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Is the closest product state to a symmetric entangled multiparticle state also symmetric? This question has
appeared in the recent literature concerning the geometric measure of entanglement. First, we show that a
positive answer can be derived from results concerning symmetric multilinear forms and homogeneous poly-
nomials, implying that the closest product state can be chosen to be symmetric. We then prove the stronger
result that the closest product state to any symmetric multiparticle quantum state is necessarily symmetric.
Moreover, we discuss generalizations of our result and the case of translationally invariant states, which can
occur in spin models.
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I. INTRODUCTION

Entanglement is a key phenomenon in quantum mechan-
ics and its quantification is vital for the field of quantum
information theory. Many entanglement measures have been
proposed for the two-particle as well as for the multiparticle
case �1,2�. Virtually all of the proposed entanglement mea-
sures, however, suffer a serious drawback: they are very dif-
ficult to compute as their definition contains optimizations
over certain states or quantum information protocols �3�.
Such optimizations can be performed successfully for special
cases only, for instance, if the density matrix under investi-
gation possesses a high symmetry or belongs to a special
family, e.g., with low rank �4�.

An often-used entanglement measure for multiparticle
systems is the geometric measure of entanglement �5�. For a
given multiparticle state ���, one first considers the closest
fully separable state ���= �a��b��c�¯ in terms of the overlap

G��� = max
���=�a��b��c�¯

������� , �1�

and then defines the geometric measure of the pure state as

EG����� = 1 − G���2. �2�

Sometimes, the geometric measure for pure states is also
taken as �G�����=−2 log2 G���. Based on this definition, the
geometric measure is extended to mixed states via the con-
vex roof construction: for a given density matrix � one mini-
mizes over all possible decompositions of � into pure states
�=�kpk��k���k�, where the pk form a probability distribu-
tion,

EG��� = min
pk,��k�

�
k

pkEG���k�� . �3�

Clearly, also this optimization is not straightforward to com-
pute.

The geometric measure has become one of the widely
used entanglement measures for the multiparticle case. It ful-
fills all the desired properties of an entanglement monotone

�5�. Moreover, it has a physical interpretation of quantifying
the difficulty in distinguishing multiparticle quantum states
by local means �6�. It has also been used to study quantum
phase transitions in spin models �7,8� and the usefulness of
states as resources for measurement based quantum compu-
tation �9�. The value of EG has been computed for many pure
states �10–12�, and the convex roof for some important cases
has been calculated in Refs. �5,13�.

If one considers the optimization problem in Eq. �1�, a
natural question arises whether for a symmetric state ��� the
closest product state can be chosen symmetric, i.e., ���
= �a��a��a�¯. If this is true, it drastically simplifies the cal-
culation of the geometric measure for pure symmetric states,
as the number of parameters in this optimization then does
not depend on the number of particles anymore. Recently
this problem drew considerable attention in quantum infor-
mation theory and some effort was made to prove it. For
example, it has been used as a conjecture in Ref. �5�. In Ref.
�11� it has been proved for two particles that there is always
a symmetric state which gives the maximum value �but it can
happen that also nonsymmetric states yield the same value�
and a first attempt for the N-particle case was given. Quite
recently, special cases of this conjecture have been verified
�14�, and related conjectures have been formulated �15�.

In this paper, we investigate the conjecture from several
perspectives. We show that a result on N-homogeneous poly-
nomials over Banach spaces can be applied to the above
problem and proves that the maximum in Eq. �1� can be
achieved by a symmetric state. However, this result does not
allow to conclude that only symmetric solutions exist. We
then go on to show that the optimal state maximizing G��� is
necessarily symmetric for three or more particles. Finally, we
will discuss consequences and generalizations of our results,
concerning, among others, the maximization of the expecta-
tion value of symmetric positive operators.

II. MAIN RESULT

In this section we will first apply a result from the theory
of homogeneous polynomials to the conjecture, proving that
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a symmetric state attains the maximum. Then we prove a
stronger version, stating that the maximizing state is neces-
sarily symmetric. Let us fix our notation. We write the over-
lap with a product state as an evaluation of a corresponding
N-linear form, i.e.,

����1,�2, . . . ,�N� ¬ ���1,�2, . . . ,�N� . �4�

A symmetric state ��� then corresponds to a symmetric
N-linear form �. For a k-level system, the vectors �i are
elements of Ck and we will always assume they are normal-
ized. Furthermore, the expression �	� denotes equality up
to a phase, i.e., there is a phase � such that �=ei��.

