3�

with Rnk= �Pnl	r	Pkl�
. The calculation of the static polariz-
ability of a hydrogenlike ion in the state 	n
 in a Debye
plasma is thus reduced to solving the radial Schrödinger
equation with the potential Eq. �1� in the discrete and con-
tinuous spectrum, calculation of corresponding dipole matrix
elements and performing the summation Eq. �3� over the
discrete and continuum spectrum �in the latter case Eq. �3� is
replaced by an integral�.

The eigenvalue problem in the Debye-Hückel potential
Eq. �1� has certain features that significantly change both
the structure of Eq. �3� and the value of the polarizability
with respect to the unscreened Coulomb case. As well known
�16�, for any finite value of the Debye length D the potential
Eq. �1� supports only a finite number of bound states. With
decreasing the value of D �increasing the screening�, the
binding energy of a given discrete state decreases and at a
certain critical value of D it merges with the continuum edge.
This implies that with decreasing D, the number of bound
states in the potential decreases thus reducing the sum Eq.
�3� over the discrete spectrum to a smaller and smaller num-
ber of terms. This is in sharp contrast with the unscreened

Coulomb case where the sum Eq. �3� over the discrete spec-
trum includes an infinite number of terms. Another important
feature of the screened Coulomb potential is that the energy
levels are not anymore degenerate with respect to the orbital
angular momentum l. The lifting of l degeneracy of energy
levels in the potential Eq. �1� also affects the structure of Eq.
�3�.

As mentioned in the Introduction, we shall solve the ra-
dial Schrödinger equation with the potential Eq. �1� in both
the discrete and continuous energy spectrum by the symplec-
tic integration method. The details of this direct numerical
integration method, as implemented to the radial Schrödinger
equation with the potential Eq. �1�, are given in Refs.
�12–14� and will not be repeated here. We only mention that
the accuracy with which the method has been implemented
in the present calculations is 10−7 for the eigenenergies Enl
and 10−5 for the wave functions. We further mention that the
radial Schrödinger equation with the potential Eq. �1� after
the scaling transformation

� = Zr, � = ZD, �l��� = El�Z,D�/Z2, �4�

is reduced to that for the hydrogen atom �Z=1� in the poten-
tial Eq. �1�

�−
d2

2d�2 +
l�l + 1�

2�2 −
exp�− �/��

�
�Pl��;�� = �l���Pl��;��

�5�

where =n for the discrete states and =k�=2�� for the
continuum states. Equation �5� is to be solved with the ap-
propriate boundary conditions �12–14�. The radial wave
functions of discrete states are orthonormalized in the con-
ventional way, while those of the continuum �from now on
we denote them by P�l� are normalized to unit energy inter-
val � �see, e.g., �16��. From the scaling relations Eq. �4� and
the normalization conditions for the wave functions, the fol-
lowing scaling relations for the dipole matrix elements de-
rive �12,14�.

For the bound-bound transitions

�Pnl�r;Z,D�	r	Pn�l��r;Z,D�
 = Z−1�Pnl��;��	�	Pn�l���;��
 .

�6�

For the bound-free transitions

�Pnl�r;Z,D�	r	P�l��r;Z,D�
 = Z−2�Pnl��;��	�	P�l���;��
 .

�7�

From the relations Eqs. �3�, �4�, �6�, and �7�, it follows
that the static dipole polarizability �nl�Z ,D� of the hydrogen-
like ion in a state nl embedded in a Debye plasma scales as

�nl�Z,D� = Z−4�nl��� . �8�

In the present work we consider the polarizability of hy-
drogenlike ions in the states nl=1s and nl=2s. In order to
reveal the factors that influence the changes in the dipole
polarizability due to the interaction screening, we shall con-
sider the nl=1s case in more detail. In the next section we
analyze the behavior of the bound and continuum wave func-
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tions, dipole matrix elements and the transition energies
when the interaction screening parameter �=1 /� varies.

