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Experimental determination of entanglement for arbitrary pure states
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We present a way of experimentally determining the concurrence in terms of the expectation values of local
observables for arbitrary multipartite pure states. Instead of the joint measurements on two copies of a state in
the experiment for two-qubit systems [S. P. Walborn et al., Nature (London) 440, 20 (2006)], we only need one
copy of the state in every measurement for any arbitrary dimensional multipartite systems, avoiding the
preparation of twin states or the imperfect copy of the state.
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I. INTRODUCTION

Quantum entanglement is one of the most fascinating fea-
tures of quantum theory [1]. To characterize and quantify the
entanglement some well defined measures such as entangle-
ment of formation (EOF) [2,3] and concurrence [4,5] have
been used. For given two-quibt or some special symmetric
states explicit analytic formulas for EOF and concurrence
have been found [6—11]. For arbitrary given states the en-
tanglement can be estimated by analytic lower bounds
[12-21].

Nevertheless, for unknown quantum states, to characterize
the entanglement one needs experimental measurements. An
important approach to detect entanglement is the Bell-type
inequalities [22-26]. For instance, Gisin proved that all two-
qubit pure entangled states violate the Clauser-Horne-
Shimony-Holt (CHSH) inequality [24] and Chen et al. pre-
sented a Bell-type inequality that would be violated by all
three-qubit pure entangled states [25]. For general mixed
two-qubit states, Yu et al. [26] proposed a Bell-type inequal-
ity that gives a sufficient and necessary criterion for separa-
bility. Another experimentally plausible approach is the en-
tanglement witness [27], which could also be used to detect
certain kinds of entangled states with the present technology
[28].

However, to detect the entanglement in terms of Bell-type
inequalities one needs expectation values of two or more
observables (two or more setting measurements) per party.
And one has to do infinitely many dichotomic measurements
theoretically. Moreover until now we still have no necessary
and sufficient Bell inequalities to detect the entanglement for
general multiqubit systems. Certain entanglement witness
works only for some special states.

In fact the concurrence is defined for both bipartite and
multipartite states and gives rise to not only the separability
but also the degree of entanglement (at least for arbitrary
dimensional bipartite states). The problem is how to use this
measure to determine the entanglement for unknown quan-
tum states experimentally.

In [29] Mintert et al. proposed a method to measure the
concurrence directly by using joint measurements on two
copies of a pure state. Then Walborn ef al. presented an
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experimental determination of concurrence for two-qubit
states [30,31], where only one-setting measurement is
needed, but two copies of the state have to be prepared in
every measurement.

In this paper, we give a way of experimental determina-
tion of concurrence for two-qubit and multiqubit states, such
that only one copy of the state is needed in every measure-
ment. To determine the concurrence of the two-qubit state
used in [30,31], also one-setting measurement is needed,
which avoids the preparation of the twin states or the imper-
fect copy of the unknown state, and the experimental diffi-
culty is dramatically reduced. As examples general two-qubit
and three-qubit systems and generalized multiqubit GHZ
states |)=ap|0---0)+a,|1---1) are investigated explicitly.
The results are then generalized to the case of arbitrary di-
mensional multipartite pure states.

II. CONCURRENCE FOR N-QUBIT SYSTEM

For a N-partite M-dimensional pure state |)
=M1 a |i s ..5in), a; e, the concurrence is
l"""]\FO [Py 1 N, il
given by [32]
Clm =22, /@"-2) -3 w . (1)

where the summation goes over all 2V—2 subsets of the N
subsystems and p; is the corresponding reduced density ma-
trix with respect to the ith bipartite decomposition.