For any symmetric N-linear form there exists an associ-

ated N-homogeneous polynomial �̂ �16� by virtue of the
mapping

�̂:� � ���, . . . ,�� . �5�

The norm of this polynomial is defined by


�̂
 = max
�

��̂���� . �6�

In this context the quantity G��� we introduced above is
denoted by 
�
.

The relation between the norms 
�̂
 and 
�
 is studied in
the theory of polynomials over Banach spaces, cf. Ref. �17�.
For a Banach space E the polarization constant c�N ,E� is the
smallest positive number such that


�
 � c�N,E�
�̂
 �7�

holds for every symmetric N-linear form � over E.
For finite dimensional real and complex Hilbert spaces

this polarization constant is known to be 1, cf. Refs. �18,19�.
An exhaustive discussion can be found in Ref. �17�. In our
particular case E=Ck it follows that symmetric product states
maximize the overlap with any symmetric state, but leaves
open if also nonsymmetric states attain the maximal value.
This is in fact never the case for N�3, as we summarize in

Lemma 1. Let ��0 be a symmetric N-linear form over Ck

with N�3 and let the vectors �1 , . . . ,�N maximize ���, i.e.,

G��� = ����1,�2, . . . ,�N�� . �8�

Then the vectors �k are equal up to a phase, in other words,
the span of �1 , . . . ,�N is one-dimensional.

In order to prove Lemma 1, we will first consider the
situation where N=2. The following Lemma and its proof
were already given Ref. �11�, however, the proof provides
some observations that are essential in order to establish our
main result.

Lemma 2 ��11��. For any symmetric two-linear form �
over Ck we can find a vector � such that

G��� = ����,��� . �9�

Rephrasing the statement of the Lemma, when maximizing
��� for two particles, the maximum can by reached by a
symmetric choice of vectors, although a solution maximizing
��� is not necessarily symmetric.

Proof of Lemma 2. In a fixed orthonormal basis �bi� the

symmetric quadratic form � is represented by a symmetric
matrix 	ijª��bi ,bj�. Then we have ��� ,��=�T	�, where
on the right-hand side � and � are column vectors with co-
efficients in the basis �bi�. For a complex symmetric matrix
	=	T Takagi’s factorization theorem �20� states that 	 can
be written as

	 = UTDU , �10�

with a unitary matrix U and a diagonal matrix D
=diag�r1 , . . . ,rk� where the non-negative values ri are in de-
creasing order, r1�r2� ¯ �rk�0. In this form, a symmet-
ric choice of � and � maximizing ��� becomes evident,
namely, �	�	U†e1 where e1= �1,0 , . . . ,0�T. Hence G���
=r1. �

Let us make some remarks on the remaining freedom in
the choice of � and �. First, we note that if r1
r2 the only
choice to reach the maximum r1 is the one given in the proof
above. Hence for this case the maximizing solution is unique
�up to a phase� and symmetric.

Otherwise, consider the case r1=r2= ¯ =rd. We then say
� is degenerate and define R1ªspanC��e1 , . . . ,ed��. If G���
= ���� ,���, we can always write �	U†e� and �	U†e with
some e�R1, where the vector e��R1 denotes the vector
obtained from e by complex conjugation in the given basis.
The case that e	e� then corresponds to the symmetric
solutions.

The symmetric maximizing solutions therefore corre-
spond via U to real vectors in R1 �up to a phase�, and having
a nonsymmetric solution �	” � of the maximization implies
degeneracy. Moreover, in case of degeneracy we find a con-
tinuum of inequivalent asymmetric as well as symmetric so-
lutions. The following observation will be needed in the
main proof and expresses this fact.

Observation 3. Given a symmetric two-linear form � with

G��� = ����,��� , �11�

where �	” �, we can always find two orthonormal vectors �1
and �2, such that:

�i� �1 and �2 span the same space as � and �, in particular
� ,�� spanC���1 ,�2��.

