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We propose a strategy to generate a many-body entangled state in a collection of randomly placed, dipolarly
coupled electronic spins in the solid state. By using coherent control to restrict the evolution into a suitable
collective subspace, this method enables the preparation of GHZ-like and spin-squeezed states even for ran-
domly positioned spins, while in addition protecting the entangled states against decoherence. We consider the
application of this squeezing method to improve the sensitivity of nanoscale magnetometer based on nitrogen-
vacancy spin qubits in diamond.
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I. INTRODUCTION

Entangled states have attracted much interest as intriguing
manifestation of nonclassical phenomena in quantum sys-
tems. The creation of a many-body entangled state is a criti-
cal requirement in many quantum information tasks such as
quantum computation and communication as well as in mea-
surement devices. Here we outline an approach to obtain
many-body entangled states in a solid-state system of dipo-
larly coupled electronic spins. In order to achieve the gen-
eration of entanglement in the presence of disordered cou-
plings we take advantage of the fine experimental control
reached by magnetic resonance to constrain the evolution to
a suitable collective subspace �1�. Furthermore, this restric-
tion to a collective subspace protects the entangled state from
decoherence, thus bringing into experimental reach a particu-
lar class of entangled states �the spin-squeezed states� that
are of great practical interest. Spin squeezing in solid-state
systems could have an immediate application to improve the
sensitivity of recently demonstrated spin-based magnetome-
ters �2–4�. We show that controlling the naturally occurring
interactions to obtain a desired entangled state could yield a
high sensitivity magnetometer in a nanosized system for
high-spatial resolution.

The paper is organized as follows. We first describe in
Sec. II entanglement generation in ideal and disordered sys-
tems outlining the control techniques required to achieve the
projection of the evolution to the desired subspace and its
regimes of validity for different geometry distributions of the
spins. In Sec. III we then apply the method to spin squeezing
and we show in Sec. IV how the projection is also capable of
reducing the noise effects, thus making squeezing advanta-
geous for metrology. Finally in Sec. V we present a possible
implementation of the squeezing scheme. We focus our
analysis on a system based on spin defects in diamond
�nitrogen-vacancy �NV� center �5–7�; Fig. 1�a��. The NV
electronic spins can be optically polarized and detected, and
exhibit excellent coherence properties even at room tempera-
ture, allowing for a remarkable combination of sensitivity to
external magnetic fields and high-spatial resolution. We de-
scribe the operating regime of a spin-squeezed NV magne-
tometer and the achievable sensitivity improvement. We em-

phasize that the described techniques are applicable to other
spin systems such as other paramagnetic impurities or
trapped ions �1�.

II. ENTANGLEMENT GENERATION

A. Entanglement in ideal and disordered systems

We consider a solid-state system of N spin particles with
two relevant internal states �0,1� each described by Pauli
matrix operators ��

k . Interactions among the spins can be
used to generate entanglement. In particular, evolution of an
initially uncorrelated state under the so-called one-axis
squeezing Hamiltonian Hsqz

1a =dJz
2 is known to create the mul-

tispin GHZ state �here we introduce the collective operator
J�=�kS�

k , with S�
k = 1

2��
k �. Starting from the fully polarized

state along the x direction �N /2,N /2�x
=�mz,�

Cmz,�
�N /2,mz ,��z, the different mz components ac-

quire mz
2-dependent phases that lead to collapse and revivals

of the collective polarization Jx. At a time t=� / �2d� the
system is found in the collective GHZ state, ��GHZ�x

= 1
�2

��N /2,N /2�x+ �−i�N+1�N /2,−N /2�x�.
In most physical systems, however, the interactions

among spins are not of the type described by the ideal en-
tangling operator. Quite generally the Hamiltonian can be
written as Hzz=�ljdljSz,lSz,j, where the couplings dlj are ef-
fectively limited to a finite number of neighbors. If it were
possible to precisely engineer the strength of the couplings or
the graph connectivity of the spins, it would still be possible
to obtain a maximally entangled state such as the GHZ state
�8,9�. For example, even in the limit of nearest-neighbor cou-

τ(1+ε) SzSz τ SySy τ SxSx

-x y(b)(a)

FIG. 1. �Color online� �a� System model: crystal with randomly
placed electronic spins. �b� Control sequence: the Ising interaction
is rotated along three axes to yield an isotropic interaction; adjust-
ing the time delays, a small perturbation along the z direction is
retained, to obtain the one-axis squeezing operator.
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plings only, a particular choice of couplings �dk,k+1
=2d0

�k�N−k� /N, with d0 the maximum coupling strength�
in the presence of a spatially varying magnetic field HX

=�k
��2k−1��2N−2k+1�Sx

k creates the N-spin GHZ state in a
time d0t=N� /8.

