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Wigner-function theory and decoherence of the quantum-injected optical parametric amplifier
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Recent experimental results demonstrated the generation of a macroscopic quantum superposition (MQS),
involving a number of photons in excess of 5X 10%, which showed a high resilience to losses. In order to
perform a complete analysis on the effects of decoherence on these multiphoton fields, obtained through the
quantum injected optical parametric amplifier, we investigate theoretically the evolution of the Wigner func-
tions associated to these states in lossy conditions. Recognizing the presence of negative regions in the W
representation as an evidence of nonclassicality, we focus our analysis on this feature. A close comparison with
the MQS based on coherent |@) states allows us to identify differences and analogies.
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I. INTRODUCTION

In the last decades the physical implementation of macro-
scopic quantum superpositions (MQSs) involving a large
number of particles has attracted a great deal of attention.
Indeed it was generally understood that the experimental re-
alization of a MQS is very difficult and in several instances
practically impossible owing to the extremely short persis-
tence of quantum coherence, i.e., of the extremely rapid de-
coherence due to the entanglement established between the
macroscopic system and the environment [1-4]. Formally,
the irreversible decay toward a probabilistic classical mixture
is implied theoretically by the tracing operation of the overall
MQS state over the environmental variables [5,6]. In the
framework of quantum information different schemes based
on optical systems have been undertaken to generate and to
detect the MQS condition. A cavity-QED scheme based on
the interaction between Rydberg atoms and a high-Q cavity
has lead to the indirect observation of macroscopic quantum
superposition (Schrodinger cat) states and of their temporal
evolutions. In this case the microwave MQS field stored in
the cavity can be addressed indirectly by injecting in the
cavity, in a controlled way, resonant or nonresonant atoms as
ad hoc “measurement mouses” [7,8]. A different approach
able to generate freely propagating beams adopts photon-
subtracted squeezed states; experimental implementations of
quantum states with an average number of photons of around
four have been reported both in the pulsed and continuous
wave regimes [9-12]. These states exhibit non-Gaussian
characteristics and open new perspectives for quantum com-
puting based on continuous-variable systems, entanglement
distillation protocols [13,14], and loophole free tests of
Bell’s inequality.

In the last few years a novel “quantum injected” optical
parametric amplification (QI-OPA) process has been realized
in order to establish the entanglement between a single-
photon and a multiphoton state given by an average of
many thousands of photons, a Schrodinger cat involving
a “macroscopic field.” Precisely, in a high-gain QI-OPA
“phase-covariant” cloning machine the multiphoton fields
were generated by an optical amplifier system bearing a high
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nonlinear (NL) gain g and seeded by a single photon be-
longing to an Einstein-Podolski-Rosen (EPR) entangled pair
[15-19].

While a first theoretical insight on the dynamical features
of the QI-OPA macrostates and a thorough experimental
characterization of the quantum correlations were recently
reported [20,21], a complete quantum phase-space analysis
able to recognize the persistence of the QI-OPA properties in
a decohering environment is still lacking [22,23]. Among the
different representations of quantum states in the continuous-
variable space [24], the Wigner quasiprobability representa-
tion has been widely exploited as an evidence of nonclassical
properties, such as squeezing [25] and EPR nonlocality [26].
In particular, the presence of negative quasiprobability re-
gions has been considered as a consequence of the quantum
superposition of distinct physical states [27].

In the present paper we investigate the Wigner functions
associated to multiphoton states generated by optical para-
metric amplification of microscopic single-photon states. We
focus our interest on the effects of decoherence on the mac-
rostates and on the emergence of the “classical” regime in
the amplification of initially pure quantum states. The
Wigner functions of these QI-OPA generated states in pres-
ence of losses are analyzed in comparison with the paradig-
matic example of the superposition of coherent, Glauber’s
states, |a).

The paper is structured as follows. In Sec. II, we intro-
duce the conceptual scheme and describe the evolution of the
system both in the Heisenberg and Schrodinger pictures.
Section III is devoted to the calculation of the Wigner func-
tion of the QI-OPA amplified field. We first consider a single-
mode amplifier, which is analogous to the case of photon-
subtracted squeezed vacuum. Then we derive a compact
expression of the Wigner function in the case of a two-mode
amplifier in the “collinear” case, i.e., for common k vectors
of the amplified output fields. In Sec. IV, we introduce, for
the collinear case, a decoherence model apt to simulate the
decohering losses affecting the evolution of the macrostate
density matrix. This evolution is then compared to the case
of the coherent |a) MQS. Section V is devoted to a brief
review of the features of coherent state superpositions
(CSSs). Hence in Sec. VI we derive an explicit analytic ex-
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pression of the Wigner functions for the QI-OPA amplified
states in presence of decoherence. The negative value of the
W representation in the origin of the phase space for such
states above a certain value of the “system-environment” in-
teraction parameter is an evidence of the persistence of quan-
tum properties in presence of decoherence. This aspect is
then compared with the case of the |a) state superposition.
Then in Sec. VII we study a complementary approach to
enlighten the resilience to losses of the QI-OPA MQS with
respect to the |a) state superposition. Precisely, we define a
coherence parameter based on the concept of state distance
in Hilbert spaces, and we study its decrease as a function of
losses for both classes of MQS. Finally, in Sec. VIII we
analyze a different configuration based on a noncollinear op-
tical parametric amplifier in the quantum injected regime,
i.e., a universal quantum cloning machine. We calculate the
Wigner function associated to the states generated by this
device in absence and in presence of decoherence, focusing
on the persistence of quantum properties after the propaga-
tion over a lossy channel.

II. OPTICAL PARAMETRIC AMPLIFICATION
OF A SINGLE-PHOTON STATE

As a first step we consider the generation of a multiphoton
quantum field, obtained by parametric amplification. Let us
briefly describe the conceptual scheme. An entangled pair
of two photons in the singlet state |/7)4 5=2""2(|H)A|V)p
—|V)4|H)p) is produced through a spontaneous parametric
down-conversion (SPDC) process by crystal 1 pumped by a
pulsed uv pump beam (Fig. 1). There |H) and |V) stand,
respectively, for a single photon with horizontal and vertical
polarizations (77) while the labels A,B refer to particles as-
sociated, respectively, with the spatial modes k4 and kg. The
photon belonging to kg, together with a strong uv pump
beam, is fed into an optical parametric amplifier consisting
of a nonlinear crystal 2 pumped by the beam k. Crystal 2 is
oriented for “collinear operation,” i.e., emitting pairs of am-
plified photons over the same spatial mode which supports
two orthogonal 77 modes, horizontal and vertical. Let us ana-
lyze the properties of the resultant amplified field.

A. Collinear optical parametric amplifier

The complete Hamiltonian of the system reads

H = haldldy +abay) + ifx(aahe ™ — ayaye™™), (1)
where y is proportional to the second-order nonlinear sus-
ceptibility and to the amplitude of the pump field Eg and éj{,
and cﬂ, are the creation operators associated to the mode Kk,
respectively, with polarization 7 horizontal and vertical,
H,V. We assume a classical and undepleted coherent pump
field. Let us consider only the interaction contribution to H

and a reference system which rotates with angular speed 2w.
The time-independent interaction Hamiltonian is found to be

7:(1 = ihX(CAlLﬁT/ —dydy). (2)

The Heisenberg evolution equations are
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FIG. 1. (Color online) Scheme of the experimental setup. The
main uv laser beam provides the OPA excitation field beam at
N=397.5 nm. A type-II beta-barium borate (BBO) crystal (crystal
1: C1) generates pair of photons with A=795 nm. In virtue of the
EPR nonlocal correlations established between the modes k, and
kp, the preparation of a single-photon on mode kz with polarization
state 77, is conditionally determined by detecting a single-photon
after proper polarization analysis on the mode k4 [polarizing beam
splitter (PBS), A/2 and \/4 wave plates, Soleil-Babinet compensa-
tor (B), and interferential filter (IF)]. The photon belonging to kg,
together with the pump laser beam k‘,',, is fed into a high-gain optical
parametric amplifier consisting of a NL crystal 2 (C2), cut for col-
linear type-II phase matching. The fields are coupled to single-mode
fibers. For more details refer to [21]. Right Inset: measurement
apparatus. After fiber polarization compensation, the field is ana-
lyzed by two photomultipliers {P,,P_} and then discriminated
through an O-filter device. Left inset: action of the O-filter in the
photon number space: the (1) outcomes are assigned whether
Ng=Mg >k or My —Np> k, where k is a tunable threshold condi-
tion. The central region leads to an inconclusive (0) outcome, and
the two orthogonal macrostates cannot be discriminated.

da, 1__ . i
PP E[QW’HI] =xd’. (3)

with general solution
d(t) = d(0)cosh(xt) +d_,. (0)sinh(x1), @)

where m=H,V.

The average number of photons generated in the SPDC
process can be easily calculated in the Heisenberg picture
formalism by applying the evoluted operators to the initial
vacuum state |0H,0V)=|0). Heretofore, |[nm,mm ) stands
for the Fock state with n photons with 7 polarization and m
photons with the orthogonal 7, one. For the horizontal po-
larization we get

(0la},(t)ay(1)|0) = sinh*(xz) = . (3)
The same result holds for the vertical polarization.

B. Output wave functions

In any “equatorial” polarization basis {|@),|¢*)}, referred
to a Poincaré sphere with “poles” |H) and |V), the Hamil-

032318-2



WIGNER-FUNCTION THEORY AND DECOHERENCE...

tonian of the polarization nondegenerate optical parametric
amplifier, described by expression (2), can be expressed as

Hy= il e (@) - (@), )]+ He.o  (6)

where the corresponding field operators are d‘p= 1/ \52(&L
+eay), af, = 1/\2(aj—e"%ay). .

The Hamiltonian can then be separated in the two polar-
ization components {7, 7,.}. The time-dependent field op-
erators are

a,(1) = d,(0)cosh(xt) + e7%al,(0)sinh(x?). (7)

Let us now restrict the analysis to the basis {7,,7_}, in
which we calculate the output wave function in the
Schrddinger picture; the unitary evolution operator is

. Hit\ . .
U=exp —i7 =U,U_ (8)
with
L L8 2 4
U =exp —z(a: -as) |, )

where g=x¢ is the nonlinear gain of the process.

The expression of U enlightens the decoupling between
the two polarization modes. A simple expression of the op-

erators U+ and U_ can be obtained adopting the following
operatorial relation [28]:

A\ 2
o L 1
U. :exp{if(%) 1exp{—ln(cosh g)(&idi + —)1
V2 N 2

A \2
X exp{IF(a—,E) } (10)
V2

with I'=tanh g. Let us consider the injection of a single-
photon state with generic equatorial polarization 7, into the
OPA,

1 .
i) = @) = =(|H) + €'¥|V))
V2

= ei(‘plz)(cosfﬂ +,0-)+i sinf|0 +, 1—)) .
2 2
(11)
The multiphoton output state of the amplifier is found,
Prapy oo Pra
|‘If0m):|<D‘P>=cosE|(I) Y+ sm5|CI> ), (12)
where

|(I)i>= f]ifjih * ’01>:(0i|1>i)(f]1|0>1)' (13)

Simple calculations lead to the expressions
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R
N 1 VTV V2 V(2i+1)!
w2y= L3 (L DY (DYDY oy i,
2/ \2) 1

(14)

where C=cosh g. The quantum states |®*) and |®~) are or-
thogonal, being the unitary evolution of initial orthogonal
states. We observe that |®*) presents an odd number of 7,
polarized photons and an even number of 7_ polarized ones,
conversely for |D).

The average number of photons with polarization 7, can
be estimated in the Heisenberg representation as

()= <¢Iin|aAj—([)d+(I)| Yy =M+ (2m+ 1)cosz<§> ,
(15)

where 7i=sinh?(g). The phase dependence shows that for ¢
= the average number of generated photons is equal to the
spontaneous one, while for ¢=0, corresponding to the stimu-
lated case, an increase of a factor 3 is observed in the aver-
age number of 7, polarized photons.

Likewise, the average number of photons 7_ polarized is
given by

(1= Wl 0y =+ e o ). 16

Hence, by varying the phase ¢ we observe a fringe pattern
which exhibits a gain dependent visibility,

y (n(e=0)—(n(e=0)) 2m+1
th

=~ (o=t om0y ams1 7

In the asymptotic limit (g—>00)Vf,1,)=%.

