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We investigate numerically the appearance and evolution of entanglement in spin systems prepared initially
in a pure state. We consider the dipolar coupling spin systems of different molecular structures: benzene C6H6,
cyclopentane C5H10, sodium butyrate CH3�CH2�2CO2Na, and calcium hydroxyapatite Ca5�OH��PO4�3.
Numerical simulations show that the close relationship exists between the intensity of second order �2Q�
coherences and concurrences of nearest spins in a cyclopentane molecule.
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I. INTRODUCTION

Quantum entanglement, the most characteristic feature of
quantum mechanics, is one of the central concepts in quan-
tum information theory and is the feature that distinguishes it
most significantly from the classical theory. Entanglement is
now viewed as a physical resource, which provides a means
to perform quantum computation and quantum communica-
tion �1–4�. Entanglement, as the quantum correlation, can
bring up richer possibilities in the various fields of modern
technology. Therefore, great efforts have been made in the
past few years to understand and create entanglement. En-
tanglement between two systems can be generated if they
interact in a controlled way �5�. However, in most real ex-
periments, specific conditions for creation of the entangled
states are requested. It has recently been shown that, in two-
and three-spin �6� and in many-spin �7,8� clusters of protons,
the entangled state of a spin pair is emerged only at very low
temperatures T�20 mK. The same extreme conditions are
required to achieve a pure state, where the populations of all
quantum states except only one quantum state are equaled to
zero �9,10�. The pure state is usually used as a starting point
for the quantum computation, communication, and teleporta-
tion algorithms. To overcome the experimental problems re-
lated to very high magnetic fields and extremely low tem-
peratures, a so-called pseudopure state was introduced
�9–11�. In this state populations of all the quantum states
except one of them are the same but nonzero which can be
represented in the following form �10�:

�ps =
1 − �

2N 1̂ + ��p �1�

for �p a pure. Here 1̂ is the identity operator and � is param-
eter which depends on experimental conditions and number
of spins N. Equation �1� describes the pure state at �=1.

Many methods have been proposed to prepare the
pseudopure state such as temporal averaging �12�, spatial
averaging �13�, logical labeling �14�, and cat-benchmark
�15�. All these methods used transition-selective or qubit-
selective pulses. Therefore, the size of a spin ensemble that
can be prepared in the pseudopure state has been limited by
spectral resolution and the signal-to-noise �S /N� ratio.

Recently, an elegant method of creating pseudopure states
starting from the thermal equilibrium state was proposed,
which does not require a resolved equilibrium spectrum �16�.

The method is based on multiple-quantum �MQ� dynamics
with filtering of the highest order multiple-quantum coher-
ence. The method has been successfully used to prepare a
pseudopure state in clusters of benzene molecules in liquid-
crystalline solvent: �1� six homonuclear spins, �2� seven-
heteronuclear dipolar-coupled spins with single labeled 13C,
and �3� twelve-heteronuclear dipolar-coupled spins with full
labeled 13C �17,18�.

Following this method, we have formulated in �19� the
strategy of preparation of a pseudopure state: �1� excitation
of MQ coherences starting from the thermal equilibrium
state and lasting until the time when the intensity of zeroth-
order coherence is reduced to zero; �2� filtering of the highest
order multiple-quantum coherence. This strategy was proved
by the numerical simulation with real molecular structures,
such as a rectangular �1-chloro-4-nitrobenzene molecule�, a
chain �hydroxyapatite molecule�, a ring �benzene molecule�,
and a double ring �cyclopentane molecule� �19�. This opens
the way to the experimental testing. The behavior of a den-
sity matrix of spin system in the pseudopure state is exactly
the same as the behavior of the pure one �10,11� because
they differ only on the scaled unit matrix which does not
contribute to observables and it is not changed by unitary
evolution transformations. At the same time, entanglement
depends on whether the state of the spin system is pure ��
=1 in Eq. �1�� or pseudopure �20,21�. It is possible to obtain
bounds on the value of � for which the state in Eq. �1� is
entangled �20,21�. For example, asymptotic upper bound on
the size of the neighborhood of separable density matrices
that is of order ��2−N/2 �20�. In typical NMR experiments
��10−2 for ten spins, a value which is too small for this
state to be entangled �20,21�.

Recently, it has been suggested �22,23� to perform the
MQ NMR experiments on spin systems being in the
pseudopure state. As a result of using the pseudopure initial
condition, many-spin correlations in clusters appear faster
�22,23� than in the ordinary MQ NMR experiments �24�.