In naturally occurring spin systems, where the couplings
are usually given by the dipolar interaction scaling as 1 /r3

with distance, it is difficult to engineer the couplings in the
desired way and one has to deal with a disordered set of
coupling strengths. We assume here an Ising interaction, Hzz,
with dlj = ��0g2�D

2 /4�����3r̂lj . ẑlr̂lj . ẑ j −1� /rlj
3 �. This is the

case for an ensemble of NV electronic spins, where the zero-
field splitting Hamiltonian �Sz

2 is the largest quantizing en-
ergy scale �here we assume to operate in the 	1 manifold
only, which constitutes an effective spin-1

2 system�. This
Hamiltonian will still generate entangled states but the
amount and type of entanglement may not be as desired.

B. Creating a global Hamiltonian

To obtain the desired high entangled state, we propose to
create an effective collective Hamiltonian starting from a lo-
cal one �1�. Notice that the projection of the Hzz Hamiltonian
onto the J=N /2 subspace is given by

PN/2�Hzz� =
D

�N − 1�
�Jz

2 − N1� , �1�

with D= 1
N�l,jdlj. This operator can create the GHZ state at

the expense of an increased evolution time. The restriction to
the maximum angular momentum manifold can be achieved
if Hzz is only a small perturbation to a stronger Hamiltonian
that conserves the total angular momentum. In the following,
we will show that with collective coherent control techniques
it is possible to let the system evolve under the interaction

HH
1a = 
Hzz + HH = 
�

lj

dljSz,lSz,j + �
lj

dljS� l · S� j . �2�

If 
�1, the Ising Hamiltonian is just a perturbation to the
isotropic Heisenberg Hamiltonian HH, and to first-order ap-
proximation, we only retain its projection on the J=N /2
manifold. Notice, however, that the squeezing Hamiltonian
strength is now 
D

N−1 , so that it is necessary to apply the
squeezing interaction for a time increasing with the number
of spins: t	 �

2
N


D .
To obtain the desired Hamiltonian HH

1a, we propose to
apply control techniques based on fast modulation of the
internal Hamiltonian by cyclic sequences of pulses. These
techniques have been used in NMR to obtain a wide range of
desired interactions �see Appendix, Sec. 1�. By cyclically
rotating the Ising interaction among three perpendicular
axes, it becomes on average isotropic �Fig. 1�b��. More com-
plex modulation sequences �such as MREV8 �10,11�� achieve
the averaging to higher order in 
Ht
. By a careful adjust-
ment of the delays between pulses, it is possible to retain part
of the Hzz Hamiltonian, so that the effective Hamiltonian is
H= 1

3HH
1a �see Fig. 2�a��.

The validity of the approximation taken in considering
only the projection of Hzz onto the ground-state J=N /2

manifold relies on the existence of an energy gap between
the ground-state manifold and the J�N /2 manifolds induced
by the isotropic interaction HH. The magnitude �and exis-
tence� of this gap depends on the geometry and spin-spin
couplings of the system. For a 1D system with constant
nearest-neighbor couplings d0 the energy gap Eg decreases as
d0 /N2, thus we must take 

1 /N2 to always remain in the
regime of validity of the approximation: the time required to
achieve the GHZ state increases rapidly with the number of
spins. The nearest-neighbor 1D model is the worst case sce-
nario; more generally, the time required will be a function of
the dependence of Eg and D on N. For example, for a dipo-
larly coupled regular 1D system, D=��3�d0 and the gap
scales as Eg��d0 /N2�log N, with d0 the coupling at the mini-
mum distance r0.