We now briefly discuss the phase-covariance properties
of the optical parametric amplifier when injected by a single-
photon state. In this configuration, this device acts as optimal
phase-covariant cloning machine, and due to the unitary
evolution of the process, the superposition character of any
generic input state |<p>:é(|H)+e"P|V)) is maintained after
the amplification

B%) = %<|q>”>+e’¢|<w>>. (18)

Let us stress that there is freedom in the choice of the mac-
rostate basis vectors. For example, the |®~) states can be
used in the expansion of the overall state as in Eq. (12).
Hence, the equatorial |®%) amplified state can be written as
the macroscopic quantum superposition either of the
{|®*),|®")} and the {|D),|DY)} “basis™ states. Furthermore,
due to their resilience to decoherence [29], all equatorial
macroqubits represent a preferred “pointer state basis” [3] for
writing [®¢) in the form of a macroscopic quantum superpo-
sition.

III. WIGNER FUNCTIONS OF THE AMPLIFIED FIELD

In order to investigate the properties of the output field of
the QI-OPA device in more detail, we analyze the quasiprob-
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ability distribution introduced by Wigner [23] for the ampli-
fied field. The Wigner function is defined as the Fourier
transform of the symmetrically ordered characteristic func-
tion x(7) of the state described by the general density matrix

Ps

x(n) =Trp exp(ni’ - 5*a)]. (19)

The associated Wigner function

W)= [ el nanmdn (20

exists for any p but is not always positive definite and, con-
sequently, cannot be considered as a genuine probability dis-
tribution. Since the early decades of quantum mechanics, the
emergence of negative probabilities has been identified as a
peculiar feature of quantum physics and has been connected
to the mathematical segregation of states which physically
live in quantum superposition [27]. In parallel, the nonclas-
sicality of a quantum state is expressed by a Glauber’s P
representation [24,30,31] which is more singular than a delta
function, i.e., the P(a) proper of coherent states. This means
that the system does not possess an expansion in terms of the
overcomplete semiclassical |a) state basis, which can be in-
terpreted as a probability distribution. However, the negativ-
ity of the Wigner function is not the only parameter that
allows us to estimate the nonclassicality of a certain state.
For example, the squeezed vacuum state [25] presents a posi-
tive W representation, while its properties cannot be de-
scribed by the laws of classical physics. Furthermore, recent
papers have shown that the Wigner function of an EPR state
provides direct evidence of its nonlocal character [26,32]
while being completely positive in all the phase space.

The complex variable « in Eq. (20) is the eigenvalue as-
sociated to the non-Hermitian operator @ which acts on the
coherent state |a) as follows: d|la)=ala). It is possible to
decompose « in its real and imaginary parts and then to

define the quadrature operators X and Y which allow the

representation of the field in the phase space d=X+TW. The
quadrature operators are Hermitian operators and thus corre-
spond to physical observables proportional to the position ¢

and the momentum p following the relations X= y/%qA and
?:—\% p. The uncertainty principle leads to AXAY=1.

A. Single-mode amplifier

For the sake of simplicity, let us first consider the Hamil-
tonian of a degenerate amplifier acting on a single k mode
with polarization 77,

~ 2 XA n
H1=zﬁ5<a?— 2. (21)

When no seed is injected, the amplifier operates in the re-
gime of spontaneous emission and the characteristic function
reads

PHYSICAL REVIEW A 80, 032318 (2009)

xXo(m.1) = (Olexp[ a (1) - 5°a,(1)]|0)
= (Olexp[ (N’ - 7(r)a,]|0) (22)

with a,(n=a, cosh(g)+di sinh(g), 7(t)=7 cosh(g)
— 7" sinh(g), and g=yr. Hereafter, we explicitly report the
dependence of the Wigner function from the interaction time

t. We obtain, using the operatorial relation exp(A+B)
=exp A exp B exp(—1 /2[A,B]),

Xo(7.0) = exp| - 3| n()[*]. (23)

The calculation then proceeds as follows. Starting from the
definition of the Wigner function [Eq. (20)], we perform the
two subsequent transformations of the integration variables
d*p— d*(t) — xdxd, where p— 7(t) has been defined pre-
viously and can be expressed as 7(t) =xe'?. The Wigner func-
tion then reads

1 - =k L= %y
M0+>(a,t) — ?J ex[(a—a )cos @+i(—a—a’)sin (p]—(1/2)x2xdxdqo

2 (” 1
= —f Jo(= 2|c_z|x)exp<— —x2>xdx
T 2

0

2
= 7—Texp[— 2lal*], (24)

where @=a cosh(g)—a* sinh(g) and J,(x) is the Bessel func-
tion of order 0. We can now write a=Re(a)e $+i Im(a)e® as
a function of the X, Y quadrature operators, defined by the
expression a=X+iY. By substituting such variables Eq. (24)
becomes

2
Wioy(X,Y,1) = —exp[- 2(X%e728 + Y2e%9)]. (25)
T

When we consider the case in which a single photon with
polarization 7, is injected, |i;,)=|1+), analogous calcula-
tions lead to the characteristic function,

xi(m.0) = (expl (0l - 7*(a,]|1)
=[1 = [7(0)Plexp[ - 3 #0)?]. (26)

The Wigner function reads
2 _ _
Wiio(X.Y.0) == —[1 - 4al*Jexp[-2|al’]

2
=— —[1 -4(X%28 + Y2e%)]
T

Xexp[—2(X?e7%8 + Y%e%)]. (27)

As a further example, we consider the injection of the
two-photon state |i;,)=|2+). We obtain

Xa(1.0) =[1=2|9(0)2 + 31 9(0)[* Jexp[ - 3 7()[*] (28)

and the Wigner function reads
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WIGNER FUNCTIONS FOR SINGLE MODE OPA
INJECTED QUBIT

AMPLIFIED FIELD

FIG. 2. (Color online) Wigner function of the injected states and
the corresponding amplified states for a single-mode-degenerate
amplifier with gain g=4. The axes report the quadratures values X
and Y. |0) injection of the vacuum state. |1) injection of a single
photon. |2) injection of two photons. The amplified field is plotted
on a different scale with respect to the injected qubit one due to the
high degree of squeezing introduced by the amplification process.

2
Wi (X, Y1) = —[1 - 8(X?e ™ + Y?e™) + 2(X?e 7%
aa

+ Y2e8)?Jexp[— 2(X%e 728 + Y2e29)].

As in the single-photon case, the negativity of the Wigner
function is maintained after the amplification process, em-
phasizing the quantum properties of the injected field. All
these features are shown in Figs. 2 and 3, which report, re-
spectively, the plots of the Wigner functions and of their
sections X=0 and Y=0 for QI-OPA amplified states, with the
injection of the |0),
these figures shows that the amplification effect leads to the
increase in the degree of squeezing for the multiphoton out-
put field. The uncertainty on one of the two quadratures is
decreased while the other one is increased coherently with
the Heisenberg uncertainty principle. Let us note that the
quantum character of the Fock states is underlined by the
negativity of the Wigner function in the central region of the
quadrature space.

Finally, this result can be generalized by analogous calcu-
lation to the generic |[N+) input state, leading to the Wigner
function,

PHYSICAL REVIEW A 80, 032318 (2009)

2 _2
Wiay(@t) = — (- DVLy(4|al?)e 2, (29)

where Ly are Laguerre polynomials of order N. For all N, the
nonclassical properties of the injected state are maintained
after the amplification process, as the OPA is described by a
unitary evolution operator.

We conclude this section on the single-mode amplifier
by emphasizing the connection, shown in [33], between
the single-photon-subtracted squeezed vacuum and the
squeezed single-photon state. It is found that GS(£€)[0)
=5(8)|1), where S(&)=exp[&a72/2) - £(42/2)], is the single-
mode-degenerate squeezing operator and £=se'? is the com-
plex squeezing parameter. This evolution operator is ob-
tained by the single-mode amplifier interaction Hamiltonian
of Eq. (21). For small &, this state possesses a high value of
overlap [34] with the (Ja)—|-a)) quantum superposition.
This connection between photon-subtracted squeezed
vacuum and squeezed Fock states was extended [33] to the
more general p-photon case, obtaining

ar8(9)|0) = S(&)|y,), (30)
where
[p/2] pl(= 1)
140 = NZ 2’% 'V(p = 2k)!
X (e'? sinh s cosh s)¥|p — 2k), (31)

where N is an opportune normalization constant. Hence, the
p-photon-subtracted squeezed vacuum is analogous to the
amplified state of a quantum superposition of odd (or even)
Fock states [Eq. (31)]. For an increasing value of p, the

overlap between the a’S(£)[0) states and the (|a) = |-a))
states [35] is progressively higher but corresponds to the am-
plification of a more sophisticated superposition of Fock
states.

B. Two-mode amplifier

In order to investigate the collinear QI-OPA we have to
analyze nondegenerate OPA Hamiltonian (1), i.e., acting on
the both orthogonal polarization modes 7 and 7. For a
given input state in the amplifier |¢,,) the characteristic sym-
metrically ordered function can be written as

o 5 a At ion
Xolm.E.1) = (ol | Lm0 anOlleay0-EavD) gy - (32)

where the time-dependent operators solve the Heisenberg
equation of motion [Eq. (7)] and are expressed in the basis
{ﬁH ’ 7_7)-V}

It is useful to rewrite expression (32) by using the
{7, ,7_} polarization basis. We obtain

At A
a+ £ a,

=-7 (t)?)
E V2

X¢(7]’§’t) = <l//in|exp< 7](l‘) |

><exp(§(t> =20 “—5>|¢m (33)

where
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SECTIONS OF WIGNER FUNCTIONS FOR SINGLE MODE QI-OPA

INJECTED QUBIT I AMPLIFIED FIELD
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FIG. 3. Sections of the input state Wigner functions and of the relative amplified fields along the directions X=0 and Y'=0. Since the
injected qubit shows a rotational symmetry, we report only the X=0 section. |0) injection of the vacuum state. |1) injection of the

single-photon state. |2) injection of the two-photon state.

1) =(n+C—- (5" + &)S, (34)

) =(n-8C+ (7 -£)S, (35)

and C=cosh(g), S=sinh(g).

Let us consider the case of single-photon injection on the
polarization mode 7, the input state wave function can be
written as |¢;,)=|1+,0-). Hence the characteristic function
is

0P

: )exp[—i[ln(t)|2+|§(t)|2]]-

(36)

X1.0(m.6,1) = (1

In this case the Wigner function is the quadridimensional
Fourier transform of the characteristic function given by [16]

1 s s s -
W\1+,0_>(a,,8,t) = ?J d? 7]d2§g(7l a-na )e(f B-EB7)

) |77(t)|2>
2

XeXP{— i[l 0 + |§(t)|2]} (1

2
- (%) [exp(= [AP)(1 = |[Ay+AgP), (37)

where we have used

|A|2 = %[|')’A+|2 + |'}’A—|2 + |7’B+|2 + |‘}’B—|2], (38)

1 .
Ag=T=(yke —i¥k)s (39)
V2
with K=A,B.
In this case the squeezing variables are y,, and yp_, while
g, and y,_ are the respective conjugated variables

Yar=(a+ B*)e—g’ YB+= (a™+ Bes, (40)

Yao=1la—Bef, yp_=1(B- a)es. (41)

The integration of Eq. (37) is analogous to the one reported
in Sec. IIT A.

If a=|alexp i¢, and B=|Blexp i¢gz have a well-defined
phase relation, ¢,=—¢g= @, then for every ¢ value it is pos-
sible to represent the Wigner function in a three-dimensional
graph, reported in Fig. 4, that is, the projection of the total
function onto a certain subspace. The quadrature variables in
this subspace are X=(a+8%), e Y=(B—«"). Furthermore, in
Fig. 5 we report the X=0 and Y =0 sections of the Wigner
function for the single-photon amplified state in comparison
with the injected seed. We again note the resilience of the
negative region, centered in the origin of the phase space,
and the presence of the degree of squeezing induced by the
amplifier.

032318-6



WIGNER-FUNCTION THEORY AND DECOHERENCE...

