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The security of the decoherence-free version of the Bennett-Brassard 1984 �BB84� protocol �A. Cabello,
Phys. Rev. A 75, 020301 �2007�� is analyzed and shown to be vulnerable under the intercept-resend attack. We
propose two improved versions of this protocol. Both improvements remain the performance of robustness
against collective noise and refuse the security flaw. Especially, the second improvement, which is called
four-qubit decoherence-free �DF� BB84 protocol, not only remains all characteristics of the original protocol
but also has a higher efficiency. We also give a detailed security proof of four-qubit DF BB84 protocol.
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I. INTRODUCTION

Quantum mechanics allows the distribution of crypto-
graphic keys whose security is based on the laws of physics
instead of the difficulty of solving mathematical problems
�1,2�. Since the pioneering work proposed by Bennett and
Brassard �Bennett-Brassard 1984 protocol �BB84 protocol��
�2�, quantum cryptography had attracted a great deal of at-
tention �3–10�. So far, it has been one of the most promising
applications of quantum information processing. However,
qubit states are very fragile and tend to be destroyed by
decoherence due to the unwanted coupling with the environ-
ment �11�. Such uncontrollable influences cause noise or er-
rors in the communication and thus reduce the advantages of
quantum cryptography protocols. For example, in quantum
communication, the qubits carried by polarized photons
which are successively sent via the optical fiber will experi-
ence the birefringence. If left untreated, this would result in
an unacceptably high error rate and cut down the efficiency
and security. It is well known that we can add redundancy
when encoding quantum information in order to detect and
correct the errors by many strategies such as quantum error
correction �12–14�, purification of noisy entanglement
�15,16�, and quantum error rejection �17–19�. However, they
only work well when the interaction with the environment is
weak enough and the qubits are affected with a low
probability.

Fortunately, not all quantum states are equally fragile
when interacting with the environment. When the photons
are transmitted in some medium �e.g., the optical fiber�, a
particularly relevant symmetry arising when the environment
couples with the qubits without distinguishing between them
results in the so-called collective noise. The transformation
of collective noise can be described by an unitary operator
U�t�, where t denotes the time of transmission and means a
temporal dependence. As mentioned in Ref. �20�, if the time
delay between the photons is small enough, the effect of
collective noise on a N-qubit state can be modeled approxi-
mately as

�N ⇒ �U�t���N�N�U�t�†��N, �1�

where �U�t���N=U�t� � ¯ � U�t� denotes the tensor product
of N unitary transformations U�t�. In fact, there exist quan-
tum states which are invariant under collective noise no mat-
ter how strong the interaction is. These states are called
decoherence-free �DF� states and have been applied to the
protection of quantum information in many researches
�20–28�. The following equation shows the invariance
property of DF states:

�N = �U�t���N�N�U�t�†��N. �2�

This immunity against �U�t���N has been demonstrated in
some experiences �29–31�.

Recently, Boileau et al. proposed a quantum key distribu-
tion �QKD� protocol �26�, which is in essence a DF version
of Bennett 1992 protocol �B92� protocol �3�, over the
collective-noise channel using DF subspace and DF sub-
system, respectively. Then, Cabello implemented a variation
of BB84 protocol, which is robust against collective noise, in
six-qubit DF subspaces �32�. Except for its robustness
against collective noise, the DF version of BB84 protocol
has two interesting properties which make it essentially dif-
ferent from the original scheme. �a� All four states used in
this protocol can be obtained by permuting the qubits of a
single DF state. �b� Two orthogonal states in either base can
be distinguished reliably by an alternative fixed sequence of
single-qubit measurements. These properties make the proto-
col easy to be implemented under current technologies.

However, an eavesdropper, Eve, can steal some informa-
tion of the key distributed in this protocol by intercept-resend
�IR� attack without being detected. In this paper, we will
show that how the DF version of BB84 protocol proposed in
Ref. �32� �hereinafter referred to as DF BB84 protocol� runs
the risk of leaking information out to Eve and then give two
improved versions which can distribute keys over the
collective-noise channel in a secure and efficient manner.*sunshiny2007@yahoo.cn
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II. VULNERABILITY OF DF BB84 PROTOCOL
UNDER IR ATTACK

In order to describe the attack strategy clearly, we review
DF BB84 protocol first. In this protocol, two orthogonal

bases are ��0̂� , �1̂�� and ���̂� , ��̂��, respectively. These four
states are in the forms of