III. SCALED ENERGIES, WAVE FUNCTIONS,
AND DIPOLE MATRIX ELEMENTS

For the calculation of �1s��� static polarizability, the be-
havior on � �or �� of the energy differences between the np
and 1s states are relevant for the discrete part of Eq. �3�, as
well as the � dependence of the energy of 1s state �for the
continuum part of Eq. �3��. In Fig. 1 we show the scaled
energy −�1s=−E1s /Z2 and the energy differences �transition
energies� ��np,1s= �Enp−E1s� /Z2 between the 1s and np �n
�4� states as function of the scaled screening parameter �
=1 /�. With increasing the plasma screening, both −�1s���
and ��np,1s��� rapidly decrease. �We should note that the
energy difference ���p,1s���=��p−�1s���, where ��p is the
constant energy of a continuum state, will obviously also
exhibit a rapid decrease.� For a given np state, the function
��np,1s��� terminates at �np

c =1 /�np
c , the critical screening

parameter at which the np bound state merges with the con-
tinuum edge. The values of critical Debye lengths for the 1s,
2p, 3p, and 4p states are:�1s

c =0.839908a0 ,�2p
c =4.541a0 ,�3p

c

=8.872a0 ,�4p
c =14.74a0. It is interesting to observe that the

ending values, ��np,1s
c of transition energies as function of �,

lie on the line ��np,1s
c �a .u.�=0.5–0.85�np

c . �Obviously, for
�→0 and n→�, ��np,1s

c �a .u.�=0.5�. The decrease in energy
differences ��np,1s��� and ���p,1s��� with increasing � ob-
viously leads to an increase in the polarizability �1s��� when
the interaction screening increases.

In Figs. 2�a�–2�c� we show, respectively, the scaled wave
functions Pnl��� of the 1s, 2p, and 3p states for a number of
the screening lengths � and for the unscreened case. With the
decrease in �, the radial extension of the bound-state wave
functions increases significantly, its peak and node �in the
case of 3p� are shifted toward the larger radial distances and
the peak magnitude decreases. All these features are particu-

larly pronounced when the Debye length for a given nl state
approaches its critical value �nl

c �see above�. This behavior of
the radial wave functions with decreasing � decreases their
overlap and, thereby, the dipole coupling between 1s and np
discrete states. On the other hand, the enhanced radial spread
of the bound-state wave functions with decreasing � in-
creases their overlap with the continuum states and thereby

FIG. 1. �Color online� Scaled energy differences between the 1s
and np �n�4� states of hydrogenlike ions as function of scaled
screening parameter �. The scaled energy of 1s state is also shown.

(b)

(a)

(c)

FIG. 2. �Color online� Radial wave functions of the 1s �a�, 2p
�b�, and 3p �c� bound states for a number of screening lengths � and
for the unscreened case.
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the coupling with the continuum. These consequences of the
behavior of the bound state wave functions with varying �
will become evident in the discussion of dipole matrix ele-
ments �see below, Fig. 4�a��.

The energy-normalized continuum p-wave functions for a
fixed value �=4a0 of Debye length and a number of con-
tinuum energies are shown in Fig. 3�a�, while the p-wave
functions for a fixed energy �=0.0005 a.u. and a number of
screening lengths are shown in Fig. 3�b�. In both cases, the
continuum wave functions exhibit strong changes in their
oscillation frequencies and amplitudes when varying one of
these parameters. For the �=4a0 case �Fig. 3�a�� the fre-
quency decreases and the amplitude increases with decreas-
ing the energy of the state. For the �=0.0005 a.u. case �Fig.
3�b��, again the frequency decreases and the amplitude in-
creases when the screening length decreases. In both of these
cases the amplitude of the oscillations increases with increas-
ing the radial distance. This behavior of the continuum wave
functions with varying the energy of continuum electron and
the Debye screening length is reflected in the behavior of the
1s-�p dipole matrix elements �see below, Fig. 4�b��.

The scaled dipole matrix elements M1s,np for the 1s-np
�n=2–4� transitions as function of screening parameter

�=1 /� are shown in Fig. 4�a�. They first decrease monotoni-
cally with the increase in �, but their decrease becomes very
sharp when � approaches the corresponding critical value
�np

c =1 /�np
c . As argued earlier, the sharp decrease in M1s,np

matrix element when � approaches �np
c is due to the large

spread of the np—wave function outside the region of radial
distances within which the 1s—wave function is still domi-
nantly confined �i.e., the overlap of the two wave functions is
small�. For a given value of �, the M1s,np matrix elements
rapidly decrease with increasing n. It should be remarked
that the simultaneous decrease in the transition energies and
the M1s,np matrix elements with increasing � leaves the ques-
tion of the effect of their simultaneous variation on the value
of polarizability remains open before calculating their ratio
as it appears in Eq. �3�. As we shall see in the next section,
the decrease in M1s,np with increasing � is faster than the
decrease in ��np,1s���.