WIGNER FUNCTIONS FOR TWO MODES QI-OPA

INJECTED QUBIT

AMPLIFIED FIELD

FIG. 4. (Color online) Wigner function of the injected states and
the corresponding amplified states for a nondegenerate amplifier
with gain g=4. The axes scale on different graphs are different due
to the high degree of squeezing introduced by the amplifier.
|1+,0-) injection of a single-photon 7, polarized. |2+,0-) injec-
tion of a two-photon state 7, polarized.

When the input state is the state of two photons with 7,
polarization |;,)=|2+,0-) the characteristic function is

- 24600 |70)*
Xoo(m&1) = e A AOI+E) ](1 —|n()? + e

(42)

SECTIONS OF WIGNER FUNCTION FOR TWO MODES QI-OPA

INJECTED QUBIT

1).10).

AMPLIFIED FIELD

Y=0 Y=0

0.1

I 2 =150 =106 =30 30 100 130

X X
=0 X=0
! 2 0.02 004
Y Y

FIG. 5. Sections of the Wigner function for the injection of the
single-photon state and for the corresponding amplified state ob-
tained with a noncollinear amplifier with a gain value g=4.
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and the Wigner function is

2 2
W‘2+,0_>(a’B7I) = ( ) [exp(_ |A|2)]

-
1
X <1 —20A,+ Mgl + E'AA+ AB|4).

(43)

In Fig. 4 we report the plots of the Wigner function of both
the single- and double-photon amplified states compared to
the original W representations of the injected seed.

These Wigner functions can also be evaluated by employ-
ing the results obtained in the single-mode amplifier case. In
this context the characteristic function factorizes into two
parts, x.(7,t)x_(7,t), which refer to polarizations 7, and
7_, respectively, as a consequence of the independence of
the two oscillators. Analogously, the Wigner function factor-
izes and when the state |#;,)=|1+,0-) is injected, it reads

Wiis00(@ B.1) = W (@)W_(B)

2\? B
T (E) [1 - 4|al*Jexp[- 2|al*Jexp[- 2|B[*],

(44)

where a(r)=a cosh(g)—a" sinh(g) and B(r)= [3 cosh(g)
— B sinh(g). The variables (&,f) are related to (a,p)

through a simple rotation into the quadridimensional phase
space,

cosh(g)a — sinh(g) 8" = cosh(g)@ — sinh(g)a*,  (45)

cosh(g) B - sinh(g)a* = cosh(g) B—sinh(g)B*.  (46)

We note that these rotations take the form of the
Bogolioubov transformations which express the time evolu-
tion of the field operators in the collinear optical parametric
amplifier.

C. Measurement of the quadratures with a double homodyne

Quadrature measurement can be obtained by homodyne
technique [25] largely adopted in the context of quantum
optics. Quantum fields showing quadratures entanglement
have been realized [36-41] and adopted in several quantum
information protocols. We now discuss the realization of a
double homodyne experiment in order to investigate the
Wigner distributions in the QI-OPA case. We define the
quadrature operators in a general form, introducing the phase
dependence from the variable 6,

ae™ "+ a'el —ide™ +iate'

X,= . Y,= . 47
P 5 0 5 (47)

Let us briefly review the scheme of a homodyne experi-
ment. The impinging field under investigation E;(r,7) is
combined into a beam splitter (BS) with a local oscillator
E;o(r.1), usually prepared in a coherent state |8) with 3
=|Ble'’. When B is larger than the amplitude of the field £,
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(a) Local Oscillator
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—| QI-OPA ]
Local Oscillator
(b)
M)IN>
—| QI-OPA

Local
Oscillator

FIG. 6. (Color online) Two equivalent schemes for the double
homodyne measurements. In both schemes, the choice of the basis
for the analysis depends from the wave plates N/4+\/2 settings. (a)
A PBS divides the two polarization components, each component is
combined with a coherent radiation (with same polarization) on a
BS. At the output of the PBS the field is revealed by two photo-
diodes. The signals are analyzed following the theory of the homo-
dyne technique. (b) A BS combines the field with a local oscillator.
The two output field impinge on a PBS which divides the two
polarization components. The choice of the analysis basis depends
on the wave plates setting N/4+\/2. Signals relative to the differ-
ent polarization components are detected through two photodiodes
and the results are pair correlated according to homodyne theory.

the difference between the photon counts of the two output
modes of the beam splitter is proportional to

(&&) —(d'd) = \27(1 = (Y ), (48)

where 7 is the BS transmittivity. By varying the local oscil-
lator phase by /2 it is possible to select the measured
quadrature.

In the context of the QI-OPA we need to generalize the
homodyne measurement for the two polarization modes. A
BS is inserted in the experimental scheme, following two
different solutions. In the first case [Fig. 6(a)] at the exit of
the QI-OPA a couple of wave plates A/4+N\/2 and a PBS
divide the two orthogonal polarizations which are combined
with two equally polarized local oscillators.

In the second case [Fig. 6(b)] the field at the exit of the
QI-OPA is combined with a local oscillator onto a BS; the
two output modes are analyzed in polarization through a

PHYSICAL REVIEW A 80, 032318 (2009)

couple of wave plates N/4+\/2 (same setting on both
modes) and a PBS and finally detected by a pair of photo-
diodes. The local oscillator polarization must be intermediate
with respect to the analysis basis, for example, if the analysis
basis is the linear =45° rotated one, the polarization of the
local oscillator can be horizontal or vertical. The intensity
measurements on both arms must be correlated, coupling
equal polarizations in order to obtain the result of Eq. (48).
The results obtained in the two configurations are equal and
the two schemes are completely equivalent for the character-
ization of QI-OPA amplified states.

D. Optical parametric amplification of N>1 Fock states

Let us now consider the two-photon input state |i;,)
=|2+ ,0—); the characteristic function reads

4
Xa0(7.6:1) = eXP{- iﬂ n(n)]* + |§(t)|2]]<1 P+ [0l ”ZN )
(49)

and the Wigner function becomes

2\? 1
Wiai0y(@, B,1) = (‘) €_A2(1 —2|A+ Agl*+ 5|AA + AB|4> .
v
(50)

A three-dimensional plot of this function is obtained (see
Fig. 4).

When both polarization modes are one photon injected
|h,)=|1+,1-), the characteristic function reads

Xi11(n.&1) = (1 - |77(t)|2)(1 - |§(2t)|2>e—(1/4)[n(r)|2+|§(t)|2]

2
(51)
and Wigner function is
2 2
Wiisio(a, B,1) = (;) [1-2(AP+ A, +Agf
X (1= |Ay +AgPD)]e A, (52)

As in the single-mode case, we can generalize the results
obtained for a generic Fock state as input, |i;,)=|N+,M-).
The Wigner functions of the amplified field with these gen-
eralized seeds read

2 2
Winem-y(a, B,t) = ( ) (= DMNLy(|A L + Agl)

ar
X Lyy(|Ag — AyP)e 24P (53)

The Wigner-function approach given in this section to the
QI-OPA device allows us to stress the quantum properties
of the amplified field. The negativity of the Wigner function
can be deduced by the explicit general expression of Eq.
(53). Indeed, in analogy with the unamplified Fock states
IN+,M-) [22], the Wigner function Wiy, y_y(c,3,1) is the
product of two Laguerre polynomials [42], Ly and L,,, which
are negative in several regions. Furthermore, the amplified
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FIG. 7. (Color online) Schematization of the decoherence model
by a linear beam splitter of transmittivity 7.

states possess a high degree of squeezing in the field {@, B}
quadratures at variance with the injected states.

IV. FOCK-SPACE ANALYSIS OF MACROSCOPIC
QUANTUM SUPERPOSITIONS OVER A LOSSY CHANNEL

In the present section we analyze how the peculiar quan-
tum interference properties of the amplified single-photon
states are smoothed and canceled when a decoherence pro-
cess, i.e., a system-environment interaction, is affecting their
time evolution. More specifically, in the specific case of op-
tical fields, the main decoherence process can be identified
with the presence of lossy elements, as for example photo-
detectors. Such process is mathematically described by an
artificial BS-scattering model since this optical element ex-
presses the coupling between the transmission channel and a
different spatial mode. The same analysis is carried out also
on a different class of MQS based on coherent |a) states to
emphasize analogies and differences.

A. Lossy channel model

As said, losses are analyzed through the effect of a ge-
neric linear BS with transmittivity 7 and reflectivity R=1
—T, acting on a generic quantum state associated with a
single-mode beam (Fig. 7) [43-46]. The action of the lossy
channel on a generic density matrix p is obtained by the
application of the BS unitary transformation and by the
evaluation of the partial trace on the BS reflected mode (R
trace). The linear map describing the interaction is expressed
by the following expansion [44,45]:

LIpl=2 M,pM}, (54)
P

where the M » operators are

Y 120(a’a)2 a

— Rp2la'a
M, =RIPTEO2 =,
vp!

To evaluate the average values of operators, the lossy chan-
nel can be expressed in the Heisenberg picture, exploiting the
BS unitary transformations and performing the average on
the initial state p.

(55)

B. Decoherence on the quantum superposition
of coherent |a@) states

In this section we investigate the evolution over a lossy
channel of the quantum superpositions of coherent states
(CSS) [35],

PHYSICAL REVIEW A 80, 032318 (2009)

Y
AX=AY=1/2
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FIG. 8. (Color online) Schematic representation in the bidimen-
sional phase space {X, Y} of the coherent states |ae'?) which are the
components of the MQS treated in this section. The circles repre-
sent the two-dimensional projection of the Gaussian functions
which represent the Wigner function of these states. The distance
between the center of the two Gaussian is ali=4|a|2 sin” @.

W@=N@%¢w%imf%> (56)
y

where @ is real and N =(1% e’ sin” @ ol af2
Xsin 2¢])~"? is an appropriate normalization factor. The two
states with opposite relative phases |¥¢) and |¥¥) are or-
thogonal when |a|? sin? ¢>1 (Fig. 8). In such case the two
components |ae'?) and |ae™'¢) are distinguishable. This class
of macroscopic quantum superposition presents several pe-
culiar properties, such as squeezing and sub-Poissonian sta-
tistics, which cannot be explained by the characteristics of
the coherent |a) states.

We now proceed with the analysis of the density matrix
after the propagation over the lossy channel. In the following
we assume |a|? sin? ¢ > 1, hence N ~ 1. The density matrix
of the quantum state after the beam-splitter transformation is

P70 = 5(Be ) cc(Bet?| ® liye ) ppliye’]
+|Be™)cc{Be | @ [1rye™ ) ppliye™]
* |Be')eBe | @ 1y ) ppliye™]
* |Be™ ) clBe?| @ [1ye ) ppliye'?)  (57)

with B:\e’?a and y= VRa. The output state over the trans-
mitted field is obtained by tracing the density matrix p'*%

over the mode d. The final expression for the density matrix
after losses reads

At 1 - —
pe =13(1Be'*)Be'?| + |Be™ ) e
+ e—2R\a|2 sin? @elR\a|2 sin 2¢|Bez¢><ﬂe—up|
+ e—2R‘g|2 sin? ‘Pe_lR‘alz sin 2<p|ﬁe—l<p><ﬂeup|) ) (58)

Let us analyze first the case <p=§. The distribution in the
Fock space exhibits only elements with an even number of
photons for |¥,) or an odd number of photons for |W_). This
peculiar comb structure is indeed very fragile under the ef-
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FIG. 9. (Color online) (a)-(d) Plot of the distribution of the
number of photons in the |\I’f/ 2y state for a=4, corresponding to an
average number of photons (n)=16 for reflectivities R=0 [Fig.
2(a)], R=0.1 [Fig. 2(b)], R=0.5 [Fig. 2(c)], and R=0.8 [Fig. 2(d)].

fect of losses since the R-trace operation must be carried out
in the space of the nonorthogonal coherent states. In Fig. 9
the photon number distribution for different values of R with
an initial average number of photon equal to (n)=16 and ¢
=7 is reported.

We observe that for a reflectivity R=0.1, corresponding to
about ~ 1.5 photon lost in average, the distribution is similar
to the Poisson distribution associated to the coherent states.
Such graphical analysis points out how the orthogonality be-
tween |W,) and |W_) quickly decrease as soon as R differs
from O since the phase relation between the components |a)
and |-a) becomes undefined.