Better scaling can be achieved in a quasi-2D system con-
sisting of layers of spin impurities. Already a nearest-
neighbor square lattice will have Eg�d0 /N �it is in general
Eg�N−2/dim, where dim is the system dimensionality�, while
for couplings decaying with distance as r−3, D	7d0 and the
gap is Eg�d0 /�N. In this case, the evolution time must in-
crease with the spin number as t�N3/2. A similar scaling is
predicted if the spins have random spatial locations with den-
sity ns. The gap can be estimated from the minimum cou-
pling strength Eg�dmin

N
2 with dmin��

ns

N �3/dim �where we as-
sumed all the couplings to be positive�. Thus we obtain again
the same scaling of the gap energy Eg�1 /�N in 2D and a
constant gap in 3D. This last result, however, must be taken
with caution, since the angular dependence of the dipolar
couplings in 3D unavoidably gives rise to negative cou-
plings; in that case not only the gap could even disappear,
but the average coupling strength D is zero for an isotropic
spatial distribution. For finite-size systems, however, because
of the large variance of the couplings, a better estimate for D
is given not by the average but by the median of the dipolar
coupling: D	median��3 cos �2−1�d0r0

3 /r3�	 2�
3 d0r0

3 ns

N+2 ,
and we expect to obtain a nonzero gap with high probability.
Still, the times required to obtain the GHZ state increase
rapidly with the spin number in all the possible configura-
tions presented. We thus turn our attention to a different class
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FIG. 2. �Color online� Decoupling sequence. The narrow bars
are � /2 pulses around different axis in the ms= 	1 manifold, while
the wide bars are � pulses. The overall pulse sequence comprises
four MREV8 sequences embedded in a spin-echo sequence, with 34
pulses and a cycle time of 48�. By varying the length of the time
delays and the pulse phases, we obtain the squeezing Hamiltonians.
The modified intervals are indicated by �+ and �−. For the one-axis
squeezing �a� we obtain the first-order Hamiltonian H= �HH

+
Hzz� /3 �neglecting terms 

 sin �2� and the linear Hamiltonian
Sz→�2�Sz cos �+Sy sin �� /3. For the two-axes case �b� the first-
order Hamiltonian is H= �HH+
HDQ� /3 and the effective field is

�Sy −Sx� /3. H̃ is the direction of the internal Hamiltonian in the
interaction frame. Bz is the ac field to be measured.
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of entangled states, whose preparation time under ideal con-
ditions decreases with the number of spins. A set of states
that possess this property are the so-called spin-squeezed
states, which are of particular interest in metrology tasks.

III. SPIN SQUEEZING

Spin-squeezed states are many-body states showing pair-
wise entanglement �12� and reduced uncertainty in the col-
lective spin moment in one direction �13�. This reduction in
the measurement uncertainty, achieved without violating the
minimum uncertainty principle by a redistribution of the
quantum fluctuations between noncommuting variables, can
be exploited to perform metrology beyond the Heisenberg

limit. One-axis twisting �Hsqz
1a � and two-axis twisting �H̃sqz

2a

= id�J+
2 −J−

2� /2� Hamiltonians have been proposed to achieve
this goal �13�.

The degree of squeezing of a spin ensemble is evaluated
by the squeezing parameter �. Several definitions have been
proposed depending on the context �14�. If the focus is sim-
ply to describe a nonuniform distribution of the quantum
fluctuations, the appropriate quantity is �h=�Ji /�Jj /2, where
�J� is the uncertainty in the �� �x ,y ,z
 direction of the
collective angular momentum and J� its expectation value in
a different direction. When spin squeezing is instead used in
the context of quantum limited metrology �15�, the squeezing
parameter should measure the improvement in signal-to-
noise ratio for the measured quantity �,

� = ��sqz/��0 = �N
�Jz

���Jz�
��

� . �3�

This definition is associated to Ramsey-type experiments, in
which an external magnetic field is measured via the detec-
tion of the accumulated phase � due to the Zeeman interac-
tion and the phase uncertainty for a product state is �1 /�N.