In the present paper we consider an application of the MQ
NMR technique for creation of entanglement in systems
initially prepared in the pure state. Results of computer simu-
lations of entanglement dynamics are presented for real
structures which were used in NMR and MQ NMR experi-
ments �six protons of benzene molecule C6H6 �16�, ten
protons of cyclopentane molecule C5H10 �25�, a chain of
four carbons of fully 13C-labeled sodium butyrate
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CH3�CH2�2CO2Na �26� and protons of calcium hydroxyapa-
tite Ca5�OH��PO4�3 �27��. Below we describe the MQ NMR
technique applied to the spin system initially is in the
pseudopure or pure state.

II. MQ NMR IN THE PSEUDOPURE AND PURE STATES

The interaction energy of a system of nuclear dipolar-
coupled spins in a typical NMR field of 2–10 T can be
represented by the secular part of the dipolar Hamiltonian
��=1�,

HD = �6�
j�k

DjkT20
jk , �2�

where Djk=�2� /rjk
3 �1−3 cos2 � jk� is the coupling constant

between spins j and k, � is the gyromagnetic ratio, rjk is the
distance between spins j and k, � jk is the angle between the
internuclear vector r� jk and the external magnetic field, T20

jk is
the zero component of a normalized irreducible spherical
tensor of rank 2, which, in terms of the projection of the
individual spin angular momentum operators Ij� on the axis
� ��=x ,y ,z�, is �28�

T20
jk =

1
�6
�2IjzIkz −

1

2
�Ij

+Ik
− + Ij

−Ik
+�	 , �3�

where Ij
+ and Ij

− are the raising and lowering operators of spin
j.

The basic scheme of MQ NMR experiment consists of
four distinct periods of time: preparation ���, evolution �t1�,
mixing ���, and detection �24�. The efficient multiple quan-
tum pulse sequence contains eight-pulse cycle �24�. The
preparation period is necessary to create MQ coherences. In
the rotating reference frame �29�, the average Hamiltonian
HMQ describing the MQ dynamics at the preparation period
can be written as �24,30�

HMQ = H�2� + H�−2�,

where H�	2� = −
1

4 �
j�k

DjkIj
	Ik

	. �4�

The density matrix of the spin system, ����, at the end of the
preparation period is

���� = U�����0�U+��� , �5�

where U���=exp�−i�HMQ� is the evolution operator acting
during the preparation period and ��0� is the initial density
matrix of the system.

Usually the thermodynamical equilibrium density matrix
is used as the initial one for MQ NMR experiments �24� and
the equilibrium spin density matrix �eq has the following
form: �eq=exp�−
Iz / kT� �28,29� where 
 is the Zeeman
splitting and kT is the thermal energy and Iz=� j=1Ijz. In the
high temperature limit �
�kT� this simplifies to �eq= Iz �29�.

Here we consider MQ NMR dynamics with the initial
pseudopure state �1� and the pure state when the density
matrix can be described as

�p�0� = 
1�1 � 
1�2 � . . . � 
1�N, �6�

where 
1�k represents the kth spin that is up and N is the
number of spins in the system.

The resulting signal after the mixing period, the longitu-
dinal magnetization, Mz�t�, is

Mz�t� = Tr���t�Iz
 , �7�

where

��t� = U+���e−i�
t1Iz����ei�
t1IzU��� , �8�

where ���� is the density matrix at the end of the preparation
period according to Eq. �5� and t=2�+ t1, �
 is the fre-
quency offset on the evolution period of the duration t1
which is a result of applying the time proportional phase
incrementation method �24�. One can rewrite the expression
for the observable signal in terms of the intensities of MQ
coherences,

Mz�t� = �
n

e−in�
tJn��� , �9�

where Jn��� are the normalized intensities of MQ coherences
in the pseudopure state or in the pure state �23�. At this
consideration, we can neglect the scaled unit matrix because
it does not contribute to observables and it is not changed by
unitary evolution transformations.

The sum of the intensities of all MQ coherences is time
independent: �nJn���=1 and Jn���=J−n��� �23�. Note that it
is not necessary to make any changes in the scheme of the
standard experiment in order to obtain nonzero signals of
MQ coherences in the pseudopure state or in the pure state
�23�.