�ii� We have G���= ����1 ,�1��= ����2 ,�2��= ���� ,���
= ��� ,���, where

� ª ��1 + �2�/2,

 ª ��1 + i�2�/2,

� ª ��1 − i�2�/2. �12�

�iii� The vectors �1 ,�2 ,� ,� do not equal �, even modulo
a phase.

Proof. Consider G���= ���� ,���= ���U†e� ,U†e�� with the
unitary matrix U from Takagi’s factorization of 	, where e
	” e� as �	” � by assumption. We can choose two real ortho-
normal vectors f1 , f2 such that spanC��f1 , f2��=spanC��e ,e���.
They can be obtained from the real and imaginary parts of e
and e� �21�. Hence
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�1 = U†f1 and �2 = U†f2 �13�

is a valid choice of orthonormal vectors fulfilling �i�, each
providing a symmetric maximization of ���. The vectors
�1 ,�2 as well as the vectors � , ,� derived from �1 ,�2
fulfill �ii� by construction, according to the observations
above and because �=U†�f1+ f2� /2, where �f1+ f2� /2
�R1 �likewise for  ,��. Finally, we have enough freedom
to choose f1 , f2 to satisfy �iii�. �

After these preliminaries, we are ready to prove Lemma
1:

Proof of Lemma 1. The proof consists of two parts. In Part
I we prove the case N=3. In Part II we extend the result to
arbitrary N
3.

Part I. Assume a maximizing set of vectors �� ,� ,�� has
been found,

G��� = ����,�,��� . �14�

We show that the assumption dim�spanC��� ,� ,�����1 leads
to �=0.

Without losing generality, we hence assume that �	” �.
Then we have a degenerate quadratic form ��� , · , · ·�. Using
Lemma 2 we obtain a symmetric maximizing solution �
	” � �due to �	” �, � is not unique�. Hence we have G���
= ���� ,� ,���. From Observation 3, applied to the quadratic
form ��· , · · ,��, we take the vectors �1 ,�2 ,� , ,� with the
properties as stated. With these vectors we define the
2�2-matrices A ,B ,N ,M via

Akl ª ���1,�k,�l� ,

Bkl ª ���2,�k,�l� ,

Nkl ª ���,�k,�l� = �Akl + Bkl�/2,

Mkl ª ��,�k,�l� = �Akl + iBkl�/2. �15�

As � ,�1 ,�2 ,�, and � are in spanC���1 ,�2�� the matrices
A ,B ,N ,M correspond to two-forms which assume the maxi-
mum r1=G��� on this span. Since �1 ,�2 ,� ,�	” �, the qua-
dratic forms A ,B ,N ,M are degenerate with the value r1. In
terms of the Takagi factorization, we can write A=UA

TDUA
and B=UB

TDUB, etc. with D=diag�r1 ,r1�. It follows that
A†A=B†B=N†N=M†M =D2, which implies A†B+B†A
= i�A†B−B†A�=0. Hence B†A=0, which is only possible for
�=0.

Part II. The extension to the case N
3 is proved as fol-
lows. If G���= ����1 ,�2 , . . . ,�N�� we define a symmetric
3-linear form by

�k̂ ª ���̂1,�̂2, . . . ,�̂k, . . . ,�N� , �16�

where �̂i denotes omission, i.e., �1 ,�2 ,�k are omitted. As in
Part 1, we have G���= ��k̂��1 ,�2 ,�k�� and thus �1	�2
	�k for all k. Hence all vectors �1 , . . . ,�N must be the same
up to a phase. �

Lemma 1 is stated for N-linear forms over a complex
vector space. If ��� is real, one can also consider the maxi-
mization over real product vectors. In general this will yield
a different result than the complex case �22�. Since the po-

larization constant is 1 also in the real case, one can find a
symmetric state among the real product states which attains
the maximum. In contrast to the complex case, the maximiz-
ing state is, however, not necessarily symmetric for three
particles. A counterexample is ���= ��001�+ �010�+ �100�
− �111�� /2 where the maximum of 1/2 is also attained by
���= �001�.

The following Lemma provides an additional very simple
proof that c�N ,H�=1 for N=2�, and is based on a symme-
trization procedure.