�0̂� = ��−�12 �
1

2	3
�2�0011� − �0101� − �0110� − �1001�

− �1010� + 2�1100��3456, �3a�

�1̂� = P1↔3,2↔4�0̂�

= ��−�34 �
1

2	3
�2�0011� − �0101� − �0110� − �1001�

− �1010� + 2�1100��1256, �3b�

��̂ � = P1↔3�0̂�

= ��−�32 �
1

2	3
�2�0011� − �0101� − �0110� − �1001�

− �1010� + 2�1100��1456, �3c�

��̂ � = P2↔4�0̂�

= ��−�14 �
1

2	3
�2�0011� − �0101� − �0110� − �1001�

− �1010� + 2�1100��3256, �3d�

where ��−�= 1
	2

��01�− �10�� and Pi↔j denotes permuting the
ith qubit and the jth one in the quantum state. Because of the

features shown above, it is obvious that only the state �0̂�
needs a setup which can be designed by combining the ap-
paratuses in Ref. �27� and the other three states can be pre-

pared by permuting the outputs of the setup for �0̂� �33�.
When the receiver Bob receives the six-qubit states ran-
domly prepared by the sender Alice, he measures every re-
ceived state in one of the measurement sequences
�Z1Z2X3X4Z5Z6 ,X1Z2Z3X4Z5Z6� at random. Either measure-
ment sequence is formed by six single-qubit measurements,
where Xi�Zi��i=1, . . . ,6� denotes measuring the ith qubit in
X basis �Z basis�. Bob records his measurement results

��0̂� , ��̂�� and ��1̂� , ��̂�� as 0 and 1, respectively. At last, if
and only if the measurement sequences chosen by Bob are
coincident with Alice’s preparations, the corresponding re-
corded bits can be kept for the raw key.

From the fixed sequences of single-qubit measurements
used in DF BB84 protocol, Z1Z2X3X4Z5Z6 and
X1Z2Z3X4Z5Z6, we can find that four single-qubit measure-
ments, which are marked in bold, remain unaltered. So Eve
can make use of this phenomenon to get some valuable in-
formation and escape from being detected. If she intercepts
all the states sent from Alice and only measures the qubits
with Z2X4Z5Z6 except for the first and the third ones in each
state, neither of the communicators can discover her attacks.

All the possible measurement results obtained by Eve in this
attack are shown in Table I. From Table I, we can see that

when Alice sends �0̂� and ��̂�, Eve may obtain some results

which will never appear in the cases �1̂� and ��̂�, i.e.,
�0�2�� �4�0�5�0�6 and �1�2�� �4�1�5�1�6. Consequently, we ob-
tain the essential reason of information leakage

�2456
0 � �2456

1 , �2456
0� � �2456

1� , �4�

where �2456
0 , �2456

1 , �2456
0� , and �2456

1� denote the reduced density
matrices of quantum systems shown in Eqs. �3�, respectively.

If expressing �0̂� and ��̂� in Z1Z2X3X4Z5Z6 or X1Z2Z3X4Z5Z6,
we can find that �0�2�� �4�0�5�0�6 and �1�2�� �4�1�5�1�6 appear

with a probability of 2/5 in either �0̂� or ��̂�. Thus, if Eve
attains anyone of these four measurement results, she can
make sure that Bob’s record will be “0” in the case that he

chooses the right base sequence. Since Alice sends �0̂� and

��̂� with the probability of 1/2, Eve can gain the certain
information with a probability of 1

2 �
2
5 = 1

5 . Although Eve’s
attacking action disturbs the transmitted six-qubit DF states,
they collapse to the tensor product states which are also the
possible results Bob will obtain from his measurements no
matter which sequence of single-qubit measurements he
chooses.

III. FIRST IMPROVEMENT

Now we give an improved version of DF BB84 protocol.
Considering the relationship among the states ��0�, �1�, �+�,
�−�� used in BB84 protocol, we keep ��0̂� , �1̂�� unchanged and
select another orthogonal basis ���0̂� , ��1̂�� �shown in Eqs.

�5�� to replace ���̂� , ��̂��,

TABLE I. All possible measurement results obtained by Eve
with Z2X4Z5Z6 in her attack.

The original state The possible results

�0�2�� �4�0�5�0�6, �1�2�� �4�1�5�1�6,

�0̂�
�0�2�� �4�1�5�1�6, �1�2�� �4�0�5�0�6,

�0�2�� �4�0�5�1�6, �1�2�� �4�0�5�1�6,

�0�2�� �4�1�5�0�6, �1�2�� �4�1�5�0�6.

�0�2�� �4�1�5�1�6, �1�2�� �4�0�5�0�6,

�1̂� �0�2�� �4�0�5�1�6, �1�2�� �4�0�5�1�6,

�0�2�� �4�1�5�0�6, �1�2�� �4�1�5�0�6.

�0�2�� �4�0�5�0�6, �1�2�� �4�1�5�1�6,

��̂�
�0�2�� �4�1�5�1�6, �1�2�� �4�0�5�0�6,

�0�2�� �4�0�5�1�6, �1�2�� �4�0�5�1�6,

�0�2�� �4�1�5�0�6, �1�2�� �4�1�5�0�6.