C. Decoherence in a lossy channel for equatorial
amplified qubits

Analogously to Sec. IV B, in which the effect of losses
was analyzed for the MQS of coherent state, we begin our
treatment of QI-OPA amplified states with the evaluation of
the density matrix after the propagation over a lossy channel.

Before the lossy process, the density matrix of the state
p?=|®¢) (D% has the form

©

9= 2 VY Qi+ D, (2) e X2k + 1), (29)e, .
i,j,k,q=0

(59)

We note from this expression that only elements with an odd
number of photons in the 7, and an even number in the ﬁ‘h
polarization are present. Furthermore, in Fig. 10(a) we note
that the photon number distribution presents a strong unbal-
ancement due to the quantum injection of the 7, single pho-
ton. Indeed, the QI-OPA seeded by a photon with equatorial
polarization acts as a phase-covariant optimal cloning ma-
chine and is stimulated to generate an output field containing
more photons in the polarization of the injected seed. Let us
now analyze the effects of the transmission in a lossy chan-
nel for the equatorial amplified qubits by plotting the photon
number distributions. The output density matrix after the
transmission over the lossy channel is the sum of four terms,

PHYSICAL REVIEW A 80, 032318 (2009)

©

pe= 2 (A i+ D, (2))0 X2k + g, (29) ¢, |
i,j,k,q=0

+(p)ijngl 2D, 2)) 0 X (2K) @, 2g) @ |
+(PD)ijngl Qi+ Do, (2 + D X2k + Dep,(2g + 1 |
+ (P ijng 2@, (2 + Do X(2K) @, (2g + D, | (60)

The details on the calculation and on the expressions of the
coefficients are reported in Appendix A.

Let us now analyze this result. When the original state
propagates through a lossy channel, the first effect at low
values of R is the cancellation of the peculiar comb struc-
ture [Fig. 10(a)] given by the presence in the density matrix
equation [Eq. (59)] only of terms with a specific parity
[2i+ 1)@, (2))¢  M(2k+1)¢,(2g) @, |, similarly to the coher-
ent state MQSs previously studied. However, at progres-
sively higher values of R, the distributions in the Fock space
remain unbalanced in the polarization of the injected photon
[Fig. 10(a)]. The resilience of this unbalancement allows us
to distinguish the orthogonal macroqubits {|®%),|D%+)} even
after the propagation over the lossy channel by exploiting
this property with a suitable detection scheme, such as the
O-filter (OF) device reported in [21]. All these considerations
will be discussed and quantified later in the paper in Sec. VII
by analyzing the distinguishability of such states as a func-
tion of the lossy channel efficiency 7.

D. Decoherence in a lossy channel for amplified 7,7y qubits

For the sake of completeness, in this section we shall
analyze the evolution of |®’) and |®") amplified states. As a
first remark, we note that the collinear optical parametric
amplifier is not an optimal cloner for states with 7y and my,
polarizations, and the output states do not possess the same
peculiar properties obtained with an equatorial injected qu-
bit. The density matrix of the |®) amplified state is

1 < R
pr = D)D) = = > I+ 1m + 1|(n+1)H,nV)

n,m=0

X{(m+1)H,mV|. (61)

In Fig. 10(b) we plotted the photon number distribution of
this state (R=0). We note that the 775 amplified state does not
possess the same unbalancement of the equatorial macroqu-
bits |®¢) analyzed in Sec. IV C.

After the propagation over the lossy channel, the density
matrix reads

o -1 s}
pr=2 2 2 (P liH. jVXKH, (k+ j - i) V]|
i=1 j=0 k=0
+2 2 2 (P liH jVIH, (k+ j - )V], (62)
i=0 j=i k=0

where details on the calculation and on the coefficients are
reported in Appendix B. The effect of the propagation over
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FIG. 10. (Color online) (a) Probability distribution in the Fock space (nd,,n¢, ) for the amplified |®?) state of a generic equatorial qubit
for different values of the transmittivity. (b) Probability distribution in the Fock space (ny,ny) for the amplified |®) state for different
values of the transmittivity. All distributions refer to a gain value of g=1.5, corresponding to an average number of photons (n) =~ 19.

the lossy channel is shown in Fig. 10(b). The original distri-
bution for R=0 is pseudodiagonal, corresponding to the pres-
ence only of terms |(n+1)H,nV). Here the difference of one
photon between the two polarizations is due to the injection
of the seed. For values of R different from 0, the distribution
is no longer pseudodiagonal and this characteristic becomes
progressively smoothed. Furthermore, the absence of the un-
balancement in the photon number distribution typical of the
equatorial macroqubits does not allow to exploit this feature
to discriminate among the orthogonal states {]
then expect that these couple of states possess a lower resil-
ience to losses than the equatorial |®¢) macrostates analyzed
in Sec. IV C.

V. WIGNER-FUNCTION REPRESENTATION
OF COHERENT STATES MQS IN PRESENCE
OF DECOHERENCE

For the sake of clarity, we briefly review previous results
on the Wigner functions associated to coherent superposition
states after the propagation over a lossy channel. We start
from the general definition of the Wigner function for mixed
states [23],

o

1
WiX.¥)=— f dée® (X - gplX + &). (63)

—00

Considering the density matrix of the CSS after losses [Eq.
(58)] we obtain

2

A%
Wﬁgi(X, Y) = T[W‘Bew>(x, Y)

+ W"Be-l@(X, Y) + W;ér(X, V)] (64)

In the last expression, the first two components are analo-
gous to the diagonal ones of the unperturbed case [35] and
can be written as

1 [ B
Wigesum (X, ) = —e X T2 2TV (65)
a

where X, =2[af? cos? ¢ and Y, =2|a|* sin’ ¢. Hence losses
reduce the average value of the quadratures X and Y.
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FIG. 11. (Color online) Plots of the Wigner function for a=6 and @=7 for different values of the reflectivity: (a) R=0, (b) R=0.01, (c)

R=0.02, and (d) R=0.1.

The interference contribution reads
int 2 V(X \TX,2 RV
or(X,Y)=—e""e ¢ e

Pc i

[P 62(22]"-— 1)
Xcos| 2V2a\T sin ¢ X—Tcos e,

which is strongly reduced in amplitude by a factor propor-

tional to e~RYe

In Fig. 11 the Wigner functions associated to different
values of R for the same initial conditions cp=§ and a=6 are
plotted.

As expected, by increasing the degree of losses the central
peak is progressively attenuated up to a complete deletion of
the quantum features associated to the negativity of the
Wigner functions. We observe that the damping factor
¢~2Rla’si” ¢ of the coherence terms derives from the expo-
nential decrease in the nondiagonal terms of the density ma-
trix equation [Eq. (58)].

More specifically, we now focus on the =7 case, i.e., the
|a) = |-a) state. In Fig. 12 we report the plots of the Y=0

section of the Wigner function for different values of the
reflectivity R, which corresponds to the interference pattern.

At low R, the amplitude of the oscﬂlatlon is exponentially
damped. This exponential factor e~ 2Rlaf sin” ¢ g responsible
for the fast decrease in the negativity of the Wigner function,
but the alternance of positive and negative regions is main-
tained. However, when R approaches the 0.5 value, the in-
terference pattern is progressively shifted toward positive
values in all the X-axis range, and at R=0.5 it ceases to be
nonpositive. This evolution depends on the presence of the
W ge1¢)(X,Y) diagonal terms, which are not exponentially
damped in amplitude and for R~ 0.5 become comparable to
the interference term. This transition is graphically shown in
Fig. 13, where the negativity is plotted as a function of R.
This quantity has been evaluated by calculating the value of
the Wigner function in the first minimum of the cosine term
of WZ"}(X Y). We note the transition from negative to posi-

tive at R 0.5, where for higher values this point ceases to be
the minimum of the complete Wigner function in the {X,Y}
plane.

This property can be derived explicitly by the complete
form of the Wigner function. For =7, Y,=0, and X,
corresponding to the minimum of the cosine,

211
2T

— T
T 22V1-Ra’

cos[212a\T sin (x— cos @)], we get
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FIG. 12. (Color online) Y=0 sections of the Wigner function for the quantum superposition of coherent states for a=6 and <p=’2—T and
different values of R. (a) R=0: unperturbed interference pattern. (b) R=0.05: exponentially damped interference pattern. (c) R=0.5: transition
to a completely positive Wigner function as the interference pattern is shifted toward positive values. (d) R=0.7: the interference pattern in

the central region is deleted by decoherence.

/2

+ (11— 2, _. 201_ _ 2
e 2(1-R)|« (6 2|al=(1 R)_e 2|al R)

aw

Wﬁ(cﬂr/2)+(X0,O) =

<0 if R<}
= . 1 (67)
>0 if R>E’

thus obtaining the desired result.
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FIG. 13. (Color online) Transition from nonpositive to com-
pletely positive Wigner function as a function of the reflectivity R
for a number of average photons of (a) (n)=6.5 and (b) (n)
~53.5. The negativity has been evaluated as described in the text.
We note that, while the interval of R in which the Wigner function
is nonpositive is independent of the number of photons, the amount
of negativity decreases exponentially with (n) due to the exponen-
tial factor ¢~2Kle*si® ¢ i the interference term W;né:(X ,Y).

As a general statement, it is well known that the negativ-
ity of the “quasiprobability” Wigner function of a state p is a
sufficient, albeit not necessary, condition for the “quantum-
ness” of p [22].

VI. WIGNER-FUNCTION REPRESENTATION OF THE
PHASE-COVARIANT QUANTUM CLONING PROCESS
IN PRESENCE OF DECOHERENCE

Combining the approach of Sec. III and the lossy channel
method introduced in Sec. IV, we derive the analytical ex-
pressions for the Wigner function of the QI-OPA amplified
states in presence of losses. The calculation will be per-
formed in the Heisenberg picture, starting from the evalua-
tion of the characteristic function of the BS-transmitted field.
This analysis will be performed for both the single-mode-
degenerate amplifier, i.e., a single-mode squeezing Hamil-
tonian, and for the two-mode optical parametric amplifier, in
which the polarization degree of freedom plays an important
role as stressed in the Fock-space analysis previously per-
formed. Finally, we shall focus our attention on the negativ-
ity of the Wigner function, evidence of the nonclassical prop-
erties of this class of states.

A. Single-mode-degenerate amplifier

Let us first analyze the case of a single-mode-degenerate
amplifier. We begin our analysis by evaluating the character-
istic function in presence of a lossy channel. The operators
describing the output field can be written in the Heisenberg
picture in the form

&= \e’?&T(z‘) + l\e“'El;T, (68)

where a'(r)=a" cosh g+4 sinh g is the time evolution of the
field operator in the amplifier and R=1-T. Hence, the char-
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acteristic function for a generic input state |[N)4|0)5 can be
calculated as

xa(.R.1) = (N,0]e™ O=1¢0| 0. (69)

Inserting explicit expression (68) for the output field opera-
tors, we obtain the expression

Yy (7R, 1) = e~ V2TIHOP o=(12)RI 2
N N (_ 1);1
~ E( ) TP . (70)
n=0 \1 n!

In this expression, the transformation (7, %) —[7(1), 7°(1)]
has the form 7(r)= nC- 7S, equivalent to the ideal case pre-
viously analyzed. The Wigner function of the output field is
then obtained from its definition [Eq. (20)] as the two-
dimensional Fourier transform of the characteristic function.
Inserting the explicit expression of xx(7,R,t) and by chang-
ing the variables with the transformation 7— 7(z) with uni-
tary Jacobian we obtain

N
1 _ 2
W\N)(a,R,t)=;E N Payo)| m(e)| e
n=0

Xexp{— [ 77(1) + 5°(1) ]}

Xexp[— @ n(r) + an'(1)], (71)
where
N = (N)gru (72)
e=13(1+2RS?), (73)
Kk =3RCS, (74)
a=aC-a's. (75)

In order to evaluate the integral in the previous expression,
we recall the following identity [33,47]:

1
—f 2 el exp[— ma? - va'? - Z*a+ za]
s
1 ut+ v+ T|Z|2:|
=——exp| -5 (76)
\1'72—4/_1,]/ p|: 7'2—4/.LV

From the latter equation, we can derive the following useful
identities:

I(p,v,7,2) = lj d2a|a|2ne_ﬁa|2
T
Xexp[— pua? — va'? - 7" a+ za*]
n
= 71—7(— 1)”%[ daeel’
Xexp[— ma? - va*? — 7 a + za]
> 1

7" 7" | P = 4uv

=1
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pzt+ vz + leq (77)

Xexp| —
p{ 7 —4uv
These expressions can then be used to evaluate the Fourier
transform of the characteristic function [Eq. (70)], leading to
the Wigner function

N
1
Win(aR1) = =2 Nl (kk,8,d). (78)
Wn:O

As a first case, we analyze the evolution of the Wigner func-
tion of a squeezed vacuum state, corresponding to the value
N=0 in the previous expression. Analogously to the unper-
turbed case, the quadrature variables for the single-mode
OPA are defined by a=X+:Y. The Wigner function for the
squeezed vacuum then reads

Wioy(X,Y.R,1)
2 1
" 71441 -RRS
(X228 + Y2e%8) + 2RS(X?e™8 + Y?¢®)
1 +4(1 - R)RS?