Up to a constant factor, C(|#)) can also be written as [5]

23 (2)

M
C(|Ir/,>): E 2 |aaﬁaa/ﬁ/ —Aaply g
P Aaa BB}

where @ and &’ (B and B') are subsets of the subindices of «,
associated with the same sub-Hilbert spaces but with differ-
ent summing indices. a (a') and B (B') span the whole
space of a given subindex of a. >, stands for the summation
over all possible combinations of the indices of « and .
Our main aim is to re-express the concurrence in terms
of the expectation values of local observables. We first
give a general proof that this can be always done: the
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squared concurrence of N-qubit pure state |i¢), C>(|)),
can be expressed by the real linear summation of

<¢|o-ilo-i2 ’N|¢><(/I| J1 /2 . O-jN|¢>’

3

2 —
C (|'r//>)_ E 'xl‘l,.uyistlv“vjN

[N PR Vel

X(Yloy, 0y, ... 03 [dXoy o), ... o [, (3)

where the coefficients x; el are real, oy is the 2 X2
identity matrix, and 0'1—(1 o) 02=("4), and o3=( *) are
the Pauli matrices.

We only need to show that each term in the squared
C(|4)) of Eq. (2) can be written in the form of the right-hand
side of Eq. (3). Note that

|aaﬁaa/5/ - aaﬁ,aa/ﬁ|2

= |aa/3aa,ﬁr|2 + |Claﬂraalﬁ|2 - azﬁaz,ﬁ,aaﬁraarﬁ

—aaﬁaa,ﬁfazﬁ,az,ﬁ. (4)

Set AW=|aB)af], APV=|a'B'Na' B, AV =|aB N apB'|.

|aaﬁaalﬁr|2 + |aa51aalﬁ 2
= (A DAY ) + (AP (AP ). (5)
AW, i,j=1,2, obviously has the form AW =i )(i|® -

, where iy,...,iy take value 0 or 1. As [0)(0|
=%(0'O+cr3) and |1><1|=%(0’0—0'3), we have

|aaﬁaa,ﬁ,|2 + |aaﬂ/aa,ﬁ|2

= > iy i O3, 0 T [
ise iy e in=03
X(¢|0'j10j2 o O'J-N|1p)
for some real coefficients x; iy
Denote further A(13 A

A“4>——(Iaﬁ><aﬁ |

A<24 ——(Ia B><a B'l-

~ Ao prapiGar = Aaplat B'ap G
=~ (UAPHAD| ) + (YA YA ).
(6)

It is clear that | are tensor
products , |0X1|=3(ay~i0,), and [1)0]
=1(oy+io,). Without loss of generality we assume A3
= fl1><11| @ ® |ls><ls| ® (|is+1><js+1| @ ® |ZN><]N|
+]jse ) igr| © - @ jnXinl), where 1=s<N, i, take val-
ues 0 or 1, and i #j, for each s+1=k=N. The part
li(i|® - ®|i,)(iy| is the real linear summation of tensor
products of o, and o5. The rest part T=li, )}ji|® -
® in)inl + g1 Xiga| ® - - @ |jw)iy| can be written as
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® [o)+i(-1)'iay],

2N_ I=s+1 2N_Sz—s+1
where p, takes values O or 1 for each /. T is further of the
form

1 N-s

2N_5 E E l'N —s—1

1=0 {No. [ of hj is 1, the others are 2}

N-s

X ® Op [(_ l)lm + (_ 1)N—s—1_1m]’
=1

0=<l,<N-s-1I. If N-s—1 is even, then i is real and
each factor of ®- crh is real. If N—s—[ is odd, then (—1)
+(=1)N=sn=, Hence A1) ig the real linear summation of
the tensor products of o, 0=i=3.

Similarly one can show that AU A and A are real
linear summation of tensor products of o;, 0=i=3. Thus
—azﬁaz,ﬁ,aaﬂraarﬁ—aaﬂaarﬁ,azﬁ,az,ﬁ and Eq. (4) can be
expressed in the form of real linear summation of
<l/f|(7i10i2 1N|l//><¢| 719, jN| ).

Therefore the squared concurrence of N-qubit pure states
C*(|4)) can be expressed as the expectation values of tensor
products of ¢; (0=i=3), though such expressions may be
not unique. [From Egs. (5) and (6) one sees that it is possible
to find an expression that is invariant under the permutations
of the N observables.]