Figure 4�b� gives the scaled dipole matrix element M1s,�p
for the 1s-�p transition as function of the energy of con-

(b)

(a)

FIG. 3. �Color online� Continuum wave functions for a number
of scaled screening lengths � and scaled electron energies �. Panel
�a�: fixed scaled screening length �=4a0; panel �b�: fixed scaled
electron energy �=0.0005 a.u.

(b)

(a)

FIG. 4. �Color online� �a� Scaled dipole matrix elements be-
tween the 1s and np�n�4� states as function of the screening pa-
rameter �=1 /�; �b� scaled dipole matrix element between the 1s
and the continuum state �p states as function of scaled continuum
state energy for a number of screening lengths �.
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tinuum state for a number of scaled screening lengths. The
M1s,�p matrix elements generally decrease with increasing
the energy of continuum state and increase with decreasing
the screening length. This is consistent with the general be-
havior of the continuum wave functions observed in Figs.
3�a� and 3�b�. However, the M1s,�p matrix elements in the
screened interaction case exhibit maxima in the low-energy
region and diminish when the energy of continuum state
tends to zero. This behavior can be anticipated already from
Fig. 3�a� where the wave function for the energy of 0.00005
a.u. and �=4a0 is very small up to distances of 20a0, while
the radial distribution of 1s wave function for �=4a0 is neg-
ligible already beyond 10a0 �see Fig. 2�a��.

Figures 4�a� and 4�b� show that with decreasing �, the
M1s,np matrix elements decrease, while the integrals over the
energy of M1s,�p matrix elements increase. These changes are
particularly pronounced when � approaches its critical value
�np

c . This indicates that the contribution of continuum states
to the dipole polarizability increases with decreasing �. It
becomes the only contribution to the polarizability �1s when
all bound np states are merged with the continuum �i.e., for
���2p

c =4.541a0�.

IV. STATIC POLARIZABILITIES OF HYDROGENLIKE
IONS IN 1s AND 2s STATES

In this section we present the results of our calculations
for the scaled polarizabilities of hydrogenlike ions in their 1s
and 2s states, performed by using Eq. �3�. We note that the
energy of 2s state for finite values of � lies below the energy
of 2p state �17,18� and that �2s

c =3.223a0. When calculating
the sum Eq. �3� over the discrete spectrum, we have included
all the np states that for a given value of the screening length
remain bound. The integration over the continuum energies
was performed with a variable step in order to ensure the
numerical accuracy.

We first present the results for the polarizabilty of 1s state
for which comparison for a number of values of � is possible
with the results of Ref. �6�. As mentioned in the introduction,
the eigenfunctions and eigenenergies in the potential Eq. �1�
were determined in Ref. �6� by using the variational method
with an STO basis but only in the discrete spectrum. In Table
I we compare the ground state energies, as well as the tran-
sition energies and oscillator strengths for 1s-np transitions
for a number of screening lengths obtained in the present
work and in Ref. �6�. While the ground state and transition
energies of the variational method agree quite well with the
present results down to screened lengths of 4a0 and 5a0,
respectively, the differences in the oscillator strengths be-
come significant already for �=20a0 �particularly for higher
np states�. It is important to note that in variational calcula-
tions of Ref. �6� the 2p state is still bound for �=4a0, con-
trary to the present result �and those of others, �17,18�� that
this state enters the continuum at �2p

c =4.541a0. A further
indication that the variational method employed in Ref. �6�
fails to adequately describe the electronic state when its en-
ergy approaches the continuum edge is that the ground-state
energy at �=1a0 becomes positive �see Table I�, while this
energy becomes zero only at �1s

c =0.839908a0.
In Table II we show the scaled dipole polarizabilities for

the 1s state of hydrogenlike ions for a number of screening
lengths. The contributions of the 2p, 3p, and 4p states and of
the continuum to the polarizability are also given in this
table. The values of �1s from Ref. �6� available for a number
of screening lengths �and for the unscreened case� are also
shown in the table. It should be noted that for ��5a0 the
continuum contribution to the polarizability becomes domi-
nant, and for ��4a0 �more correctly, for ���2p

c =4.541a0� it
is the exclusive contributor to the polarizability. The values
of Ref. �6� for �=5a0, 4a0 and 1a0 should be considered as
lying within the uncertainties of the applied method when the
energies of bound states are close to the continuum and due
to the complete exclusion of the continuum contribution to
the polarizability.