Lemma 4. Let � be a symmetric N-linear form with N
=2� and let the vectors �1 , . . . ,�N maximize ���. Then there
exists a normalized vector � in the span of �1 , . . . ,�N such
that

����1, . . . ,�N�� = ����, . . . ,��� . �17�

This statement holds for real and complex Hilbert spaces.
Proof. Let �· , · ·� denote the scalar product and we define

the constant �=���1 ,�2 ,�3 , . . .�. Then ��· ,�2 ,�3 , . . .�
=���1 , ·� and ���1 , · ,�3 , . . .�=���2 , ·� �cf. Eq. �6� in Ref.
�5��. Using the symmetry and linearity of � we arrive at

��· ,�1,�3, . . .� = ���1, ·� �18�

and hence

� = ���1,�1,�3, . . .� , �19�

where �1= ��1+�2� / 
�1+�2
. �If �1=−�2, we set �1=�1
and replace � by −�.�

We now repeat this procedure, first yielding �
=���1 ,�1 ,�3 ,�3 , . . .� and then �=���1 ,�1 ,�1 ,�1 , . . .�,
where �3 is defined analogously to �1 and �1
= ��1+�3� / 
�1+�3
. In the second step we applied the sym-
metrization to the first and third argument as well as to the
second and fourth argument. Since N=2�, we can complete
this symmetrization and arrive at �=��� , . . . ,�� for some �
in the span of �1 , . . . ,�N. �

III. DISCUSSION

A. Physical interpretation of the proof

An interpretation of the proof of Lemma 1 in physical
terms is the following. The matrices A ,B ,N and M in Eq.
�15� are representations of the state ���, after one site has
been measured out and the remaining state has been pro-
jected onto a two-dimensional subspace. The values ri corre-
spond to Schmidt coefficients of this remaining state and, as
they are equal, the state corresponds to a Bell state. The
proof of Lemma 1 shows that for qubits it is impossible to
create a state of three particles that is both symmetric and
always results in a Bell-pair like state after an arbitrary mea-
surement on one site.

B. Translationally invariant states

It is interesting to ask whether also for translationally in-
variant states the maximum is attained in a symmetric state,
as such states occur naturally in the analysis of spin models.
This has sometimes been assumed when investigating the

GEOMETRIC MEASURE OF ENTANGLEMENT FOR… PHYSICAL REVIEW A 80, 032324 �2009�

032324-3



geometric measure in condensed matter systems.
First, a counterexample for this conjecture is the state

��� =
1
2

��0101� + �1010�� �20�

for which the closest separable states are the nonsymmetric
states �0101� and �1010�. In fact, one can find translationally
invariant states which are orthogonal to any symmetric prod-
uct state, e.g., ������0101�− �0011�+ all translations�.

This situation gets worse as the number of particles in-
creases. Let T denote the subspace of translationally invari-
ant states for N qukits and let S�T be the permutationally
symmetric subspace. Then any state in X=T�S�—the or-
thocomplement of S in T—has a vanishing overlap with any
symmetric product state, hence the closest product state is
not symmetric. The dimension of T is given by �23�

dim�T� =
1

N
�
j�N

��j�kN/j , �21�

where � denotes Euler’s totient function and the summation
is over all divisors j of N. For S we have

dim�S� = �N + k − 1

k − 1
� . �22�

Therefore, if N�k then the dimension of the subspace X is
roughly given by �kN−Nk� /N and the fraction of states where
the conjecture holds shrinks rapidly as the number of
particles increases.

Concerning the analysis of entanglement in spin models,
this shows that the assumption that the closest separable state
to the ground state is symmetric, has to be handled with care.
For some models, it seems to be true �8,24�, for other models
�like the Majumdar-Ghosh model �25�� one can directly
check that it is wrong.

C. Operators of higher rank

We now consider generalizations of our results. Let �S be
the projector onto the symmetric subspace S. An operator A
is permutationally symmetric if it acts on the symmetric sub-
space only, i.e., it fulfills A=�SA�S. A is called permuta-
tionally invariant if it is invariant under permutation of the
particles �the latter is a weaker condition than the former
�26��. We hence define for an observable X

Ĝ�X� ª max
���=�a��b��c�¯

����X���� ,

ĜS�X� ª max
���=�a�¯�a�

����X���� . �23�

Such optimizations occur naturally in the construction of en-
tanglement witnesses or in the estimation of entanglement
measures via Legendre transforms �2�.