In the limit of large spin numbers, using the one- and
two-axis squeezing operator, the optimal squeezing param-
eters are �1a= 31/3

�2N1/3 , at a time t1a= 31/6

dN2/3 �13�, and �2a

��1+2�3
2N at t2a	 1

dN log2N
�3

�16,17�, respectively. The one-axis
squeezing operator reduces the variance of the collective
magnetic moment along a direction at a variable angle �
	0 in the y-z plane, while for the two-axis operator the
uncertainty reduction is in the x direction.

An arbitrary Hamiltonian Hzz can generate a squeezed
state �18�, although the squeezing would be less than in the
ideal case and it becomes difficult to predict the optimal
squeezing time and direction. For example, in the limit
where the interaction is limited to first neighbors, the maxi-
mum squeezing achievable is fixed �independent of N� and
bounded by �nn=0.73 �19�. We can, nonetheless, apply the
techniques presented in the previous section to project out
the ideal squeezing Hamiltonian from the natural occurring
disordered interaction.

The same control techniques described above can also
generate two-axis squeezing. A different choice of time de-
lays �Fig. 2�b�� will produce the Hamiltonian HH

2a= �
Hdq
+HH� /3, where we introduced the so-called double quantum

Hamiltonian Hdq=�ljdlj�Sx,lSx,j −Sy,lSy,j�. This operator cre-
ates squeezing by a two-axis twisting mechanism: for 
�1,
we only retain the projection of Hdq on the J=N /2 manifold,
P�Hdq�= D

�N−1� ��Jx
2−Jy

2�−N1�, which is equivalent to Hsqz
2a

=d�Jx
2−Jy

2� /2 �a two-axis squeezing operator with optimum
squeezing direction along the � /4 axis in the x-y plane�.
With this operator a squeezing parameter �2a�2 /�N can be
achieved in a time t2a	 �N−1�


DN log� 2N
�3

�: notice that the two-axis
squeezing operator provides not only a better optimal
squeezing, but also in a shorter time than the one-axis opera-
tor �t1a	 31/6


D N1/3�. It is also possible to embed the control
sequence within a spin-echo scheme, as needed for the con-
trol of dephasing due to a quasistatic spin bath �2�, as well as
to adjust the pulse phases in order to obtain an average ex-
ternal field operator acting on the direction of maximal
squeezing.

IV. PROTECTION AGAINST THE NOISE

Entangled states are known to decay more rapidly due to
dephasing than separable states, so that in practice the im-
provement in sensitivity is often counterbalanced by the need
to reduce the interrogation time �20,21�. In particular, if the
system is prepared in the maximally entangled state �an
N-particle GHZ state� the sensitivity improvement is com-
pletely lost in the presence of some classes of decoherence
�single particle dephasing� �20�, as the system is N-time
more sensitive both to the signal and the noise. A partially
entangled state, such as a spin-squeezed state, can instead
provide an advantage over separable states �22�.

In the solid-state systems here considered the source of
decoherence is usually the interaction of the electronic spins
with other paramagnetic impurities and with nuclear spins. In
the case of the NV electronic spins, the noise is caused by
nitrogen electronic spins and by 13C nuclear spins. Since the
couplings to these spins are much smaller than the zero-field
splitting, they can only cause dephasing but not spin flips.
The noise can be modeled as a fluctuating local magnetic
field and represented by a single-spin dephasing stochastic
Hamiltonian �1,20,23–25�, Hnoise=�k�N

k �t�Sz
k; �N

k �t� are as-
sumed to be independent stationary Gaussian random vari-
ables with zero mean and correlation function �N

k �t1��N
h �t2�

=�kfk�t2− t1��k,h. Notice that this noise model is not the most
general one, as it could be described by a full master-
equation treatment. However, it reproduces well the experi-
mentally observed behavior �5,26�. This noise leads to a de-
cay of the average magnetization in the transverse direction:
�Jx�t��=e−N�tJx

id�t� with respect to the ideal case Jx
id�t�. Here

we defined �= 1
2t�0

t dt1�0
t dt2�N�t1��N�t2� and the average

noise: �N�t�= �1 /N��k�N
k �t� . This decay affects both product

and one-axis squeezed states in the same way �since the
squeezing operator commute with the noise�. The angular
momentum uncertainty for the squeezed state is also af-
fected, so that the squeezing parameter has now the value