�0�2�� �4�1�5�1�6, �1�2�� �4�0�5�0�6,

��̂� �0�2�� �4�0�5�1�6, �1�2�� �4�0�5�1�6,

�0�2�� �4�1�5�0�6, �1�2�� �4�1�5�0�6.
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��0̂� =
1
	2

��0̂� + �1̂�� , �5a�

��1̂� =
1

	2
��0̂� − �1̂�� . �5b�

In order to reserve the virtues of DF BB84 protocol, we
also want to use single-qubit measurements to distinguish the
orthogonal states. But the states ��0̂� and ��1̂� are not distin-
guishable using a fixed sequence of single-qubit measure-
ments. Fortunately, it has been proven that any two orthogo-
nal states can be distinguished by single-qubit measurements
assisted by local operation and classical communication
�LOCC� �34�. It means that there are some conditioned se-
quences of single-qubit measurements which allow us to re-
liably distinguish between ��0̂� and ��1̂�. In these sequences,
what is measured on one qubit needs to depend on the result
of a prior measurement on another qubit in the same state.
We find these sequences of single-qubit measurements bas-
ing on the facts expressed in Eqs. �6� and then show them in
Table II in detail.

��0̂� =
1

4	3
��0��+ ��0���+ ��2�11� − �01� − �10�� + �− ���01�

+ �10��� + �0��− ��0���+ ���01� + �10��

+ �− ��− 2�11� − �01� − �10��� + �1��+ ��1���+ ��− 2�11�

+ �01� + �10�� + �− ���01� + �10��� + �1��− ��1���+ ���01�

+ �10�� + �− ��2�11� + �01� + �10��� + �0��+ ��1���+ ���a0�

��c0� + �a1��d1��� − ��− ���+ ��+ � + �− ��− ��� + �0��− ��1�

��− �+ ���+ ��+ � + �− ��− �� + �− ���b0��e0� + �b1��f1���

+ �1��+ ��0���+ ���+ ��− � + �− ��+ �� + �− ���a0��e0� + �a1�

��f1��� + �1��− ��0���+ ���b0��c0� + �b1��d1�� + �− ���+ �

��− � + �− ��+ ���� , �6a�

��1̂� =
1

4	3
�2�0��+ ��0��− ��11� − 2�0��− ��0��+ ��11� + 2�1��+ �

��1��− ��00� − 2�1��− ��1��+ ��00� + �0��+ ��1���+ ���a0�

��c1� + �a1��d0�� − �− ��+ ��− �� + �0��− ��1��− �+ ��− �

��+ � + �− ���b0��e1� + �b1��f0��� + �1��+ ��0��− �+ ��− �

��− � + �− ���a0��e1� + �a1��f0��� + �1��− ��0���+ �

���b0��c1� + �b1��d0�� − �− ��+ ��+ ��� , �6b�

where

�a0� =
p

p2 + q2 �0� +
q

p2 + q2 �1� ,

�a1� =
q

p2 + q2 �0� −
p

p2 + q2 �1� ,

�b0� = −
p

p2 + q2 �0� +
q

p2 + q2 �1� ,

�b1� =
q

p2 + q2 �0� +
p

p2 + q2 �1� ,

�c0� = p�0� − q�1�, �c1� = �p − q��0� − �p + q��1� ,

�d0� = �p + q��0� + �q − p��1�, �d1� = q�0� + p�1� ,

�e0� = − p�0� − q�1�, �e1� = �q − p��0� + �p + q��1� ,

TABLE II. The conditioned sequences of single-qubit measure-
ments used to distinguish ��0̂� and ��1̂�. B, R, and C are used to
denote basis, result, and conclusion for short, respectively.

B R B R C

�0��+��0��+�
�11� , �01� , �10�

�0��−��0��−�
�1��+��1��+�

�00� , �01� , �10�
��0̂�

�1��−��1��−�
Z5Z6�0��+��0��−� �01� , �10�

�0��−��0��+� �11� ��1̂�
�1��+��1��−� �00�
�1��−��1��+� �01� , �10�

��0̂�
�0��+��1��−�

�++� , �−−�
�+−�

��1̂�
�0��−��1��+�

�−+�

X5X6
�++� , �−−�

��0̂�
�1��+��0��+�

�+−� , �−+�
�−−�

��1̂�
�1��−��0��−�

�++�
�−−� ��0̂�

Z1X2Z3X4

R B R B R C

�0��+��1��−� A5

�a0� C6
�c0� ��0̂�
�c1�

��1̂�
�a1� D6

�d0�
�d1�

��0̂�

�0��−��1��−� B5

�b0� E6
�e0�
�e1�

��1̂�
�b1� F6

�f0�
�f1�

��0̂�

�1��+��0��−� A5

�a0� E6
�e0�
�e1�

��1̂�
�a1� F6

�f0�
�f1�

��0̂�

�0��+��1��−� B5

�b0� C6
�c0�
�c1�

��1̂�
�b1� D6

�d0�
�d1� ��0̂�

ROBUST VARIATIONS OF THE BENNETT-BRASSARD… PHYSICAL REVIEW A 80, 032321 �2009�

032321-3



�f0� = �p + q��0� + �p − q��1�, �f1� = q�0� − p�1� ,

where

p =
	2 + 	2

2
,q =

	2 − 	2

2
.