Xexp| -2

(79)

From this quantity, we can explicitly calculate how the de-
gree of squeezing changes with an increasing value of the
parameter R. We obtain for the fluctuations of the two field

quadrature operators X, [Fig. 14(a)],

—
AX =T +(1-1), (80)
(a) 10 (b) 25
8 2
- AX
><'” 6 EI.S
s 3!
- 2 77777747Y777777 0.5
0(; 02 04 06 08 1 0o 02 04 06 08 1
R R
17.5
(c) " ~ (d)
o125
< 3
< 3.
>é 5 < :
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I
0 02 04 06 08 ! ! 0 02 04 06 08 v
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FIG. 14. (Color online) (a) and (b) Uncertainty relations for the
quadrature operators in the spontaneous emission case for a single-
mode OPA. Left figure: fluctuation on the X quadrature (red straight
line) and on the Y quadrature (green dashed line) as a function of
the parameter R of the lossy channel. Right figure: uncertainty re-
lation AXAY as a function of the parameter R. (c) and (d) Uncer-
tainty relations for the quadrature operators in the single-photon
amplified case for a single-mode OPA. Left figure: fluctuation on
the X quadrature (red straight line) and on the Y quadrature (green
dashed line) as a function of the parameter R of the lossy channel.
Right figure: uncertainty relation AXAY as a function of the param-
eter R. All figures refer to a gain value of g=3.
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FIG. 15. (Color online) Wigner function of a single-photon am-
plified state in a single-mode-degenerate OPA for g=3. (a) (R=0):
unperturbed case. (b) (R=0.005): for small reflectivity, the Wigner
function remains negative in the central region. (c) (R=0.1): the
Wigner function progressively evolves in a positive function in all
the phase space. (d) (R=0.5): transition from a nonpositive to a
completely positive Wigner function.

AY = \NTe # +(1-T). (81)

This two operators do not satisfy anymore the minimum un-
certainty relation, as in the unperturbed case, after the propa-
gation over the lossy channel [Fig. 14(b)]. This is due to the
additional Poissonian noise belonging to the photon loss pro-
cess.

A similar behavior is obtained for the single-photon
squeezed state. The Wigner function for N=1 reads

Wll)(Xs Y9R9t)

2 1
= = ——=P_(X,Y,R,1)
71 +4(1 —=R)RS
(X278 + Y2e28) + 2RS(X2e™8 + Y?e?)
Xexp| —2 5 ,
1+4(1-R)RS
(82)
where
4(1-R) 1
Pp(X,Y,R)=1—-——————| (1 +2RS?
il ) 1+4(1—R)R52[2( )

+ (X% + Y2e%) + 2(1 + 2RS?)
o (X%e728 4+ Y2e%8) + 2RS(X?e™8 + Y?e¥)
1 +4(1-R)RS? '

(83)

The region where the Wigner function is negative becomes
smaller when the parameter R of the lossy channel is in-
creased. In Fig. 15 we report the plots of W|;,(X,Y,R,t) for
different values of the reflectivity R. As a first effect, the
negative region is deleted for a reflectivity R=1/2 [Fig.
15(d)]. Then, the form of the distribution remains unchanged
until the reflectivity becomes close to 1 and all the photons
present in the states are lost: R(n)=(n). As a further analy-
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FIG. 16. Contour plots of the Wigner function of a single-
photon amplified state in a single-mode-degenerate OPA for g=3.
(a) (R=0): unperturbed case. (b) (R=0.005): for small reflectivity,
the Wigner distribution begin to evolve in a double-peaked function
with a negative central region, analogously to the CSS case. (c)
(R=0.5): transition from the regime with a negative central region
and a completely positive distribution. (d) (R=1): evolution of the
Wigner function into a vacuum state when all photons are lost.

sis, let us consider the value at X=0 and Y=0, in which the
Wigner function has the maximum negativity. We obtain that
W‘1>(O,0,R,t)<0 for RS%, showing that the negativity is
maintained in that range of the lossy channel efficiency. This
property can be analyzed by the two-dimensional contour
plots of Fig. 16.

As a further analysis, starting from the Wigner function,
we can evaluate the fluctuations in the quadrature operators

after losses [Fig. 14(c)],

R

AX =2\3Te* +(1-1), (84)
I

AY = 3\3Te™ + (1-1T). (85)

As in the squeezed vacuum case, Poissonian noise added by
the lossy channel increases the fluctuations AXAY for any
nonzero value of the loss parameter R [Fig. 14(d)].

B. Two-mode collinear amplifier

The previous calculation, performed in the case of a
single-mode-degenerate OPA, can be again used to analyze
the collinear QI-OPA case. The characteristic function with a
generic input two-mode state |¥;,) can be evaluated as

Xvad( ER D) = (W, |eHO-7eH0) @ (EH0-E 00| )
(86)

Analogously to the single-mode OPA case, the time evolu-
tion of the field operators, due to the amplification process
and to the propagation in the lossy channel, takes the form

(0 =1 - Raj(r) + 1\VRD],, (87)
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e =1 = Ra(r) + 1WRb}, (88)

where the expression of the equation of motion for dL,V(t) is
Eq. (4). We now proceed by writing the characteristic func-
tion in the {7, ,7_} basis and by substituting relations (87)
and (88) for the time evolution in the Heisenberg picture of
the field operators. The characteristic function then reads

X (T ER.1) = (W, | L7 TRA21a ' (0 T=R1 2l
® RGN0 RO7+€) )b,
® el T-RNZ1A (& (0 T-RI2Ja_
& el REmN L0 RE-ND |y .
(89)

The transformation between (n, 7", & &)
—[5(t), 7" (1), &@1), E(2)] is the same Egs. (34) and (35) of
the unperturbed case. The evaluation of the average on an
input injected state |[N+,M-) in the QI-OPA and on the
vacuum-injected port b of the beam splitter leads to the fol-
lowing result:

~(UAR (7 + &4 = 72) =) (1=R) |90 +|E0)]]

S 5 | l200((s0E)

n=0 m=0 2 2

xvu(m &R ) =e

(90)
The Wigner function is then calculated as the four-
dimensional Fourier transform of the characteristic function.
Analogously to the single-mode case, we proceed with the

calculation by evaluating the Fourier integral that, after
changing the integration variables with the transformation

(9, 7", &,6)—=[n(1), 7" (1), &), £ (1], can be written as

W|N+,M—)(a’ ﬁsRs t)

= #f dzn(t)J d2§(t)|J|e><p[— %s[ln(t)|2+ If(t)lz]}

XGXP[—%K[ﬂz(t)+7I*2(t (- *2(t)]]

(E Nlnu)lz")(g lear)lz'")

m=0
Xexp[%[n*ma— n(t)&*]]
V2
Xexp[\f—g[s*(t>ﬁ—§(t)ﬁ*]}, 1)

where the parameters ¢, k have been defined in Egs. (73) and
(74) and the transformation between a— @ and B8— B is

&= \i@[(aw)c— (o + B)S]. (92)
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B= %[(ﬁ— @) C+ (B - a)s]. (93)

The derived integral relations [Eq. (77)] lead to the final
result

N
‘/V‘N+,M—>(a’ﬁ’R’t) = #(E CnNIn(K’ K’855())

n=0

M
X ( > M= k-

m=0

K,8,B)>. (94)

Let us analyze the spontaneous emission case, when N
=M =0. Adopting the same definition of the phase space used
in the unperturbed case in Sec. III B, we obtain

W, (XYRt)—(g>2;
0000 D=\ ) 1+ 482R(1 - R)
[ (1+2R52+2RCS)X2e‘28]

Xexp| — >

1+4S8%R(1-R)
(1+2RS?-2RCS)Y?e*

Xexp| — )

1 +4S82R(1 -R)

(95)

As in the single-mode case, the degree of squeezing in the
quadrature operators is progressively decreased by the Pois-
sonian noise introduced by the lossy channel.

Furthermore, let us analyze the case of the single-photon
amplified states, i.e., N=1, M=0 and N=0, M=1. The
Wigner functions after losses for this quantum states are

W00 Y R, 1) = Wio, 0P)14 00X R 1), (96)

Wior 10X, Y, R, 1) = Wios 00y Plos,1(Y, R, 1), (97)
where Py, (X,R,1) and Pjo, (Y, R,1) are the following
second-order polynomials,

4(1-R)

PlooyXRD)=1+— 0
te0(XoR1) 1+4S°R(1 - R)

1
x{— 5(1 +X%e72%) — RS+ (1 + 2RS?)

1 +2RS%>+ 2RCSX?e™ 28
. (98)

1 +4R(1 -R)S?

4(1-R)

Py (YR =14 —————
or.1)(YoRo1) 1+45?R(1 —R)

1
X [— 5(1 +Y%%) —RS?+ (1 + 2RS?)

1 +2RS* - 2RCSY?e*®
(99)

1 +4R(1 -R)S?
In Fig. 17 we report the Wigner function W)y, oy(X,Y,R,1)
for different values of the reflectivity R. The evolution of this

distribution is similar to the single-mode OPA case analyzed
previously.
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FIG. 17. (Color online) Wigner function of a single-photon
[1+) amplified state in a two-mode-degenerate OPA for g=3. (a)
(R=0): unperturbed case. (b) (R=0.005): for small reflectivity, the
Wigner function remains negative in the central region. (c) (R
=0.1): the Wigner function progressively evolve in a positive func-
tion in all the phase space. (d) (R=0.5): transition from a nonposi-
tive to a completely positive Wigner function.

C. Resilience of quantum properties after decoherence

The Wigner functions calculated in Sec. VI B allow us to
obtain a complete overview of the phase-space properties of
the QI-OPA amplified states after the propagation over a
lossy channel. In particular, we focus on the negativity of the
W representation in the specific case of a single-photon in-
jected qubit. As said, the presence of a negative region in the
phase-space domain is one possible parameter to recognize
the nonclassical properties of a generic quantum state.

Let us now consider expression (98) for the polynomial
P, 0(X,R,1). In the lossless regime considered in Fig. 4,

(a) S /\ /\
:i{ 0
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i
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FIG. 19. (Color online) Transition from a nonpositive distribu-
tion to a completely positive Wigner function for QI-OPA single-
photon amplified states in presence of decoherence as a function of
the beam-splitter reflectivity R. Average photon number of (a) (n)
~6.5 and (b) (n)~153.5. The negativity is evaluated as the value of
the Wigner function in the origin.

0.6

the Wigner function takes its minimum value in the origin of
the phase space (X=0, Y=0). In presence of losses, the
Wigner function remains negative in the origin for R<%.
This behavior is shown in the plots of the Y=0 sections of
W‘l+’0_>(X ,Y,R,1) reported in Fig. 18, where for the value of

=5 ceases to be negative. This is also shown in Fig. 19,
which reports the value of W|]+y0_>(O,O,R,t) as a function of

(b) = o008

2 0.06

R=0.7

FIG. 18. (Color online) Y=0 section of the Wigner function for QI-OPA single-photon amplified states for {(n) = 36. (a) R=0: unperturbed
Wigner function, negative in the origin. (b) R=0.05: the negativity in the origin progressively decreases due to the coupling with the
environment. (¢) R=0.5: transition from a nonpositive to a completely positive Wigner function. (d) R=0.7: the Wigner function is positive

in all the {X, Y} plane.
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FIG. 20. (Color online) Absolute value of the negativity, evalu-
ated as the minimum of the Wigner function, in the reflectivity
range 0=R= % The blue straight lines correspond to QI-OPA am-
plified states, while red dashed lines to the |a) + |-a@) quantum su-
perposition. (a) (n)=6.5 and (b) (n)=~53.5.

the reflectivity R of the beam splitter that models the lossy
channel. Finally, this behavior, as for the quantum superpo-
sition of coherent states in Sec. VI B, can be analytically
obtained by calculating P, o_y(X,R,) in X=0. We obtain

2R-1 <0 if R<}

1+4R(1-R)S*| >0 if R> 3.