�1a
2 =

1 +
N − 1

4
e−N�t��1 − e−N�t� + 1/R�P�R − 1�

cos�dt�2N−2 ,

where R= P /�P2+Q2 �with P=1−cosN−2�2dt� and Q
=4 sin�dt�cosN−2�dt�, see Appendix, Sec. 2�.
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For small enough noise, such that the optimal squeezing
time is shorter than the decoherence time, the squeezing pa-
rameter scales with the number of spins and decay rate as

�1a� 31/3

N1/3
�1+��/
D�2

2 . Only if the decoherence rate is such that
� /
D�1 we retain the ideal dependence of the squeezing
parameter �1a�N−1/3. For stronger noise, the optimal time
must be reduced and the maximum squeezing does not reach
its optimal value.

The isotropic Hamiltonian HH offers protection against
the noise provided this is smaller than the gap to the J
�N /2 manifolds �1�. To first-order approximation, the only
part of the noise operator that has an effect on the system is
its projection on the J=N /2 subspace: Hnoise→�N�t�Jz. Not
only the signal decays N-times slower, �Jx�t��=e−�tJx

id�t�, but
also the uncertainty is less affected. To provide a fairer com-
parison, we calculate a squeezing factor in which the non-
squeezed state is also protected by the isotropic Hamiltonian:

�1a
2 = cos�dt�2−2N�1 +

N − 1

4
e−�t��1 − e−�t� − 2 sinh��t�/P

+ 1/R�P�R − 1�� .

The optimal squeezing now scales as �1a� 31/3

�2N1/3 +� �

Nd .
We obtain a lower bound for the decoherence rate, � /
D
=o�N1/3�, that still allows optimal squeezing.

To take into account corrections to the truncation of the
noise operator, we can follow the analysis in �1� to find the
leakage rate to the N /2−1 subspace. Because of the energy
gap from the J=N /2 to the J=N /2−1 manifold �which can
be populated by the flipping of one spin caused by the single-
spin noise� the leakage outside the protected space is negli-
gible, unless the energy gap to the first excitation is compa-
rable with the cutoff energy �c of the noise �notice that �c
=1 /�c, the noise correlation time.�

While there is no analytical solution for the noise effects
on the squeezing under the two-axis Hamiltonian, we expect
a similar advantage from the reduction of the noise to its
collective part only. It is known that even the maximally
entangled �GHZ� state does not exhibit a faster dephasing
under collective noise �27�. Simulations for eight spins show
the expected improvement �Fig. 3�.

V. APPLICATION TO METROLOGY: MAGNETIC
SENSING AND DECOHERENCE

We now describe an application of electronic spin-
squeezed states to precision magnetometry. Electronic spins
in the solid state can be used to sense external magnetic
fields by monitoring the Zeeman phase shift between two
sublevels via a Ramsey experiment. For small phase angle
�weak fields� the signal measured �the total magnetization in
the field direction� is proportional to the field.

The ideal sensitivity to the measured magnetic field for
M =T / t measurements and N spins is given by