However, in this improved version, some good features of
the original DF BB84 protocol have not been kept such as
the qubit-permutation character. So we consider to give an
improvement which have all virtues of the original DF BB84
protocol. We also try to achieve our goal with orthogonal
bases in lower-dimensional DF subspaces. It means that this
version has more excellent efficiency than the original one.

IV. SECOND IMPROVEMENT

As is known, the maximum number of bits encoded in
quantum states depends on the dimension of the space
spanned by these quantum states. So encoding 1 bit classical
information in DF states requires a two-dimensional DF sub-
space at least. Thus, in our different scheme, we need to use
two orthogonal bases in two-dimensional DF subspaces for
optimal efficiency. A natural choice of orthogonal base in the
two-dimensional DF subspace is as follows �23�, which has
been generated experimentally by Bourennane et al. �27� us-
ing parametric down-converted polarization-entangled
photons:

��0� =
1

2
��0101�1234 − �0110�1234 − �1001�1234 + �1010�1234�

= ��−�12 � ��−�34, �7a�

��1� =
1

2	3
�2�0011�1234 − �0101�1234 − �0110�1234 − �1001�1234

− �1010�1234 + 2�1100�1234�

=
1
	3

���+�12 � ��+�34 − ��−�12 � ��−�34 − ��+�12

� ��+�34� . �7b�

If permuting the qubits 1 and 4 in above states, we can obtain
the other orthogonal base needed in our scheme:

��0�� = P1↔4��0� = ��−�42 � ��−�31, �8a�

��1�� = P1↔4��1�

=
1
	3

���+�42 � ��+�31 − ��−�42 � ��−�31 − ��+�42

� ��+�31� . �8b�

In Ref. �27�, it is proven that ��0� and ��1� are distinguish-
able using the outcomes of single-qubit measurements,
Z1Z2X3X4, on these four qubits. Therefore, the sequences of
single-qubit measurements, Z1Z2X3X4 and X1Z2X3Z4, can be
used as the bases which will be randomly chosen by Bob in
the scheme. Obviously, Z2X3 are kept unaltered in two alter-

native bases Z1Z2X3X4 and X1Z2X3Z4. The detailed steps of
the four-qubit DF variation of BB84 �FQDF BB84� protocol
are similar with the original BB84 protocol. Thus we omit
these redundant descriptions here. Naturally, the most pre-
dominance of the new variation over BB84 protocol is that it
can distribute secure keys in the collective-noise channel.

Compared to the original DF BB84 protocol, our im-
proved version has more excellent performances. On the one
hand, the key generation rate can reach 12.5% in FQDF
BB84 protocol while 8.33% in the original one. On the other
hand, although FQDF BB84 protocol has some good features
similar to the original one, it does not share the insecurity
flaw. We can derive from Eqs. �7� and �8� that, for qubits
measured in Z2X3,

�23
�0 = �23

�1 = �23
�0� = �23

�1�, �9�

where �23
�0, �23

�1, �23
�0�, and �23

�1� are reduced density matrices of
systems shown in Eqs. �7� and �8�. Thus, ��0� , ��1� , ��0�� and
��1�� cannot be distinguished by measuring the second and
the third qubits in Z2X3. This conclusion can also be gained
from Table III intuitively.

Then we will give a more strict proof to prove the security
of FQDF BB84 protocol. Obviously, the security of FQDF
BB84 protocol is based on the security of qubits transmis-
sion. According to Stingspring dilation theorem �35�, as Eve
is limited to eavesdropping on the quantum line between
Alice and Bob, her eavesdropping can be realized by a uni-

tary operation, Û, on a larger Hilbert space, HB � HE. Since
the second and the third single-qubit measurement bases in
two basis sequences, Z1Z2X3X4 and X1Z2X3Z4, are kept in-
variable, the optimal attack on the second and the third qu-
bits of each DF state is measuring them in the basis Z2X3
directly. Thus, in every transmitted four-qubit DF state, only
the first and the fourth qubit should be considered. The effect
of Eve’s eavesdropping on the first and fourth qubits of ��0�,

TABLE III. The possible outcomes which will be obtained by
measuring the four states, ��0�, ��1�, ��0�� and ��1��, in the bases
Z1Z2X3X4 and X1Z2X3Z4, respectively.

State Z1Z2X3X4 basis X1Z2X3Z4 basis

��0�
�0��1��+��−�, �0��1��−��+�, �� ��1��� ��0�, �� ��1��� ��1�,
�1��0��+��−�, �1��0��−��+�. �� ��0��� ��0�, �� ��0��� ��1�.