TABLE I. Scaled ground-state energies, transition energies, and oscillator strengths of hydrogenlike ions
for various screening lengths, �.

��a0�

−�1s �a.u.�

Transition

Transition energy �a.u.� Oscillator strength

a b a b a b

� 0.5000 0.5000 1s→2p 0.37500 0.37500 0.4160 0.4162

1s→3p 0.44444 0.44444 0.0790 0.0791

1s→4p 0.46875 0.46875 0.0290 0.0290

20 0.45182 0.45182 1s→2p 0.37107 0.37108 0.4000 0.40175

1s→3p 0.43325 0.43326 0.0660 0.06585

1s→4p 0.44922 0.44922 0.0150 0.01448

10 0.40705 0.40706 1s→2p 0.36051 0.36052 0.3561 0.3630

1s→3p 0.40546 0.40547 0.0298 0.0298

5 0.32674 0.32681 1s→2p 0.32263 0.32271 0.1773 0.1933

4 0.29076 0.29092 1s→2p 0.29479 0.0383

1 −0.16598 0.01029 1s→2p 0.01907 0.0034

aData from Ref. �6�.
bPresent data.
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From Table II one can observe that the relative increase in
the continuum contribution to the polarizabilty with decreas-
ing � is larger than the increase in total polarizability in the
region of � where the discrete spectrum contributes to �1s
�i.e., for ��4.541a0�. Subtracting from �1s in this region the
continuum contribution, we see that the contribution of the
discrete spectrum to the polarizability in fact decreases with

decreasing �. Therefore, the enhanced coupling with the con-
tinuum of the 1s state is the only factor that causes the in-
crease in �1s polarizability when � decreases.

The variation in scaled polarizability �1s as function of
screening parameter � is shown in Fig. 5. When �→�1s

c

=1 /�1s
c =1.1906066a0

−1 the polarizability attains values of the

TABLE II. Scaled static dipole polarizabilities �1s /Z4 of the ground-state hydrogenlike ion for a number
of scaled screening lengths, �.

��a0� Polarizability

Contributions

2p 3p 4p Continuum

� 4.5000 �4.4997�a 2.95962 0.40045 0.13194 0.83878

50 4.50820 2.95195 0.39154 0.12072 0.97086

40 4.51299 2.94814 0.38685 0.11513 1.00813

20 4.55176 �4.5412�a 2.91784 0.35053 0.07174 1.21164

16 4.58003 2.89524 0.32349 0.03779 1.32351

10 4.69933 �4.6577�a 2.79236 0.18149 1.72548

5 5.27661 �5.0936�a 1.85622 3.42039

4 5.72635 �5.41�a 5.72635

3 6.80156 6.80156

2 11.14701 11.14701

1.9 12.3359 12.3359

1.7 16.0699 16.0699

1.5 24.0987 24.0987

1.3 47.4052 47.4052

1.2 82.9946 82.9946

1.1 192.910 192.910

1.08 244.785 244.785

1.06 316.994 316.994

1.04 409.154 409.154

1.02 598.717 598.717

1 788.280 �8.23�a 788.280

aData from Ref. �6�.

FIG. 5. �Color online� Scaled dipole polarizability of the ground
state hydrogenlike ions as function of the scaled screening param-
eter �. �The limiting �=0 value of 4.5 a.u. is the polarizability in
the pure Coulomb case.�

FIG. 6. Contributions to the scaled polarizability from the indi-
vidual np�n�4� states as function of scaled screening parameter �.
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order of 104, but at �=�1s
c it loses its physical meaning

since the electron is already in the continuum. The drama-
tic increase in the polarizability when �→�1s

c is a mere
result of the strong overlap of bound-state wave function
with the continuum. As seen in Fig. 5, the calculated scaled
polarizability in the limit �→0 has the correct value of 4.5
a.u. �5�.