(100)

This analysis explicitly shows the persistence of quantum
properties in the QI-OPA single-photon amplified state even
in presence of losses. However, the negativity of the Wigner
function is not the only parameter that reveals the quantum
behavior in a given system. Hence, more detailed analysis
have to be performed including different approaches in order
to investigate the R>% regime.

We conclude our analysis by comparing the behavior of
the two different macroscopic quantum superpositions ana-
lyzed in this paper. In Fig. 20 we compare the decrease in the
Wigner-function negativity for the QI-OPA single-photon
amplified states, for the superposition of coherent states, and
for two different values of the average number of photons.
We observe that the QI-OPA solution possesses a higher re-
silience to losses, i.e., a slower decrease in the negative part,
with respect to the |a)+ |-a) states. However, the Wigner
function for both quantum superposition ceases to be nega-
tive at R= %

P‘1+!0_>(X= O,R,t) =

VII. PERSISTENCE OF COHERENCE IN MACROSCOPIC
QUANTUM SUPERPOSITIONS:
FOCK-SPACE ANALYSIS

In this section we perform a complementary analysis in
the Fock space of the macroscopic quantum superposition

PHYSICAL REVIEW A 80, 032318 (2009)

generated by the quantum cloning of single-photon states by
applying two criteria [29] based on the concept of distance in
Hilbert spaces, more specifically the Bures metric. This ap-
proach allows us to quantify from a different point of view
the different resilience to losses that this quantum superposi-
tion possesses in contrast to the fragility of the |a@) state
MQS.

First, we introduce the coherence criteria and discuss their
interpretation. Then we apply this last approach to the two
different MQSs under investigation showing analogies and
differences. Furthermore, with an opportune positive opera-
tor valued measurement (POVM) technique, based on the
O-filter device introduced in [20,21], the properties in the
Fock space of QI-OPA amplified states can be exploited to
obtain a higher discrimination in the measurement stage at
the cost of a lower event rate.

A. Criteria for macroscopic quantum superpositions

Metrics in Hilbert spaces. In order to distinguish between
two different quantum states, we need to define a metric
distance in the Hilbert space. A useful parameter to charac-
terize quantitatively the overlap of two quantum states is the
fidelity between two generic density matrices p and &, de-
fined as F(p,d)=Tr2(\p"26p"?) [48]. This parameter re-
duces to F(|1),|@)) =|(1| ©)|* for pure states and is an exten-
sion of the scalar product between quantum states to the
density matrix formalism. We have 0=F=1, where =1
for identical states and F=0 for orthogonal states. This quan-
tity is not a metric, but it can be adopted to define two dif-
ferent useful metrics, which are the angle distance D4(p, )
=arccos F(p,d) [1] and the Bures distance [49-51],

D(5,6) =\ 1 - \F(p,6). (101)

Furthermore, the fidelity can also be used to calculate
a lower and an upper bound for the trace distance, defined
as Dy(p,6)=5Tr|p—6] and related to the fidelity by [1]
1-VF(p,6)=D(p,6)=+1-F(p,d). In this section we will
adopt the Bures distance as a metric in the quantum state
space, as it is connected to the probability of obtaining an
inconclusive result with a suitable POVM [52,53], which is
VE(|b).[4)=[(| )] for pure states.

Distinguishability, MQS visibility. Let us characterize two
macroscopic states |¢,) and |¢,) and the corresponding
MQSs: |¢=)=(N-+/v2)(| ;) = | é,)) by adopting two criteria.
(I) The distinguishability between | ¢,) and |¢,) can be quan-
tified as D(|¢,),|d,)). () The visibility, i.e., “degree of or-
thogonality” of the MQSs |¢™) is expressed again by
D(|¢%),|¢7)). Indeed, the value of the MQS visibility de-
pends exclusively on the relative phase of the component
states:| ;) and |¢,). Assume two orthogonal superpositions
[¢), D(|¢*),|¢p7))=1. In presence of losses the relative
phase between |¢,) and |¢,) progressively randomizes and
the superpositions |¢*) and |¢~) approach an identical fully
mixed state leading to D(|¢*),|¢7))=0. The aim of this sec-
tion is to study the evolution in a lossy channel of the phase
decoherence acting on two macroscopic states |¢,) and |¢,)
and on the corresponding superpositions |¢=) and the effect
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¢)) and

on the size of the corresponding D(|¢,),

D(|¢*).|#7).

B. Bures distance for |a) state MQS

In order to quantify the loss of coherence in the macro-
scopic superposition of coherent states, we estimate their
relative Bures distance. For the basis « states we have

ae—up» =1 - e—2T\oz|2 sin? ¢

The distinguishability between these two states keeps close
to 1 up to high values of the beam-splitter reflectivity when
almost all photons are reflected.

Let us now estimate the distance between the su-
perposition states. We consider the following condition
|(,Be“"|,Be‘“">|=e‘2T“"|2 sin® ¢~ (0, which corresponds  to
T|a|? sin?> > 1. Hence, except for very small T, the coherent
states |Be™'¥) after the propagation over a lossy channel re-
main almost orthogonal. In such situation we can associate to
{|Be'?),|Be™¢)}, the two orthogonal states of a qubit
{|0),|1)}. Let us introduce the parameters y=2|a|’R sin® ¢
and =|a|’R sin 2¢. The density matrices after losses can be
represented as 2 X 2 matrices associated to the qubit state,

1 1 +eXe'
P
Pe =5 +eXe™V 1 ’
To estimate the fidelity F(p¢?, p*) we need to calculate
— e 0

0 -

D(|ae'?),

(102)

(103)

1(1
(ﬁz¢>1/2ﬁz¢<ﬁz¢>l/2=;< ) (104

Hence we get

Fpeape) =1 - e =1 -l R e (105)
From definition (101), we found
D(3EpE) = V1 =1 = ¢Rlal s’ (106)

This curve represents all the coherent state MQSs of form
(56) for any value of « and ¢. The distance depends exclu-
sively from the average number of reflected photons, R|a/?,
multiplied by a scale factor §2‘P=sin2 ¢. This term is propor-
tional to the phase-space distance (Fig. 8) between the two
components |ae'?) and |ae™¢) and equals d,=4|af* sin’ ¢.
In Fig. 21 the distances for different values of ¢ for «=4 are
reported.

For cp=§, the coherent states exhibit opposite phases.
Such condition represents the limit situation, in which the
loss of coherence is higher since sin? ¢=1. We observe, as is
shown by Fig. 21, that the value of D is reduced down to
~0.1 once R|a|>=R(n)=1. Hence, the loss on the average of
a single photon cancels most of the coherence in the quan-
tum superposition state.

C. Bures distance for QI-OPA amplified states

As a following step, we have evaluated numerically
the distinguishability of {|®*~)} through the distance
D(|®*),|®7)) between the multiphoton states generated
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FIG. 21. (Color online) (a) Analytical results of the Bures dis-
tance for the superposition of coherent states, with a=4 and for
different values of the phase, as a function of the average number of
reflected photons. (b) Universal curve of the Bures distance for the
superposition of coherent states for any « and ¢, obtained by plot-
ting Eq. (106) as a function of the parameter x=R(n)&,, with £,

=sin? .

by QI-OPA. It is found that this property of {|®*~)} coin-
cides with the MQS visibility of |¥=) in virtue of the phase
covariance of the process: D(|P*),|¥))=D(|®F),|DL))
=D(|®*),|®")). The visibility of the MQS {|¥*")} has been
evaluated numerically analyzing the Bures distance as a
function of the average lost photons: x= R{n). This calcula-
tion has been performed by taking the complete expression
of the density matrix, reported in Sec. IV and Appendixes A
and B, and by performing an approximate calculation of the
fidelity through numerical algebraic matrix routines. This al-
gorithm has been tested by evaluating numerically the Bures
distance between the quantum superposition of coherent
states |a) + |[-a). The comparison with the analytical result
of Eq. (106) gave a high confidence level for the approxi-
mate results. The results for different values of the gain for
equatorial macroqubits are reported in Fig. 22(a).

Note that for small values of x the decay of D(x) is far
slower than for the coherent state case shown in Fig. 21(b).
Furthermore, after a common inflection point at D~ 0.6 the
slope of all functions D(x) corresponding to different values
of (n) increases fast toward the infinite value for increasing
x—(n) and R— 1. The latter property can be demonstrated
with a perturbative approach on the density matrix. We find,
in the low T and high-gain limit of ﬁD(f)‘TP, ﬁgl)/ dT, the slope

(a) e (b) 10

0.8 08

06 e 06
Y - a

i —<n>=4 | U4

0z] |- <n>=8 02

i - o<n»=12 :

oc ‘ ‘ - :
0.1 1 10 oo 0.1 1 10

R <n> R <n>

FIG. 22. (Color online) (a) Numerical evaluation of the distance
D(x) between two orthogonal equatorial macroqubits |®#%1) as
function of the average lost particle x=R(n). Black straight line
refers to g=0.8 and hence to (n)=~4, red dashed line to g=1.1 and
(n)=~38, green dashed-dotted line to g=1.3 and (n)=~12. (b) Nu-
merical evaluation of the distance D(x) between two orthogonal
linear macroqubits |®7) as function of the average lost particle
x=R(n). Black straight line refers to g=0.8 and hence to (n)=~4,
red dashed line to g=1.1 and (n)=38, and green dashed-dotted line
to g=1.3 and (n)~=~12.
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lim,_., limy_o[aD(p], ﬁgL)/aT]=1img%[1 +4C*+2CT (1
+212)12]=cc. For total particle loss, R=1 and x=(n) is
D(x)=0. All this means that the MQS visibility can be sig-
nificant even if the average number x of lost particles is very
close to the initial total number (n), i.e., for R~ 1. This be-
havior is opposite to the case of coherent states where the
function D(R|a|*) approaches the zero value with a slope
equal to zero [Fig. 21(b)].

For sake of completeness, we then performed the same
calculation for the linear macroqubits |®-"), and the results
are reported in Fig. 22(b). For this injected qubit, not lying in
the equatorial plane of the Bloch sphere, the amplification
process does not correspond to an optimal cloning machine.
For this reason, the flow of noise from the environment in
the amplification stage is not the minimum optimal value,
and hence the output states possess a faster decoherence rate.
Indeed, the output distributions, as shown in Fig. 10(b), do
not possess the strong unbalancement in polarization of the
equatorial macroqubits |®¢), which is responsible of their
resilience structure.

D. Distinguishability enhancement through
an orthogonality filter

As a further investigation, we consider the case of a
more sophisticated measurement scheme based on an elec-
tronic device named O-filter (OF). The demonstration of
microscopic-macroscopic entanglement by adopting the
O-filter based measurement strategy was reported in [21].
The POVM-like technique [53] implied by this device lo-
cally selects, after an intensity measurement, the events for
which the difference between the photon numbers associated
with two orthogonal polarizations |nw—mﬂl|>k, i.e., larger
than an adjustable threshold k [20], where n,, is the number
of photon polarized 7 and Moy is the number of photon
polarized 7. By this method a sharper discrimination be-
tween the output states |®¢) and |®¢+) can be achieved. The
action of the OF, sketched in Fig. 1, can be formalized
through the POVM elements,

©  n—k

FED (=3 X 1, (107)
+ n=k m=0
®  m—k

o= > 1,,. (108)
+ m=k n=0

Fon 0)=1-F2V - FCV, (109)

where the I1,,,,=|nm,m, Ynm,ma,| are Fock-state Von-
Neumann projectors that describe the performed intensity
measurement. The average of the couple of operators
(F ;%(k))+(f7 S’;%(k)) defines the success probability of the
O-filter, i.e., the rate of events leading to one of the conclu-
sive outcomes (*1). To calculate the action of the O-filter in
the Bures distance, we projected the density matrix of the
states over the joint subset corresponding to the (*=1) out-
comes, neglecting only the terms leading to the inconclusive
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FIG. 23. (Color online) (a) Numerical evaluation of the Bures
distance between two orthogonal equatorial macroqubits after dis-
crimination with the O-filter for different values of the threshold
k(g=0.8). The filtering probabilities for the three cases are respec-
tively P(k=4T(n))=1.6X1073, P(k=6T(n))=7.14X 1075, and P(k
=8T(n))=3.06 X 107°. (b) Success probability for the O-filter for
g=0.8 and different values of the transmittivity as a function of the

parameter £ The latter expresses the threshold k& with respect to

T(n)"
the average number of the incident photons in the detection appa-
ratus. We note that the curves for different transmittivities can be

almost superimposed.