��1�
�0��0��� ��� �, �1��1��� ��� �, �+��0��+��0�, �−��1��−��1�,

�0��1��+��+�, �0��1��−��−�, �� ��0��� ��1�, �−��0��−��0�,
�1��0��+��+�, �1��0��−��−�. �� ��1��� ��0�, �+��1��+��1�.

��0��
�0��1��� ��� �, �1��1��� ��� �, �−��1��+��0�, �+��1��−��0�,
�0��0��� ��� �, �1��0��� ��� �. �−��0��+��1�, �+��0��−��1�.

�0��0��+��+�, �1��1��−��−�, �� ��0��� ��0�, �� ��1��� ��1�,
��1�� �1��0��� ��� �, �0��0��−��−�, �+��1��+��0�, �−��1��−��0�,

�0��1��� ��� �, �1��1��+��+�. �+��0��+��1�, �−��0��−��1�.
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��1�, ��0��, and ��1�� can be described by the following
equations:

Û�0+���� = �0+���00
1 � + �0−���01

1 � + �1+���10
1 � + �1−���11

1 � ,

Û�0−���� = �0+���00
2 � + �0−���01

2 � + �1+���10
2 � + �1−���11

2 � ,

Û�1+���� = �0+���00
3 � + �0−���01

3 � + �1+���10
3 � + �1−���11

3 � ,

Û�1−���� = �0+���00
4 � + �0−���01

4 � + �1+���10
4 � + �1−���11

4 � ,

Û�+ 0���� =
1

4
��+ 0�14��0000� + �+ 1�14��0001�

+ �− 0�14��0010� + �− 1�14��0011�� ,

Û�+ 1���� =
1

4
��+ 0�14��0100� + �+ 1�14��0101� + �− 0�14��0110�

+ �− 1�14��0111�� ,

Û�− 0���� =
1

4
��+ 0�14��1000� + �+ 1�14��1001� + �− 0�14��1010�

+ �− 1�14��1011�� ,

Û�− 1���� =
1

4
��+ 0�14��1100� + �+ 1�14��1101� + �− 0�14��1110�

+ �− 1�14��1111�� ,

where ��� is the initial state of Eve’s ancilla, which is ap-
pended to the first and the fourth qubits of each DF state, ��ij