�Bz =
�

g�B
�M

�Jz

���Jz�
�Bz

� =
�

g�B

1
�NtT

��t,N� . �4�

For sake of concreteness, we consider the recently pro-
posed diamond-based magnetometer �2–4� �Fig. 4�a��. The
electronic spin associated to the NV in diamond is a sensitive
probe of external time-varying magnetic fields due to its long
coherence time and optical detection �5,6�. The electronic
spin triplet can be polarized under application of green light
and controlled by ESR pulses even at zero external magnetic
field, thanks to the large zero-field splitting ��=2.87 GHz�
�Fig. 4�b��. In order to increase the interrogation time, a spin-
echo based operating regime has been proposed, thus making
the magnetometer sensitive to ac fields. The operating
scheme of the magnetometer is depicted in Fig. 4. High-
spatial resolution is achieved by using, for example, a crystal
of nanometer scales, which could be operated as a scanning
tip. Sensitivity can be improved by increasing the number of
NV centers in the tip, but this comes at the cost of errors
introduced by the NV couplings. Instead of refocusing these
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FIG. 3. �Color online� Simulations �eight spins� of the squeezing
parameter squared �2 under one-axis �squares� and two-axis
�circles� squeezing control schemes, with �solid lines� and without
�dotted lines� the presence of noise. The noise was modeled by a
random magnetic field in the z direction acting independently on
each spin; noise parameters where �=3 kHz, �c=100 �s. The
spins were distributed randomly on the lattice of a quasi-2D dia-
mond slab of depth 9 nm and area 30�30 nm. The density was
1018 cm−3 resulting in D=0.4 MHz and Egap=50 kHz. The con-
trol sequence of Fig. 2 was used with time delays of 1.4 �s and 1
to 12 cycles.
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FIG. 4. �Color online� Magnetometer measurement scheme. �a�
A possible magnetometer setup, with NV center implanted in a slab
of diamond. �b� Optical and microwave control of a single NV
center. Squeezing control sequences: �c� a squeezed state is pre-
pared before applying an external magnetic field to measure. �d�
Squeezing and Ramsey experiment are done simultaneously.
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couplings �2�, here we propose to use them to create a
squeezed state.

Unfortunately, the coherence properties of high
NV-density diamonds or nanocrystals �3� are currently worse
than for bulk pure diamonds. NV centers are usually created
by nitrogen implantation followed by annealing that makes
vacancies migrate and combine to the nitrogen atoms
�28,29�. The current conversion efficiency f is quite low �be-
tween 10% and 23% �30��, thus interactions with the electron
paramagnetic impurity �EPR� bath �in particular P1 nitrogen
centers �31�� limit the coherence time and bound the allowed
NV densities. The spin-echo signal is a function of the root-
mean-square coupling among impurities and it decays expo-
nentially as e−t/Tepr. We find Tepr
	4 / ���0 /4����g�B�2 /��nepr
 �2�, where the density of para-
magnetic impurities is nepr=ns�1− f� / f �with ns the NV cen-
ter density�. Not only is the coherence time short, but also
the internal dynamics of the EPR bath is fast, so that the
protection provided by the gap created with the introduction
of the isotropic Hamiltonian is not effective, as the condition
�c�Egap is no longer valid. Improved implantation schemes
�32�, coherent control techniques �2�, polarization of the ni-
trogen, either at low temperature �33� or by optical pumping,
can reduce the effects of EPR spins, up to the point where
NV couplings are the most important interactions. This is the
regime suitable for squeezing. A conversion efficiency of
50% �or equivalently a threefold increase in the relaxation
time due to the paramagnetic impurities� is needed to start
seeing an advantage of the squeezing scheme over a simpler
scheme based on repeated echoes �CPMG sequence �34�� as
shown in Fig. 5�a�.

VI. IMPLEMENTATION IN A DIAMOND NANOCRYSTAL

If the material properties of NV-rich diamonds can be
improved, a sizable squeezed state could be obtained in a

nanocrystal �or in a suitably implanted portion of a bulk
diamond, if surface effects are to be avoided�. The residual
decoherence mechanism is due to couplings to the nuclear
spin bath �1% abundance of 13C�, while spin relaxation oc-
curs on time scales much longer than milliseconds and is
thus neglected. The resultant decay of the signal, with a T2
time on the order of 200–600 �s �3,33�, is about the same
for a product state and for a squeezed state protected by the
isotropic interaction. Errors in the creation of the average
squeezing Hamiltonian H by the multiple pulse sequence can
be taken into account as a decaying term calculated from the
third-order average Hamiltonian �36� and a moment expan-
sion to second order �37� �see Appendix, Sec. 1�. For the
MREV8 sequence of Fig. 2, we obtain a decay term
exp�−�̃ns

6t2�, where t is the total averaging time and the co-
efficient �̃���0 /4���g�B�2 /��
6�4 depends on the actual
NV couplings �� is the delay between pulses, see Fig. 2�.

Taking into account the described effects, as well as the
scaling of the field due to the control sequence and subunit
efficiency C of the optical readout process, the sensitivity per
root averaging time �=�Bz

�T is

� =
�

g�B

3�e�T/T2�3
eT/Tepr

C�2nVt
e�̃ns

6T6
��tsqz,nsV� , �5�

where T= t+ tsqz is the total experimental time and t is chosen
to maximize the signal t= topt.