A. Concurrence for two-qubit system

lagi[*=1,

%, (7)

2 _
= 4|a00a“ —do1do

which can be expressed as

C? = 1(1 +(0303)? = (0300)* = (0003)* = (0001)? + {030 )?
—(0002)* + (0302)%). (8)

Therefore for experimental determination of the concurrence,
one only needs to measure {030%), (0307), and (030,). One
may also find alternative expressions with symmetry under
the exchange of the two qubits [34].

For states in Schmidt decomposition,
lag|®+|a;[>=1, we have

=%(1 +(0303) = (0003)* = (0300)°). )

In this case experimentally we only need to measure (o303)
or simply count the probability P(++) P(—-) of prQ]eCthIlS
5(0)+[1)) and |-)=5(l0)
—|1)), respectrvely, since C?= 16P(++)P(——) For the state
a|01)+ B|10) used in [30], it is also true that only one-setting
measurement is needed. But here we only need one copy of
the state in every measurement, while in [30] joint measure-
ments on two copies of the state are needed in every mea-
surement. o _

For small deviation |¢/')=11—-¢€|))+\e|¢p) from an ideal
pure state |¢) due to imperfect preparation, where € € IR and
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|¢) is an arbitrary pure state, our protocol shows that the
concurrence obtained from the experiment is exactly the one
of |¢'). Hence if the parameter € is small enough, the differ-
ence of the concurrence between | and |¢/') would be small
enough. For a two-crystal type-I down-conversion source,
with improper spatial mode matching and spectral filtering,
the imperfect preparation procedure could result in mixed
states, p=(1-e)|y)}(y|+e(|al*|HHXHH|+|BI[VV)(VV]), in-
stead of the ideal pure state |)=a|HH)+B|VV), where H
and V stand for horizontal and vertical linear polarizations,
respectively. That is, the phase coherence between |HH) and
|VV) is reduced by 1-e. Therefore the actual concurrence of
p is smaller than that of |), C(p)=(1-¢€)|aB| [6,31]. If we
still measure the state according to Eq. (8) or (9), we have
C(p)=|ap|. Thus the relative error due to mixing is linear in
€.

Remark. In principle one can always use tomography to
reconstruct the unknown state. However it requires a large
number of measurements. In particular one needs 3"-setting
measurements to reconstruct an arbitrary N-qubit density ma-
trix. To obtain all 16 expectation values of the two-qubit
density matrix, nine-setting measurements have to be used
[33]. From (8) we only need three-setting measurements to
quantify the entanglement of the state, which is much sim-
pler than tomography approach.

B. Concurrence for three-qubit system

For any pure three-qubit state |§)=X;, o a;lijk), the
squared concurrence is of the form

C’= 4(lagooar 1 = ago14y 10|2 + a1 = aoro@ion |2
+|agoo 111 = aoriaool + lagorario = aoroaionl’
+lagorai0 = aoriarool” + laoioaior = aor1aiool’)

+ 8(|agooctor 1 = @oordorol” + laooed 101 = @oo1@1o0l’
+|agoo110 = aoioaiool + lagorar — aoriaion
+agioar = aoniarol* + laiooain = aoiarol).
(10)
Up to a constant factor, C> can be expressed as
C’= i(9 - 5<0'00'3‘70>2 - 5<0'00'0‘T3>2 - 5<0'30'OCTO>2
+(000303)” + (030300) + (030003)° + 3(03030%)°
= X0y0001)* = 30001 00)* = 301 000)* — (090307)
—(010003)” = (030100)° + 3{00103)” + 3{030007)
+3(010300)” + (030301 +(030103)” +(0,030%)°
- 3<0'0<70(72>2 - 3<0'0<72f70>2 - 3<0'2<7000>2 - <<700'30'2>2
—(0,0003)” = (030200)" + 3(000,03) + 3(0300072)
+3(020300)” +(03030,)” + (030,03)" + (0,0303)°),
(11)

which is invariant under the permutations of the three qubits.
For experimental determination of the concurrence for
arbitrary three-qubit states, seven quantities are needed to be

PHYSICAL REVIEW A 80, 032320 (2009)

measured:  (030303), (030307), (030103), (07030%),
(030307), (030,0%), and (0,03073).