The contributions to the scaled �1s polarizability from 2p,
3p, and 4p states as function of screening parameter � are
shown in Fig. 6, while the differential contribution of the
continuum for a number of screening lengths is shown in
Fig. 7 as function of transition energy, �. On the left side of
Fig. 7 ���0� shown are also �by vertical lines� the contribu-
tions from the transitions from 1s to the bound np states
remaining in the discrete spectrum for a given � �indicated in
each panel�. The heights of vertical lines on Fig. 7 corre-
spond to the values of �1s in Table II for a given state and �.
It is seen from this figure that with decreasing � less and less
discrete np states contribute to the �1s polarizability as they
successively enter into the continuum at their respective
critical screening lengths. For �=5 only the 2p state remains
in the discrete spectrum and for ���2p

c =4.541a0 only the
transitions to continuum states contribute to �1s. The varia-
tions in these contributions with the corresponding parameter

are quite similar to the variations of M1s,np and M1s,�p matrix
elements in Figs. 4�a� and 4�b�, respectively.

We now turn to the results of calculations of the polariz-
ability �2s. The calculations of �2s by using the perturbation
formula �2�, valid for nondegenerate states, could be per-
formed only for ��7a0. For ��7a0 the energy difference
between the 2s and 2p states becomes comparable to or
smaller than the values of corresponding matrix elements
�squared� and the perturbation approach for calculation of
�2s becomes inappropriate. Instead, the variational �19� and
Green’s function �20,21� methods have to be employed in
such cases �degenerate or quasidegenerate states�. The results
for �2s, together with the energies of 2s and 2p states for a
selected set of screening lengths are shown in Table III. As
expected, the �2s polarizability is much larger than �1s
for the same value of the screening length �compare the val-
ues in Tables II and III�. The gradual increase in �2s down to
�=5.5a0 is mainly due to 2s-2p, 3p, transitions, while for
��5a0 the continuum contribution to �2s starts to dominate.
For ��4.541a0, the continuum is the only contributor to �2s.
When �→�2s

c =3.223a0, �2s increases dramatically, reaching
the value of 7.893�105 already at �=3.4a0. We note that the
static polarizability of hydrogen atom in its 2s state in the
plasma free case is 120a0

3 �19–21�.

TABLE III. Scaled energies of 2s and 2p states and scaled static dipole polarizability of hydrogenlike ions in the 2s state for a number
of scaled screening lengths, �=ZD. Numbers in parentheses indicate powers of 10.

��a0� 7 6 5.8 5.5 5 4.6 4.2 4 3.8 3.6 3.4

−E2s /Z2�a.u.� 0.05994 0.04281 0.03917 0.03361 0.02422 0.01681 9.889�−3� 6.792�−3� 4.079�−3� 1.903�−3� 2.293�−4�
−E2p /Z2�a.u.� 0.04845 0.02897 0.02483 0.01855 0.0082 8.515�−4�
�2s /Z4�a.u.� 2.651�3� 2.691�3� 2.747�3� 2.882�3� 3.347�3� 4.248�3� 1.310�4� 2.021�4� 3.990�4� 1.296�5� 7.893�5�

FIG. 7. Contributions to the scaled polarizability from individual bound and continuum states for hydrogenlike ions for the unscreened
and screened cases with a number of screening lengths. �Note the change of the scale on the right-hand-side of the figure for d� /d� for
different values of �.�
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V. CONCLUSIONS

In the present paper we have investigated the effects of
Debye-Hückel screening of the Coulomb interaction on the
static dipole polarizabilities �1s and �2s of hydrogenlike ions
in 1s and 2s states, respectively. We have found that both the
energy differences and dipole matrix elements entering the
expression �3� for the static polarizability decrease when the
Debye screening length � decreases, the decrease being very
sharp when the screening length approaches its critical value
�nl

c . In contrast, the dipole matrix elements with the con-
tinuum states increase with decreasing � except in the near-
threshold region. The overall effect of these changes is that
the contribution of the discrete part of the spectrum to the
polarizability �which includes all the states that remain
bound for a given value of �� decreases with decreasing �,
while the contribution of the continuum states increases. As a

result, both �1s and �2s gradually increase when � decreases
down to �=�2p

c =4.541a0, the screening length at which the
2p state enters the continuum, followed by a dramatic in-
crease when �→�1s

c =0.839908a0 and �→�2s
c =3.223a0, re-

spectively, due to the strong overlap of 1s and 2s wave func-
tions with the continuum in these regions of �.
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