k �
�i , j� �0,1� ,k=1,2 ,3 ,4� are the pure ancilla’s states deter-

mined uniquely by the unitary operation Û, and

��0000� = ��00
1 � + ��00

2 � + ��00
3 � + ��00

4 � + ��01
1 � + ��01

2 � + ��01
3 �

+ ��01
4 � + ��10

1 � + ��10
2 � + ��10

3 � + ��10
4 � + ��11

1 � + ��11
2 �

+ ��11
3 � + ��11

4 � ,

��0001� = ��00
1 � + ��00

2 � + ��00
3 � + ��00

4 � − ��01
1 � − ��01

2 � − ��01
3 �

− ��01
4 � + ��10

1 � + ��10
2 � + ��10

3 � + ��10
4 � − ��11

1 � − ��11
2 �

− ��11
3 � − ��11

4 � ,

��0010� = ��00
1 � + ��00

2 � + ���00
3 +���00

4 � + ��01
1 � + ��01

2 � + ��01
3 �

+ ��01
4 �� − ��10

1 � − ��10
2 � − ��10

3 � − ��10
4 � − ��11

1 � − ��11
2 �

− ��11
3 � − ��11

4 � ,

��0011� = ��00
1 � + ��00

2 � + ��00
3 � + ��00

4 � − ��01
1 � − ��01

2 � − ��01
3 �

− ��01
4 � − ��10

1 � − ��10
2 � − ��10

3 � − ��10
4 � + ��11

1 � + ��11
2 �

+ ��11
3 � + ��11

4 � ,

��0100� = ��00
1 � − ��00

2 � + ��00
3 � − ��00

4 � + ��01
1 � − ��01

2 � + ��01
3 �

− ��01
4 � + ��10

1 � − ��10
2 � + ��10

3 � − ��10
4 � + ��11

1 � − ��11
2 �

+ ��11
3 � − ��11

4 � ,

��0101� = ��00
1 � − ��00

2 � + ��00
3 � − ��00

4 � − ��01
1 � + ��01

2 � − ��01
3 �

+ ��01
4 � + ��10

1 � − ��10
2 � + ��10

3 � − ��10
4 � − ��11

1 � + ��11
2 �

− ��11
3 � + ��11

4 � ,

��0110� = ��00
1 � − ��00

2 � + ��00
3 � − ��00

4 � + ��01
1 � − ��01

2 � + ��01
3 �

− ��01
4 � − ��10

1 � + ��10
2 � − ��10

3 � + ��10
4 � − ��11

1 � + ��11
2 �

− ��11
3 � + ��11

4 � ,

��0111� = ��00
1 � − ��00

2 � + ��00
3 � − ��00

4 � − ��01
1 � + ��01

2 � − ��01
3 �

+ ��01
4 � − ��10

1 � + ��10
2 � − ��10

3 � + ��10
4 � + ��11

1 � − ��11
2 �

+ ��11
3 � − ��11

4 � ,

��1000� = ��00
1 � + ��00

2 � − ��00
3 � − ��00

4 � + ��01
1 � + ��01

2 � − ��01
3 �

− ��01
4 � + ��10

1 � + ��10
2 � − ��10

3 � − ��10
4 � + ��11

1 � + ��11
2 �

− ��11
3 � − ��11

4 � ,

��1001� = ��00
1 � + ��00

2 � − ��00
3 � − ��00

4 � − ��01
1 � − ��01

2 � + ��01
3 �

+ ��01
4 � + ��10

1 � + ��10
2 � − ��10

3 � − ��10
4 � − ��11

1 � − ��11
2 �

+ ��11
3 � + ��11

4 � ,

��1010� = ��00
1 � + ��00

2 � − ��00
3 � − ��00

4 � + ��01
1 � + ��01

2 � − ��01
3 �

− ��01
4 � − ��10

1 � − ��10
2 � + ��10

3 � + ��10
4 � − ��11

1 � − ��11
2 �

+ ��11
3 � + ��11

4 � ,

��1011� = ��00
1 � + ��00

2 � − ��00
3 � − ��00

4 � − ��01
1 � − ��01

2 � + ��01
3 �

+ ��01
4 � − ��10

1 � − ��10
2 � + ��10

3 � + ��10
4 � + ��11

1 � + ��11
2 �

− ��11
3 � − ��11

4 � ,

��1100� = ��00
1 � − ��00

2 � − ��00
3 � + ��00

4 � + ��01
1 � − ��01

2 � − ��01
3 �

+ ��01
4 � + ��10

1 � − ��10
2 � − ��10

3 � + ��10
4 � + ��11

1 � − ��11
2 �

− ��11
3 � + ��11

4 � ,

��1101� = ��00
1 � − ��00

2 � − ��00
3 � + ��00

4 � − ��01
1 � + ��01

2 � + ��01
3 �

− ��01
4 � + ��10

1 � − ��10
2 � − ��10

3 � + ��10
4 � − ��11

1 � + ��11
2 �

+ ��11
3 � − ��11

4 � ,

��1110� = ��00
1 � − ��00

2 � − ��00
3 � + ��00

4 � + ��01
1 � − ��01

2 � − ��01
3 �

+ ��01
4 � − ��10

1 � + ��10
2 � + ��10

3 � − ��10
4 � − ��11

1 � + ��11
2 �

+ ��11
3 � − ��11

4 � ,
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��1111� = ��00
1 � − ��00

2 � − ��00
3 � + ��00

4 � − ��01
1 � + ��01

2 � + ��01
3 �

− ��01
4 � − ��10

1 � + ��10
2 � + ��10

3 � − ��10
4 � + ��11

1 � − ��11
2 �

− ��11
3 � + ��11

4 � .

Obviously, ��ij
k ��i , j� �0,1� ,k=1,2 ,3 ,4� must satisfy the

relationship Û†Û= I, i.e.,



k=1

4

��ij
k ��ij

k � = 1, where i, j � �0,1� ,



k=0

4

��ij
k ��mn

k � − 

l=1

4

��ij
l ��ij

l � = 0, where i, j,m,n � �0,1� .

The quantum systems shown in Eqs. �7� and �8� can be
rewritten with the effect of Eve’s eavesdropping as follows,
respectively:

Û��0���� =
1

2
��1−�23��0+�14��00

1 � + �0−�14��01
1 � + �1+�14��10

1 �

+ �1−�14��11
1 �� − �1+�23��0+�14��00

2 � + �0−�14��01
2 �

+ �1+�14��10
2 � + �1−�14��11

2 �� − �0−�23��0+�14��00
3 �

+ �0−�14��01
3 � + �1+�14��10

3 � + �1−�14��11
3 ��

+ �0+�23��0+�14��00
4 � + �0−�14��01

4 � + �1+�14��10
4 �

+ �1−�14��11
4 ��� , �10a�

Û��1���� =
1

2	3
���0+� − �0−� − �1+��23��0+�14��00

1 �

+ �0−�14��01
1 � + �1+�14��10

1 � + �1−�14��11
1 ��

+ ��0−� − �0+� + �1−��23��0−�14��01
2 � + �1+�14��10

2 �

+ �1−�14��11
2 � + �0+�14��00

2 �� + ��1+� + �1−� − �0+��23

���1+�14��10
3 � + �1−�14��11

3 � + �0+�14��00
3 �

+ �0−�14��01
3 �� + ��0−� + �1+� + �1−��23��1−�14��11

4 �

+ �0+�14��00
4 � + �0−�14��01

4 � + �1+�14��10
4 ��� , �10b�

Û��0����� =
1

8
��1−�23��+ 0�14��0000� + �+ 1�14��0001�

+ �− 0�14��0010� + �− 1�14��0011��

− �1+�23��+ 0�14��0100� + �+ 1�14��0101�

+ �− 0�14��0110� + �− 1�14��0111�� − �0−�23

���+ 0�14��1000� + �+ 1�14��1001� + �− 0�14��1010�

+ �− 1�14��1011�� + �0+�23��+ 0�14��1100�

+ �+ 1�14��1101� + �− 0�14��1110�

+ �− 1�14��1111��� , �10c�

Û��1����� =
1

8	3
���0+� − �0−� − �1+��23��+ 0�14��0000�

+ �+ 1�14��0001� + �− 0�14��0010� + �− 1�14��0011��

+ ��0−� − �0+� + �1−��23��+ 0�14��0100�

+ �+ 1�14��0101� + �− 0�14��0110� + �− 1�14��0111��

+ ��1+� + �1−� − �0+��23��+ 0�14��1000�

+ �+ 1�14��1001� + �− 0�14��1010� + �− 1�14��1011��

+ ��0−� + �1+� + �1−��23��+ 0�14��1100�

+ �+ 1�14��1101� + �− 0�14��1110� + �− 1�14��1111��� .

�10d�

For every transmitted four-qubit DF state, the action of Eve’s
eavesdropping will introduce an error rate

Pe
�0 = 1 −

1

4
���00

1 ��00
1 � + ��01

2 ��01
2 � + ��10

3 ��10
3 � + ��11

4 ��11
4 �� ,

�11a�

Pe
�1 =

1

12
���11

1 ��11
1 � + ��11

2 ��11
2 � + ��11

3 ��11
3 � − 2��11

1 ��11
2 �

− ��11
1 ��11

3 � + 2��11
2 ��11

3 � + ��10
1 ��10

1 � + ��10
2 ��10

2 �

+ ��10
4 ��10

4 � − 2��10
1 ��10

2 � − 2��10
1 ��10

4 � + 2��10
2 ��10

4 �

+ ��01
1 ��01

1 � + ��01
3 ��01

3 � + ��01
4 ��01

4 � − 2��01
1 ��01

3 �

− 2��01
1 ��01

4 � + 2��01
3 ��01

4 � + ��00
2 ��00

2 � + ��00
3 ��00

3 �

+ ��00
4 ��00

4 � + 2��00
2 ��00

3 � + 2��00
2 ��00

4 � + 2��00
3 ��00

4 �� ,

�11b�

Pe
�0� = 1 −

1

64
���0000��0000� + ��0101��0101� + ��1010��1010�

+ ��1111��1111�� , �11c�

Pe
�1� =

1

192
���0011��0011� + ��0100��0100� + ��10141��1011�

− 2��0011��0110� − 2��0011��1011� + 2��0110��1011�

+ ��0010��0010� + ��0110��0110� + ��1110��1110�

− 2��0010��0110� − 2��0010��1110� + 2��0110��1110�

+ ��0001
1 ��0001� + ��1001��1001� + ��1101��1101�

− 2��0001��1001� − 2��0001��1101� + 2��1001��1101�

+ ��0100��0100� + ��1000��1000� + ��1100��1100�

+ 2��0100��1000� + 2��0100��1100� + 2��1000��1100�� .

�11d�

Eve is supposed to be clever enough to prevent Alice and
Bob from detecting her eavesdropping by finding the dis-
crepancy in the error rates of quantum states, i.e.,
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Pe
�0 = Pe

�1 = Pe
�0� = Pe

�1�. �12�

If Eve tries to achieve the eavesdropping without being de-

tected, the error rates Pe
�0, Pe

�1, Pe
�0�, and Pe

�1� have to be equal
to 0 in the ideal collective-noise environment. Then Eqs. �13�
follows:

��00
1 � = ��01

2 � = ��10
3 � = ��11

4 � , �13a�

��00
2 � = ��00

3 � = ��00
4 � = 0, �13b�

��01
1 � = ��01

3 � = ��01
4 � = 0, �13c�

��10
1 � = ��10

2 � = ��10
4 � = 0, �13d�

��11
1 � = ��11

2 � = ��11
3 � = 0. �13e�

Thus, the quantum systems shown in Eqs. �10� can be rewrit-
ten as a tensor product of Eve’s ancilla ��00

1 � and the initial
quantum systems ���0�, ��1�, ��0��, and ��1��� because of the
relationship shown in Eqs. �13�. It implies that Eve’s eaves-
dropping will have no effect on the whole system used to
construct keys if she wants to eavesdrop without being de-
tected. That is to say, all Eve’s attacks can be detected. So it
suffices to conclude that FQDF BB84 protocol is secure for

Eve’s eavesdropping under an collective-noise environment.

V. CONCLUSION

To summarize, in this paper, we showed that an eaves-
dropper can elicit a certain amount of information from the
transmitted qubits in the original DF BB84 protocol. The
essence of information leakage can be concluded that, for
qubits measured in the unchanged bases, not all reduced den-
sity matrices of the involved systems are equal. We presented
two schemes which are also robust against collective noise to
improve the security of DF BB84 protocol. Especially,
FQDF BB84 protocol has a more excellent efficiency except
keeping the original properties of DF BB84 protocol.