III. ENTANGLEMENT MEASURE AND REDUCED
DENSITY MATRIX

To study the entanglement dynamics, we will use a mea-
sure of entanglement of two spins in the form of the entropy
of formation �31�:

EF��mn���� = Tr��mn���ln �mn���� , �10�

where �mn��� is the reduced density matrix describing dy-
namics of the mth and nth spins. This matrix is defined by

�mn��� = Trmn������ , �11�

where Trmn� . . . � denotes the partial trace over the degrees of
freedom for all the spins except the mth and nth ones, ���� is
the density matrix just after the preparation period �Eq. �5��.
The relation between EF and the concurrence between two
spins C is given by

EF�x� = − x log2 x − �1 − x�log2�1 − x� , �12�

where x= 1
2 �1+�1−C2� �31�. For the maximally entangled

states, the concurrence is C=1 while for separable states
C=0.

The concurrence between spins m and n is expressed by
the formula
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Cmn = max�0,2
mn − �
k=1

4


mn
�k�� , �13�

where 
mn=max�
mn
�k�
 and 
mn

�k��k=1,2 ,3 ,4� are the square
roots of the eigenvalues of the product

Rmn��� = �mn�����y � �y��̃mn�����y � �y� . �14�

Here �̃mn��� is the complex conjugation of �mn��� and �y

= � 0 −i
i 0 � is the Pauli matrix.

IV. NUMERICAL SIMULATION OF ENTANGLEMENT
DYNAMICS IN THE PURE STATE

To perform numerical simulation of entanglement dynam-
ics of nuclear spin clusters, we will consider several systems
suitable for studying by MQ NMR technique: six dipolar-
coupled proton spins of benzene molecule C6H6 �ring of six
spins� �16�, ten protons of molecule cyclopentane C5H10
�two pentagon cycles of ten spins� �26�, a chain of four car-
bons of fully 13C-labeled sodium butyrate CH3�CH2�2CO2Na
�26�, and protons of calcium hydroxyapatite Ca5�OH��PO4�3
�30�. In our numerical simulations, the dipole-dipole interac-
tion �DDI� constant of the nearest neighbors is chosen to be
Ds,s+1=D=1 s−1. The spin systems in molecules, such as
benzene, sodium butyrate, and hydroxyapatite dissolving in
liquid-crystalline matrix �16–18�, can be arranged as regular
circles and chains with the ratio of the DDI constants of
spins s and n is given by D� sin��/N�

sin���s−n�/N� �
3 for the ring and

D / 
s−n
3 for the chain, respectively.
The normalized DDI constants for cyclopentane mol-

ecules �two pentagon cycles� are determined as D̄sn

=Dsn /D11� and equal: D̄11�=1, D̄12=−0.178, D̄12�=−0.002,

D̄13=−0.093, and D̄13�=−0.026 �25�. Here the primes con-
cern to the bottom pentagon cycle. The external dc field is
directed parallel to the plane of pentagons.

The dependences of the intensities of MQ coherences on
the dimensionless time D� in cyclopentane molecule con-
taining ten spins and initially preparing in the pseudopure
state �1� are presented in Fig. 1. In the pseudopure states, the
MQ coherences of the various orders can be produced �Fig.
1�. At the same time the spin states are not entangled and
thus the spin-spin correlations have a purely classical inter-
pretation.

The results of the numerical simulation in the pure state
are presented in Figs. 2–4. Nonzero concurrence appears in
all considered spin systems. The time dependence of concur-
rences has quasiperiodical character. The figures present only
one cycle.

One of features of the ring structure is that the most re-
mote spins achieve large values of concurrence: C14�C12
�C13 �Fig. 2�. Figure 3 compares the concurrences of differ-
ent spin pairs for three-dimensional structure of cyclopen-
tane: the concurrence between closest spins located at paral-
lel planes �Cnn�� is by order of magnitude greater than the
concurrence between spins located at the same plane �Cnm or
Cn�m��. This concurrence is by two orders greater than values
Cnm�. Entanglement between remote spins appears a little

later than entanglement between the closest ones. One can
compare the 2Q intensity in the spin system is in pseudopure
state �Fig. 1�a�� with the system is in the pure state �Fig. 3�a�;
red dashed line�. It is evident that initial pseudopure and pure
states give exactly the identical time dependence of the in-
tensity J2. The same results we obtained for the intensities J4
and J6.

From point of view of the future applications to quantum
communication, the most interesting case for a chain is the
generation of entanglement between the spins at the ends of
the chain. It is well known that, in most systems with short-

FIG. 1. Time dependence of the MQ coherences in the two
pentagon rings of ten-spin system starting with the pseudopure state
�1�: �a� J2, �b�, J4, and �c� J6.