To study the relation of these quantities, we can write
���X���=Tr�X������� as an evaluation of a corresponding
N-linear form � over Hk �the Banach space of Hermitian
matrices of dimension k equipped with the trace norm� due
to

��A1, . . . ,AN� = Tr�XA1 � ¯ � AN� . �24�

Then any permutationally invariant operator X corresponds
to a symmetric N-linear form � and an N-homogeneous poly-

nomial �̂. We now define 
�
 and 
�̂
 analogously to Sec. II
�using 
A
=1 as normalization condition�. It is straightfor-

ward to see that Ĝ�X�= 
�
 and ĜS�X�= 
�̂
. As the polariza-
tion constant can be shown to be �27�

c�N,Hk� = NN/N ! for N � k , �25�

the quotient Ĝ�X� / ĜS�X� can get arbitrarily large as N and k
increase.

At the end of this section, we will provide a further ex-
plicit example. Let us first discuss some cases where sym-
metry assumptions do hold:

Corollary 5. �i� If X is a positive permutationally symmet-

ric observable then Ĝ�X� can be attained by a symmetric
state.

�ii� If X is a permutationally invariant N-qubit observable

that contains only full correlation terms, then Ĝ�X� can be
attained by a symmetric state.

Proof. �i� We note that

Ĝ�X� � max
���=�b1�¯�bn�

max
���=�a1�¯�an�

����X���� . �26�

Fixing ���, the �unnormalized� state X���=�SX�S��� is
symmetric and by virtue of Lemma 1 the maximum is
reached by a symmetric state �a , . . . ,a�. Repeating the rea-

soning with the fixed state ���= �a , . . . ,a�, we get Ĝ�X�
�max�b� max�a���a , . . . ,a�X�b , . . . ,b��. The fact that for posi-
tive operators 2����P����� ���P���+ ���P���
�2 max����P��� , ���P���� holds for arbitrary ��� and ���
proves that Ĝ�X�� ĜS�X�, hence Ĝ�X�= ĜS�X�.

�ii� An N-qubit operator X contains only full correlation
terms if X=�i,j,. . .��x,y,z��ij¯�i � � j �¯. Note that here �0
=1 does not occur; a physically relevant and well-known
example for such an operator X is the Mermin inequality. As
X is permutationally invariant, � is equivalent to a symmetric
N-linear form over R3. The Bloch representation for qubits
implies that here the maximization is equivalent to finding
maxri�R3���r1 ,r2 , . . . ,rN�� where the vectors ri are the corre-
sponding Bloch vectors. Since the polarization constant for
real Hilbert spaces is 1 �17–19�, the assertion follows. �

Let us conclude with some examples where symmetry
assumptions do not hold. If X is symmetric but not positive,

then the maximum Ĝ�X� is, in general, not attained by a
symmetric state. A counterexample for two qubits is X
=6��+���+�− �00��00�−2�11��11� with ��+�= ��01�+ �10�� /2.

Then Ĝ�X�=3 �we can take ��0�= �01�� while the maximum
for symmetric product states is 34/15. Also, if X is permuta-
tionally invariant �and even positive� then the maximum

Ĝ�X� is, in general, not attained by a symmetric state. A
counterexample is the singlet state, X= ��−���−� with ��−�
= ��01�− �10�� /2. This operator is invariant under permuta-
tion of the particles, but it does not act on the symmetric
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space. It has Ĝ�X�=1 /2, but restriction to the symmetric ���
would yield again Ĝ�X�=0. This clarifies some questions
raised in Ref. �15�.

IV. CONCLUSION

In conclusion, we have discussed a widely used conjec-
ture concerning the geometric measure of entanglement. Our
results not only simplify the calculation of the geometric
measure for symmetric states, but they also have applications
to subjects in condensed matter physics. Furthermore, from a
mathematical perspective, the quantity G, as defined in the
introduction, is known as the injective tensor norm �28�. On
the one hand, this norm is of central importance in tensor
analysis, since there are, as Grothendieck showed, 14 in-

equivalent natural tensor norms derivable from G �29�. On
the other hand, this norm has also occurred in the discussion
of the maximal output purity of quantum channels �30�. So
we believe that the study of tensor norms can yield further
interesting insights in quantum information theory.
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