ACKNOWLEDGMENTS

This work is supported by NSFC �Grants No. 60873191
and No. 60821001�, SRFDP �Grant No. 200800131016�,
Beijing Nova Program �Grant No. 2008B51�, Key Project of
Chinese Ministry of Education �Grant No. 109014�, Beijing
Natural Science Foundation �Grant No. 4072020�, National
Laboratory for Modern Communications Science Foundation
of China �Grant No. 9140C1101010601�, China Postdoctoral
Foundation �Grant No. 20090450018� and ISN Open Foun-
dation.

�1� S. Wiesner, SIGACT News 15, 78 �1983�.
�2� C. H. Bennett and G. Brassard, Proceedings of the IEEE Inter-

national Conference on Computers, Systems, and Signal Pro-
cessing, Bangalore, India �IEEE, New York, 1984�, pp. 175–
179.

�3� C. H. Bennett, Phys. Rev. Lett. 68, 3121 �1992�.
�4� M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59,

1829 �1999�.
�5� A. Beige, B. –G. Englert, Ch. Kurtsiefer, and H. Weinfurter,

Acta Phys. Pol. A 101, 357 �2002�.
�6� K. Boström and T. Felbinger, Phys. Rev. Lett. 89, 187902

�2002�.
�7� F. G. Deng and G. L. Long, Phys. Rev. A 69, 052319 �2004�.
�8� C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M.

Zukowski, and H. Weinfurter, Phys. Rev. Lett. 95, 230505
�2005�.

�9� M. Boyer, D. Kenigsberg, and T. Mor, Phys. Rev. Lett. 99,
140501 �2007�.

�10� F. G. Deng, X. H. Li, and H. Y. Zhou, Phys. Lett. A 372, 1957
�2008�.

�11� W. H. Zurek, Phys. Today 44�10�, 36 �1991�.
�12� P. W. Shor, Phys. Rev. A 52, R2493 �1995�.
�13� R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Phys.

Rev. Lett. 77, 198 �1996�.
�14� A. M. Steane, Phys. Rev. Lett. 77, 793 �1996�.
�15� C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A.

Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 �1996�.
�16� C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schuma-

cher, Phys. Rev. A 53, 2046 �1996�.
�17� X. B. Wang, Phys. Rev. Lett. 92, 077902 �2004�.
�18� X. B. Wang, Phys. Rev. A 69, 022320 �2004�.

�19� Y. A. Chen, A. N. Zhang, Z. Zhao, X. Q. Zhou, and J. W. Pan,
Phys. Rev. Lett. 96, 220504 �2006�.

�20� P. Zanardi and M. Rasetti, Phys. Rev. Lett. 79, 3306 �1997�.
�21� D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett.

81, 2594 �1998�.
�22� D. A. Lidar, D. Bacon, J. Kempe, and K. B. Whaley, Phys.

Rev. A 61, 052307 �2000�.
�23� J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, Phys.

Rev. A 63, 042307 �2001�.
�24� A. Cabello, Phys. Rev. Lett. 89, 100402 �2002�.
�25� A. Cabello, Phys. Rev. Lett. 91, 230403 �2003�.
�26� J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R.

W. Spekkens, Phys. Rev. Lett. 92, 017901 �2004�.
�27� M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Ca-

bello, and H. Weinfurter, Phys. Rev. Lett. 92, 107901 �2004�.
�28� T. Y. Chen, J. Zhang, J. C. Boileau, X. M. Jin, B. Yang, Q.

Zhang, T. Yang, R. Laflamme, and J. W. Pan, Phys. Rev. Lett.
96, 150504 �2006�.

�29� P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White,
Science 290, 498 �2000�.

�30� D. Kielpinski, V. Meyer, M. A. Rowe, C. A. Sackett, W. M.
Itano, C. Monroe, and D. J. Wineland, Science 291, 1013
�2001�.

�31� J. E. Ollerenshaw, D. A. Lidar, and L. E. Kay, Phys. Rev. Lett.
91, 217904 �2003�.

�32� A. Cabello, Phys. Rev. A 75, 020301 �2007�.
�33� C.-H. Ji, Y. Yee, J. Choi, S.-H. Kim, and J.-U. Bu, IEEE J. Sel.

Top. Quantum Electron. 10, 545 �2004�.
�34� J. Walgate, A. J. Short, L. Hardy, and V. Vedral, Phys. Rev.

Lett. 85, 4972 �2000�.
�35� W. F. Stinespring, Proc. Am. Math. Soc. 6, 211 �1955�.

ROBUST VARIATIONS OF THE BENNETT-BRASSARD… PHYSICAL REVIEW A 80, 032321 �2009�

032321-7