In particular for the three-qubit generalized GHZ state,
[)=ay|000)+a,|111), |ao|*+|a;|*=1, and the generalized W
state, |)=ap|001)+a,|010)+a,|100), |ag|*+|a;[>+|as)*=1,
their squared concurrence are 12|aga;|> and 8(|aga,|?
+|aga,|*+|a,a,|?), respectively. The concurrence of both gen-
eralized GHZ states and generalized W states can be mea-

sured according to the following formula:

C’= i(9 - 5<0'00'30'0>2 - 5<0'0<700'3>2 - 5<0'3(700'0>2
+(000303) + (030300)* + (030003)* + 3(030303)?).
(12)

Equation (12) shows that for experimental determination of
entanglement for these states, one needs only one-setting
measurement, (030303).

Similar results can be obtained for multiqubit systems
such as N-qubit generalized GHZ state |¢)=a,|0...0)
+ay|1...1), |ag|*+|a;|*=1 or N-qubit generalized W state
[)=apl0...01)+a,]0...10)+- - -+ay_;[10...0),  |ao|*+|a,|*
+++++|ay_,|?=1. For instance for the generalized GHZ state,
the concurrence is |aga;| up to a constant. Its squared con-
currence can be expressed as follows:

1=kk'=N
C2= 1+ E <(T(3[|...ik)><o_g/|...jk/)>
kk' even
1=LI'=N
- 2 (o), (13)
Ll" odd

where <0'(3i1"'[k)> denotes the expectation value of the local
operators such that the i;th, ... ,i;th are o3 operators and the
rest are identities.

III. CONCURRENCE FOR N-PARTITE M-DIMENSIONAL
SYSTEM

Besides qubit systems, our approach can also be used for
arbitrary M-dimensional cases. Instead of the Pauli opera-
tors, one can use the SU(M) generators as observables,

M-1

No= 2 i)
j=0

s

s—1

=2 )] - sls)(s
j=0

, 1l=s=M-1,

N, = i)k + k)G (M +2)(M - 1),

, s=M, ...

Ny == i)k =[G, s=3(M+ 1M, ... . M*>~1,
where 0 =j<k=M—-1. Note that

1 Ny-y + Aya+ o
M(M-1) M-1)(M-2)

1

Ao+ =Ny,
3x2° 2 2"

1
0)0|=—N\
|0)0] Mo"‘

+
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|1><1|—i)\ + ! Nyor + Nyroo +
MMM - T (M=) (M -2)" M
1 1
+ )\2—_)\1,
3x2°2 2

1
T

Ny — Ay—2s

M = 2)(M = 2] = x
M M-1

1 1
|M— 1><M— 1| = ﬁ)\o— H)\M—la

and for 0=j<k=M-1, [j)(k|=3(\,+i\,) and [k)(j|=5(\,
—i\y) for some M=s= %(M+2)(M— 1) and %(M+ )M
=s'=M?-1. Similar to the proof of N-qubit system, it is
direct to show that the squared concurrence of the N-partite

M-dimensional pure state |) can be expressed in terms of
real linear summation of (¢iN; N; ... N; [N, N; .. \; [0,

M-
C(|lpy) = > Xiy iy i IN Ny N )
ise - sipn 1o i N=0
X(¢|)\jl)\j2...)\jlv|zp), (14)
where Xiy iy ajy AT€ real.
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IV. CONCLUSIONS

We have proposed a method for experimentally determin-
ing the concurrence in terms of the expectation value of local
observables, which gives not only sufficient and necessary
conditions for separability of the quantum states but also the
relative degree of entanglement. Moreover unlike the case of
Bell-type inequalities where measurements are needed with
respect to infinitely many observables, we need only mean
value of a few observables. And instead of the joint measure-
ment on two copies of the state needed in the experiment
[29-31] for two-qubit states, we need only the usual mea-
surements on one copy of the state in every measurement for
any arbitrary dimensional multipartite states, which dramati-
cally simplifies the experiment and reduces the error rates
and the imperfectness in the preparation of the states. Com-
pared with entanglement witnesses, for which some a priori
knowledge about the states under investigation is needed, we
do not need any information before measuring the state in
experiment.
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