In order to reduce the total experiment time, to avoid
decoherence, we would like to create squeezing while apply-
ing the external magnetic field. The total time would then be
T=max�tsqz , topt� instead of their sum and the interrogation
time t=T �see Figs. 4�c� and 4�d��. For the one-axis squeez-
ing, if �opt were 0, we could squeeze the spins while acquir-
ing a phase from the external field since the two Hamilto-
nians would commute. More generally, since Dt1a and the
accumulated phase � due to the external field are both small,
we can approximate the desired evolution as

e−i�Jze−i�Jxe−iHsqz
1a t1a 	 e−i�Jx exp�− i��Jz cos � + Jy sin ��

− iHsqz
1a t1a� .

Provided one can rotate the external field in the z-y plane by
an angle �, the squeezing can be performed while the field is
on. The error caused by this procedure is 
�Dt1a sin���
��D /N for large N. In the case of the two axis squeezing, as
well, we can let the system rotate under the external field
while squeezing provided the field is rotated in the x-y direc-
tion; the error we introduce in this case is 
�D log�N� /N.

In Fig. 5 we compare the sensitivity achievable with an
uncorrelated state to the sensitivity provided by a one-axis
and two-axis squeezed state. In particular, we can identify a
region of parameters where the squeezing sequence offers an
advantage over the simple echo control. We assumed to have
implanted with a varying density of NV centers a quasi-2D
region of a diamond of volume V= �300 nm�2�10 nm �as
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FIG. 5. �Color online� Sensitivity to an ac field with 22 kHZ
frequency in a quasi-2D geometry �V= �300 nm�2�10 nm�. Left:
sensitivity for conversion efficiency f =50% �dotted lines� and f
=23% �solid lines�. Notice that only for f �50%, the two-axis
squeezing approach �righmost, black lines� is preferable to the
echo-only sequence �leftmost, red lines�. Right: sensitivity for f
=.90 �or equivalently, for a 30-fold increase in T2 time thanks to
refocusing, with respect to the T2 at the highest conversion achieved
�30,35��. Green line �dash-dotted�: sensitivity under spin-echo,
without any refocusing of the spin-spin coupling. Blue dashed line:
sensitivity under MREV8 sequence. The control sequence was re-
peated nc=6 times with a delay between pulses of ��=1.5 �s. Red
line: sensitivity under one-axis squeezing obtained with the same
sequence parameters as above. Black dotted line: sensitivity under
two-axis squeezing. The time delays �+ and �− �see Fig. 2� were
chosen in order to get an 
 as small as needed to restrict the evo-
lution to the protected manifold and the number of cycles increased
as needed to obtain the optimal squeezing time.
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this gives the best scaling with density�. NV densities be-
tween 4�1014 cm−3 and 8�1016 cm−3 occupying a small
2D layer could be obtained via geometrically controlled ion
implantation �38� of high purity diamond.

Notice that although the requirements for squeezing seem
to be daunting, since the time to obtain an optimal squeezing
could be long, the control needed is not more complex than
what would be in any case required to simply refocusing the
couplings. The many-body protected manifold succeeds into
protecting the squeezed state in the environment envisioned
�mainly composed by nuclear spins�, since the noise correla-
tion time is slow—on the order of millisecond as given by
nuclear dipole-dipole interactions—while the couplings
among NV centers can range up to hundreds of kHz because
of the higher gyromagnetic ratio of electronic spins. In this
situation, the gap offers a good protection against the noise;
with the current implantation techniques, however, the
nuclear bath effects are overwhelmed by the noise created by
paramagnetic impurities, with much faster internal dynamics
and we would expect the protection to fail there.