FIG. 2. �Color online� Time dependence of the concurrences
Cmn in a six-spin ring with the pure initial state �6�. Black solid line:
m=1, n=2; red dashed line: m=1, n=3; green dotted line: m=1,
n=4.
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range interactions, pairwise entanglement decays rapidly
with distance �32,33�. Let us consider four-, six-, and ten-
spin chains where the interaction exists only between nearest
neighbors. Within this approximation, the interaction Hamil-
tonian is truncated to the following terms:

HD = J�
j

IjzI�j+1�z. �15�

Figure 3 gives time dependences of the concurrences in lin-
ear chains of four, six, and ten nuclear spins. The concur-
rences between the nearest-neighbor spins appear immedi-
ately: C1,2 in Figs. 3�a�–3�c� and C2,3 in Fig. 3�a�. Then, at
�=1 / D, the next-neighbor spin concurrence appears, C1,3
in Figs. 3�a�–3�c�. Later, the surprising phenomenon consist-
ing in occurrence of entanglement of the most remote spins
is observed: C1,4 in four-spin chain, C1,6 in six-spin chain,
and C1,10 in ten-spin chain �Figs. 4�a�–4�c��. Only after ap-
pearance of the concurrences between the spins at the ends
of the chains, the concurrences between the next-next-
neighbor and more distant spins are generated. In spin chains
the time of achieving the first maximum of concurrences
between the first and second spins as well as between the
first and third spins are independent of the length of a chain
�Fig. 3�. In short spin chains �N�10� the concurrences
between the most remote spins reach the maximum when
D�= N+2

2 approximately.

V. DISCUSSION AND CONCLUSIONS

A problem of identification of entanglement of a quan-
tum state is the most fundamental problem in the field of

quantum information processing �34�. One way to decide
that a state is entangled or separable is to use an entangle-
ment witness �EW� �34,35�. An internal energy �36�, mag-
netic susceptibility �37�, magnetization �38,39�, and other
measurable parameters were used as EW. In particular, for
the simplest system, a pair of spins s=1 /2 coupled by DDI,
it was proposed to use the intensity of MQ coherences as an
EW �6�.

Figure 2 illustrates the connection between the two phe-
nomena: entanglement and 2Q coherence for cyclopentane
molecules. The concurrence C1,1� between the nearest neigh-
bors can be approximated by the formula C1,1�=1.14�J2,
where J2 is the intensity of MQ coherence of the second
order �Fig. 2�a��. Since 2Q coherences can be easily mea-
sured by the nuclear magnetic resonance �NMR� technique,
experimentalists are presented with an opportunity to study
the dynamic properties of entanglement, i.e., the creation and
evolution of entangled states. These relations can be used to
distinguish the entangled state of a spin pair from separable
one.

In conclusion, performing numerical simulation MQ
NMR experiments with several real molecular structures, we
have shown that the entanglement can be achieved if to start
from the previously prepared pure state. In this study we
found some interesting features of the entanglement dynam-
ics. An unexpected behavior the concurrences between spins

FIG. 4. �Color online� Evolution of the concurrences Cmn in the
spin chains with DDI of the nearest neighbors and pure initial state
�6�. �a� Four spins: black solid line—m=1, n=2; red dashed line
m=1, n=3; green dotted line m=1, n=4; blue dot-dashed
line—m=2, n=3. �b� Six spins: black solid line—m=1, n=2; red
dashed line m=1, n=3; green dotted line m=1, n=4; blue dot-
dashed line—m=1, n=5, cyan dot-dot-dashed line m=1, n=6. �c�
Ten spins: black solid line—m=1, n=2; red dashed line m=1, n
=3; green dotted line m=1, n=10. Note that the concurrences Cmn

with m=1 and n=4, 5, 6, 7, 8, 9 up to the time �=10 / D equal zero.

FIG. 3. �Color online� Dynamics of the concurrences Cmn and
the intensities of the MQ coherences vs time in the two pentagon
rings of ten-spin system starting with the pure initial state �6�. �a�
Black solid line—n=1 and m=1�; red dashed line—J2. �b� Black
solid line—n=1 and m=2; red dashed line—n=1 and m=3. �c�
Black solid line—n=1 and m=2�; red dashed line—n=1 and
m=3�.
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at the ends of the chains was obtained in the model with
direct interactions between nearest neighbors: the concur-
rences between the next-next-neighbor and more distant
spins appear later than the concurrence between the most
remote spins, C1,N. The numerical experiments with cyclo-

pentane molecules revealed the close connection between the
intensity of MQ coherences of the second order and concur-
rence between the between closest spins. As a result, the 2Q
intensity can be used as entanglement witnesses for such
systems.
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