(0) result. Then, the same numerical analysis of Sec. has
been performed. In Fig. 23(a) the results for g=0.8 and dif-
ferent values of k are reported. Note the increase in the value
of D(x), i.e., of the MQS visibility, by increasing k. Of
course, the increase in the MQS visibility through the
O-filter device is achieved at the cost of a lower success
probability [Fig. 23(a)]. According to the graphical analysis
of Sec. IV on the photon number distributions of the equa-
torial amplified macrostates, the O-filter device improves the
MQS visibility since it exploits the peculiar unbalancement
in polarization of the equatorial amplified macrostates in a
Fock-space analysis. In the selected regions, the
{|®¢),|®¢L)} states can be discriminated with a higher fidel-
ity. As a further analysis, we reported in Fig. 23(b) the trend
of the success probability as a function of the threshold & for
different values of the transmittivity. Interestingly enough,
we note that the success probability depends only on the
ratio between the threshold k and the number of transmitted
photons T{n) since the three curves for different 7 are almost
superimposed. This is a consequence of the property of the
photon number distribution of the equatorial macroqubits
since its form is almost left unaltered after the propagation
over a lossy channel.

VIII. WIGNER FUNCTION FOR NONDEGENERATE
QUANTUM INJECTED OPTICAL PARAMETRIC
AMPLIFIER IN THE EPR CONFIGURATION

In this section we derive the Wigner function associated
to the nondegenerate quantum injected optical parametric
amplifier, working in a noncollinear EPR configuration. The
scheme for this device is reported in Fig. 24.

In the stimulated regime, this amplifier acts as an N
— M universal optimal quantum cloning machine [54,55].
The interaction Hamiltonian of this device can be written in
the form

Hepe=thix(d) 405, -\, d,)+He, (110)

where 7 stands for any polarization state and i=1,2 for the
two spatial modes. The time evolution of the field operators
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FIG. 24. (Color online) Scheme for the noncollinear optical
parametric amplification of a single-photon state. An EPR pair is
generated in a first nonlinear crystal. The photon on mode k7 acts as
a trigger to conditionally prepare the photon on mode k;. The latter
is superimposed with a strong kp pump beam and is amplified in a
second nonlinear crystal oriented in the same optical configuration
of the EPR source. The beam splitters on modes k; and k, in the
figure represent the lossy transmission channel.

can be directly derived by the Heisenberg equations, obtain-
ing

aATW(zﬁl)(t) :aAJlrw(2ﬂTJ_)C+aA27Tl(lw)S9 (111)

&IWL(ZW)(I) =aAT7TL(21T)C_aA27T(177L)S~ (1 12)
In the following paragraphs we shall proceed with the calcu-
lation of the Wigner function for this amplifier in the stimu-
lated regime, i.e., when a generic Fock state is injected on
the spatial mode k;.

A. Wigner function for the noncollinear QI-OPA
in absence of decoherence

In this section we derive the Wigner function for the QI-
OPA in a noncollinear configuration. Without loss of gener-
ality, let us restrict our attention to the equatorial polarization
basis 7,=5(7y+e'¢7,) and ﬁmzé(—e"””ﬁH+ 7). As for
the collinear case, the injected state over spatial mode k; is
the generic Fock state |4;,)1,=|No,M¢ ), ®[0¢,0¢, ),. The
characteristic function is then evaluated starting from the
definition,

vl 761} = 1 ‘//in|eméiH(t)_ﬂTdIH(t>e”2d;V(’)_n;&2V(t)
g1 D=Erdyln) e§2a£H<z>—§§a2H<r>| .

(113)

Let us apply the transformation {7, & —{7(t), &)}, where

_ 1 . - 1 l
m=—7=(m+e%), &=—7(enp+&), (114)
V2 V2

1 - 1
7 =——=(n,—€'%E), =—=(e"“n+ &), 115
/)3 \5(772 &), & \“"2( m+&) ( )

and
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712)(0) = 712)C = y1)S, (116)

&) =E)C+ &S (117)

With analogous calculation to the one performed in Sec. III
we obtain

2
1 _
Xyl 7, &1} = expy - 52 (7,0 + &)
Jj=1

N

D N!(-1)

> v 1 O

% M!(=1)"

= (M —m)!m!?

&P [. (118)

The Wigner function of the amplified field can be then
expressed as the eight-dimensional Fourier transform of the
characteristic function, according to its definition. By insert-
ing the explicit expression of the characteristic function, by
separating the integrals on each couple of complex conjugate
variables, and by exploiting the integral relations already
used in Sec. III we find

2\* 2
W\N%M(PQ{Q'MBJ} = (;) (= 1)N+M€_2‘A‘ LN(|AA{a}

+ e P Ag{BHH Ly (|- Ag{ate’ + Ap{BH).

(119)

The A {a}, Ag{B}, and |A|* variables are defined in Appen-
dix C, where all the details of the calculation of the Wigner
function are reported.

Let us we consider the injection of a single photon with
polarization state |<p)=%(|H)+e“*”|V)). The Wigner function
reads [15]

16 2
W‘1¢,O¢L>{a7ﬂ7t} = ?e_ﬂAl (|AA{a} + e_l<PAB{B}|2 - 1) >

(120)

where |A {a}+e " ?Ag{B}|* represents the interference term
due to the quantum superposition form of the input state.
Indeed this interference term defines a phase-space region
where the Wigner function is negative, showing the broad-
casting of the quantum properties of the injected single-
photon state to the amplified field. For more details on the
amplification of a single photon, refer to [15].

B. Wigner function for the noncollinear EPR optical
parametric amplifier in presence of decoherence

In this section we are interested in the Wigner function for
the nondegenerate optical parametric amplifier in presence of
losses. The lossy channels on the two spatial modes {k;,k,}
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are again simulated by a beam-splitter model, with input-
output relations,

&l =\Ta,(t) + 1\VRb,, (121)

where a vacuum state is injected in the l;,- ports of the beam
splitters. We considered the case of two transmission chan-
nels for modes k; and k, with equal efficiencies.

The characteristic function is then evaluated as

vl ER Y = (| M0 0 g Tmiby (1=Tsing, )
X ebrdly, (0-Eldrg, (0 i 0=y 0)] gy

(122)

The transformation to the {7],3} variables is the same as in
the unperturbed case and has been defined previously in Egs.
(114) and (115). Following the approach of Sec. VIII, we
insert the beam-splitter relations [Eq. (121)] and evaluate the
averages after writing the exponential operators in normally
ordered form. We obtain

1 ’ _
XvanmER, 1) = exp[— 5(1 +2RS?) 2 [|7,(0)]* + |€(n)]
j=1

Xexp{— RCS[7,(1) (1) + 7,(t) 75(1) ]}
X exp{RCS[&(N&(1) + E (&N}

N n
x(E L%lm(r)lz")

o (N=n)!n

& O MU=T"
X(%mm(ﬂl . (123)

The Wigner function of the field can then be evaluated as the
eight-dimensional Fourier transform,

i ’ _
W‘N¢’M¢L>{a’B7R7I} = ﬁf f f f (H dzﬁjdzgj
J=1

><)(N,M{ 7, ng, t}

2
xexpy 2 [7(0a(0) - 70 @ (1)]
j=1

2
Xexp) > [gj‘(t)/_i‘j(t) - é_:j(l‘)/_gj(f)]
j=1
(124)

After the explicit insertion of the characteristic function, the
Wigner function can be written as a product of two integrals,
W\MP,M‘PD{a,,B,R,t} =L{a, R 0ABR, 1},  (125)

where the I3{a,R,} and I,,{B,R,1} are
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N
RlaRi =53 A0, e 80,80, (126)
n=0
1 M
I;l{ﬁ’R’t} = ; 2 d%(T)Jm,O[s,’_ M;Bl(t)aBZ(t)]'
m=0

(127)

The J, integrals are explicited in Appendix A and in Eg.
(D1). The parameters &', ,u,dﬁ' (T) for the noncollinear opti-
cal parametric amplifier are

dﬁ(T)=<ZZ)(_n—T)", (128)
' =3(1+2RS?), (129)
w=RCS. (130)

Let us again focus on the single-photon case, correspond-
ing to N=1 and M =0. With an analogous procedure to the
collinear case, we analyze the persistence of negative regions
in the Wigner function after the decoherence process. Ana-
lyzing the form of Eq. (120), we note that the minimum
occurs when |A {a}+e"?Ax{B}|>=0 and |A|>*=0. This point
corresponds to the origin of the eight-dimensional phase
space given by the {@(r), B(¢)} variables. The evolution of the
Wigner function in this point is explicitly evaluated as

W, {001&:}—1—6 2R 1
1e0e JEBTT0H= CAT] £ 4R(1 - R)S2P

(131)

The value in the origin of the Wigner function is reported in
Fig. 25. We note an analogous trend with respect to the col-
linear case, while the absolute value of the amount of nega-
tivity is smaller. This is due to the universal cloning feature
of the noncollinear QI-OPA, in which the cloning fidelity is
smaller than the one in phase-covariant case.

We conclude this section on the noncollinear QI-OPA by
stressing that a full phase-space characterization of the quan-
tum states generated by this device would require a couple of
double homodyne measurement setups, one for each spatial
mode, as the one discussed in Sec. III C.

IX. CONCLUSION AND PERSPECTIVES

The quantum properties of the QI-OPA generated macro-
scopic system have been investigated in phase space by a
Wigner quasiprobability function analysis when this class of
states is transmitted over a lossy channel, i.e., in presence of
a decohering system-environment interaction which repre-
sents the main limitation in the implementation of quantum
information tasks. We first considered the ideal case, in ab-
sence of losses, showing the presence of peculiar quantum
properties such as squeezing and a nonpositive W represen-
tation. Then, after a brief review of the properties of the
coherent states MQS, the resilience to losses of QI-OPA am-
plified states in a lossy configuration was investigated, allow-
ing to observe the persistence of the nonpositivity of the
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FIG. 25. (Color online) Transition from a nonpositive distribu-
tion to a completely positive Wigner function of the single-photon
amplified states obtained by the noncollinear QI-OPA in presence of
decoherence as a function of the beam-splitter reflectivity R. Aver-
age photon number of (a) (n)=6.5 and (b) (n) =~ 53.5. The negativ-
ity is evaluated as the value of the Wigner function in the origin.

Wigner function in a certain range of the system-
environment interaction parameter R. This behavior was ana-
lyzed in close comparison with the |@) state MQS, which
possesses a nonpositive W representation in the same interval
of the interaction parameter R. Moreover, the more resilient
structure of the QI-OPA amplified states was emphasized by
their slower decoherence rate, represented by both the slower
decrease in the negative part of the Wigner function and by
the behavior of the Bures distance between orthogonal mac-
rostates, the latter evaluated in the Fock space. Since the
negativity of the W representation is a sufficient but not a
necessary condition for the nonclassicality of any physical
system, future investigations could be aimed to the analysis
of the decoherence regime in which the Wigner function is
completely positive, analyzing the presence of quantum
properties from a different point of view.
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APPENDIX A: DENSITY MATRIX OF THE EQUATORIAL
AMPLIFIED STATES AFTER THE PROPAGATION
OVER A LOSSY CHANNEL

In this appendix we perform the derivation of the density
matrix of the equatorial amplified states after the propagation
over a lossy channel. The applied model is the same BS-
scattering process used throughout the whole paper.
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The starting point is the expression of the unperturbed
state |?),

|®?) = L > (e"“’£>i<— e""E)j

C* o 2 2

y V(2i + l)‘\'2]‘

; (A1)
ilj!

i+ De,(2))¢.),
where C=cosh g and I'=tanh g, with g as gain of the ampli-
fier, with the state written in the polarization basis {7, ﬁ'%}.
The state can be written in terms of the creation operators
» j (A2 AT 2]
1 i r\i@a,""a,)
|(I)¢p> - 2 <e—t<p_) (_ elKP_) %K»
ilj!