VII. CONCLUSIONS

We described how spin-squeezed states can be created in
dipolarly coupled electronic spin systems and used for pre-
cision measurement of external magnetic fields. The key fea-
tures of the method proposed are its applicability even to
spin systems with random couplings and an intrinsic protec-
tion against single-spin noise. Although squeezed states are
known to be more fragile to decoherence, in the present
scheme the squeezing operator is in fact always accompanied
by a many-body operator that provides protection to the
squeezed state reducing its dephasing rate to the rate of un-
squeezed states. We studied the projected sensitivity gains
for a particular application, an NV-center-based nanoscale
magnetometer. As the control scheme needed to create an
entangled state is not more demanding than the one required
for the simple refocusing of the couplings, spin squeezing
will provide a practical sensitivity enhancement in very high
quality materials.
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APPENDIX

1. Coherent averaging

Multiple pulse sequences �MPS� achieve the dynamical
decoupling of unwanted interactions, or the creation of a
desired one, using coherent averaging. By means of an ex-
ternal control the internal Hamiltonian is made time depen-
dent; using cyclic MPS and considering only stroboscopic
measurements, the evolution is described by an effective
Hamiltonian that, to leading order in time, is given by the
time average of the modulated internal Hamiltonian. The
evolution during a cycle can be better analyzed in the frame

defined by the external control, where the internal Hamil-

tonian appears time dependent and periodic: H̃int�t�
=Uc�t�†HintUc�t�. At times when Uc�t�=1, the evolution is

given by U�nctc�= �Te−i�0
tcH̃int�t�dt�nc �where tc is the cycle time

and nc the number of cycles�. The propagator can be rewrit-
ten using the Magnus expansion �39�

U�tc� = Te−i�0
tcH̃int�t�dt = e−i�H̄�1�+H̄�2�+¯�tc, �A1�

where H̄�k� are time-independent average Hamiltonians of or-
der k �36�. The MPS is tailored to produce the desired evo-
lution usually up to the first or second order, and higher order
terms lead to errors.

In the case of the MREV8 sequence �11� shown in Fig. 2
time symmetrization brings to zero the second-order terms
�36�. The leading order error Hzz

�3� causes dephasing of the
spins. Its effects are captured by a moment expansion �37� to
second order of the effective Hamiltonian, �T�,6

2 �
=Tr[�H�3� ,J��2] /Tr�J�

2 �, where J�=�kS�,k is the collective
spin in a direction perpendicular to z. �T�,6

2 � has actually the
character of a sixth moment and its value is a function of the
sixth power of the local field generated by the dipolar inter-
action. The sensitivity decay rate is thus proportional to the
sixth order of the density and the square of the total time,
with a coefficient �̃= �T�,6

2 � /ns
6���0 /4���g�B�2 /��
6�4.

Note that the MREV8 sequence entails a large number of con-
trol pulses. For many typical errors �phase-lag and overshoot
or undershoot� the refocusing is only affected at higher order.
However, depolarizing pulse errors occurring with probabil-
ity p lead to a reduction in contrast: C�=C�1− p�k for k
pulses. Using MREV8 with echo gives k=34 and a require-
ment p�0.002 for contrasts near unity.

2. One-axis squeezing: Analytical solution

Here we provide an analytical solution to the one-axis
squeezing dynamics �13�, which has been used to calculate
the behavior in the presence of dephasing noise. The one-
axis squeezing operator reduces the variance of the collective
magnetic moment along a direction at a variable angle � in
the y-z plane. Defining �=dt, we obtain

�Jx� =
N

2
cos �N−1, �Jy� = �Jz� = 0,

�Jx
2 =

N

4
�N −

N − 1

2
P� − �N

2
cos �N−1�2

,

�Jz
2��� =

N

4
�1 +

N − 1

4
�P − �P2 + Q2 cos�2� + atan

Q

P
��� ,

where by Jz��� we indicate the operator ei�JxJze
−i�Jx and we
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have set

P = 1 − cosN−2 2�, Q = 4 sin � cosN−2 � .

The optimal value for � �which minimizes �Jz���� is �=
− 1

2atan�Q / P� �while �=� /2− 1
2atan�Q / P� would minimize

�Jy����. Also notice that �Jy���Jx�=0.
The squeezing parameter for this ideal case is

�2 =
�1 +

N − 1

4
�P − �P2 + Q2��

�cos �N−1�2 . �A2�

For large spin systems and short times such that N�2�1 but
N��1, the optimal squeezing is obtained for �1a= 31/6

N2/3 , ��
�N−3	0� and it scales with the number of spins as �1a

= 31/3

�2N1/3 .
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