(A2)

(oyw 2 2

We then apply the time evolution independent operators 0](;3
and lA](‘“) which describe the interaction in the beam split-

ter: Ugg=e'? 2@'h+ib") A g reasonable assumption, we con-
sider the transmittivities T, and T, to be equal for all po-
larization states. We can then write the evolved state in the
Schrodinger picture |®'%) as

. r\( TV
S
co\m 2 2

(\T + Z\RdT)m”(\T

re (@) 7 (M) @
") = U Uyl | ®¢) =

_+0VRd, )Y

ilj! 0)-

(A3)
We can now exploit the binomial expansion (a+b)"
=3",a'b"7(") as the operators for the two output mode of

the beam splitter ¢, d commute and can be treated as alge-
braic variables. Subsequently applying the creation operators
to the vacuum we then obtain the final expression of the state
after the propagation in the beam splitter,

|D'¢) = L > (e”“’z)l(— e""E)j

oy 2 2

2itl 2) ) A\ T2
2i+1\(2

<= 3010
m=0 n=0 m n
—_—
\1(21+ 1)'\2] (v T)n+m( R)21+2J+1 n—m

il
X|m,n)e ® |20+ 1 —m,2j —n)p. (A4)

The density matrix of the quantum state is then obtained as
P e=|D'¢)}D'¥|. Let us call

_L< _WE)"( sz)j (2"+1><2J'> "
Yimn = 02\ ¢ 5 JA\TE T, m n

/—/_
[(2i + 1)1V2;!
><\(z )IV2)

— (\/})nﬂn(l \‘,/I_Q)Zi+2j+l—n—m.
1]

(A5)
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Tracing the density matrix p’¢ on the reflected d BS mode in
order to consider our ignorance over the number of reflected
photons we obtain

©

pE=Trp(p'¥) = 2 plx.y
x,y=0

DTENDx,y)p

o 20+l 2j 2k+1 21

= 2 E E 2 E 2 7ij,mn7’ZZ,pq|m7n><p’q

x,y=0 1,j,k,/=0 m=0 n=0 p=0 ¢=0

2i+1=m,2j —n)pp(2k+1—p,21 - glx,y)p.
(A6)

® D<x’y

The evaluation of the scalar products between Fock states
leads to the desired result. The expression of the density
matrix on the transmitted ¢ spatial BS mode is then written in
the form

pE= > (ij

i.j.k.q=0

pilk. )i, j)k.q]. (A7)
We now report the expressions of the density matrix co-
efficients, which depend on the parity. For i,j,k,q even we

obtain

(i.j1pflk.q)
1 (T\@&R2[ p\Gro2 —
- — = _ (et<p)(/+k—t—q)/2R(V’T)t+/+k+q
C4(2> 2

" \”l’ ‘] 1 k! q' ( l)(k 1) 1 2+(i+j+k+q)/2
— (i + + -
l 1-RT?

2 2 2 2
k3
><2Fl<—i,——;—,R2F2)
222
j a1 , 2)
XoFi\ = 5.— 05 RT . A8
. 1( s (A8)
For i,k odd and j,q even, we obtain
(i.j|p7lk.q)
i+k)/2—1 +q)/2
— é<£>( +)/ <_ E)UH])/ (eup)(/'+k—i—q)/2(Vf?)i+j+k+q
2 2
\'i '] 1 k! q' 1 2+(i+j+k+q)/2
ﬂyiqt;gy 1_R2F2
2 20 2 T2
I+i 1+k1
X\ == R
2 2 2
J a1l 2)
: 1( St (A9)

For i,k even and j,q odd, we obtain
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pilk.q)

1 (F)(i+k)/2( F)(j+q)/2—1
“ct\2 "2

X (%) (j+k—i—q)/2R2F2(Vr’?)i+j+k+q(l- +D)(k+1)

:|2+(i+j+k+q)/2

(i,

!/—
Viljlk!q!

2 2 2 2
i k3
><2F1<— i,——;-;R2F2>
222
1-j1-¢q 3
><2}71( ], _q;_;R2F2> (A10)
2 2 2

Finally, for i,j,k,q odd we obtain

Pk, q)

1 <F>(i+k)/2—1 ( F)(j+q)/2—1
2 T2

X (e'¢)UHk==0 2R V/;v)i+j+k+q

(i.j

" Vi y] 1k q‘ 1 2+(i+j+k+q)/2
i-1,j=1 k=1 g-1 1-RT?
2 2 2 27

1+i 1+k 1
><2F1<——l,——;-;R2F2)

2 2 2

-j1-93 2)
X, F ,—— =R, All
21( RRERE) (AL1)

In these expressions, ,F(a,B;vy;z) are hypergeometric
functions [56].

APPENDIX B: DENSITY MATRIX OF THE 7y, 7y
AMPLIFIED STATES AFTER THE PROPAGATION
OVER A LOSSY CHANNEL

The procedure for the evaluation of the density matrix of
the state after losses is the same applied in Appendix A. Let
us analyze the |®%) state, whose density matrix after the
amplification process reads

1 < N
P = |\ (DH| = & > I"n+ 1Nm+1|(n + 1)H,nV)

n,m=0

X{(m+ 1)H,mV]. (B1)

After the insertion of the BS unitary transformation, the joint
density matrix of the transmitted and reflected modes is

m+l  m

n
E E Fn+111\,’n+1

mn=0 i=0 j=0 k=0 ¢=0

il ([ ) )]
i Jj k q

X (\/}) i+j+k+q( VfE)n+m+2—i—j—k—(/|l-H’jV>C<kH’ qV|
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®|(n+1-i)H,(n—j)V)p{(m+1-kH,(m-q)V|.
(B2)

After tracing over the reflected mode, we finally obtain

“7tjk;p) |liH,jV)(kH,(k + j — i) V]|

bl

. ’71]](,])) |lH’]V><kH’ (k +] - l)V

(B3)
where the coefficients ¥;;., are
1—‘2p+i+k—2

——\p+ip+ kT*+J'R2P+i—1—j|: (p T )
C i

X(p+i—1)<p+k>(p+k—l)}”2. 54
J k k+j-1

APPENDIX C: WIGNER FUNCTION FOR THE
NONCOLLINEAR QI-OPA IN ABSENCE OF
DECOHERENCE

Yijkip =

We begin the calculation of the Wigner function, without
loss of generality, by restricting our attention to the equato-
rial polarization basis defined by

1

7_1)'¢=?(77'H+8”Pﬁ'v), (Cl)
V2
> 1 10 = >
Ty, = TE(_ e iy + ). (C2)

As for the collinear case, the injected state over spatial mode
k, is the generic Fock state |i;,)1=|No. Mo )
®]0¢,0¢ ). The characteristic function is then evaluated
starting from the definition

XN, M{ 7§ 1= 12< lﬂinleWI&TH(Z)_”TalH(t)enzdzv(l)_ﬂzézv(t)
X 18 UD=E1 1D gexd3 (-Edan )|y ).
(C3)

Let us apply the following transformations over the {7, &}
variables, corresponding to the rotations from the {7, 7y} to
the {7, ﬁm} polarization bases,

1

7= +e'%), (C4)
V2

_ 1 .

§1=_r(—€¢771+§1), (C5)
V2

_ 1 .

= ?(7]2 —e'%), (Co)
V2
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- 1
L=—7("m+&). (C7)
V2

We then explicitly insert the time evolution of the field op-
erators [Egs. (111) and (112)]. Defining

(1) = 7C~ 78, (C8)
(1) = 7,C~ 7S, (C9)
D =EC+ES, (C10)
5 =EC+ES, (C11)

we can rewrite the characteristic function in the following
form:
Xnad 7 &1 = 1o le B T 0irgg ﬁz(lm;ﬁ_ﬁ;w&z“’i
= AT YN = AT TN A
X e§1 (’)alﬁ‘ﬁ(’)“l ¢Le§2(t)02tp_§2(t)a2¢| l/,il’l>]2'
(C12)

The averages can now be evaluated by writing the operators
in the normally ordered form. With analogous calculation to
the one performed in Sec. III we obtain

1< _
vk 7 E1) = eXp[— 52 (7,0 + |§,(t)|2]}
J=1

N f {1\
% (2 Mml(mzn)

= (N=n)!n??

M m
X(E Mi(=1)

= (M —m) ! m!?

IEl(t)Iz’”>-

(C13)

The Wigner function of the amplified field can be then
expressed as the eight-dimensional Fourier transform of the
characteristic function, according to its definition. The inte-
gration variables are changed according to {nj,gj}jz-zl

—{7,(1), Ej(t)}f-:l, leading to

2
1 _
Wiveme o Bt} = ?J f f f (H dzﬁjdzgj)XN,M{ﬂf,f}
j=1
2

xexpy 2 [7(0)a () - 70 @;(1)]
j=1

2
xexp| 2 [£(0B;(1) - §(1B;(1)]
j=1
(C14)

The calculation then proceeds as follows. By inserting the
explicit expression of the characteristic function, by separat-
ing the integrals on each couple of complex conjugate vari-
ables, and by exploiting the integral relations already used in
Sec. III we find
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W\N(p,M(;u)(avﬂv t)

4
_ (%) (= D¥MLy[4]@ ()P ILy[4]8 ()]

2
xexp) =22 [|&(n)* + |B;()|*] (C15)
j=1

As a further step, we can define the following set of squeezed
and antisqueezed variables,

Yar = (o + a)et, (C16)

Ya-=1la; — ay)e®, (C17)

Y8 = (B = Bo)e?, (C18)

Vo= 1(B1 + Br)e™® (C19)

and the following set of quadrature variables,

1

Afat= TE(7A+ —1Y4-), (C20)
\!
1

A= T§(73+ —1Y5-), (c21)
\

AP = 5yl + [al? + [yaal + [vs). (C22)

The Wigner function can then be simply expressed as

2\* 2
W|N¢,M¢l>{a,ﬁ,t} = ( ) (= 1yN+Me2lal Ly(|Ax{e}

+ e AR B Ly (|- Asfate'® + AR{BY?).
(C23)

APPENDIX D: INTEGRAL RELATION

In this appendix we derive the integral relation used in the
text in Sec. VIII B. We are interested in evaluating integrals
of the form,

Tnan(To132,w) = ;J J &*ad’ Bl |pP"e
X BB gl al+|B) p-(apra’B)
(D1)
We first note that
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n+2m

Jn,m(Tvl-L;Z’w) = (_ 1)n+m *m[JO,O(Tuu';ZsW)]'

97" 7" aw™m dw
(D2)

According to this result, it is sufficient to evaluate only the
Jo,o integral. We start from its explicit expression

Joo(mpiz.w) = — f J d*ad’Be® 4 P PV
x ¢~ o418 = pulapta”B") (D3)

We now apply the following |J|=1 integration variable rota-
tion,

a=cos(6)y+sin(6) 4, (D4)

B=—sin(6)y+cos(6) 4. (D5)

Choosing cos #=sin 0:% we obtain

1 ko % ok — _—y
Joo(T,mz,w) = ?J f d*yd*Se? % e? oW e_T(|7|2+|512)

X g~ 1Du(F+52-7—y%) (D6)
where we defined the rotated parameters:
_ 1
7=—=(z-w), (D7)
V2
_ 1
w=-—7=(z+w) (D8)
\

The integrals over y and & are now uncoupled and can be
evaluated separately by using Eq. (76). Exploiting this inte-
gral relation and applying the inverse rotation {Z,w}
—{z,w}, we obtain

[z + wl*)
R
- pmaw +2°w")
Poid |
The latter result allows then to explicitly evaluate the J,,

integrals by starting from J,, and performing the opportune
derivatives, according to Eq. (D2).

1
JO,O(TNU';Z’W) = 7_2 _ M26xp|:_

X exp{ (D9)
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