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Memory dephasing and its impact on the rate of entanglement generation in quantum repeaters is addressed.
For systems that rely on probabilistic schemes for entanglement distribution and connection, we estimate the
maximum achievable rate per employed memory for our optimized partial nesting protocol, when a large
number of memories are being used in each node. The above rate scales polynomially with distance, L, if
quantum memories with infinitely long coherence times are available or if we employ a fully fault-tolerant
scheme. For memories with finite coherence times and no fault-tolerant protection, the above rate optimisti-
cally degrades exponentially in �L, regardless of the employed purification scheme. It decays, at best, expo-
nentially in L if no purification is used.
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I. INTRODUCTION

Quantum repeaters enable entanglement distribution be-
tween remote parties by relying on a network of quantum
memory units �1–10�. In their seminal paper �1�, Briegel et
al. demonstrate how to distribute entanglement over arbi-
trarily long distances using ideal quantum memories as well
as highly efficient quantum gates for entanglement purifica-
tion �11–13�. The resources needed in such a scenario will
then only grow polynomially with distance for a fixed de-
sired fidelity for the final entangled state. Further studies
have shown that so long as the coherence time �c of the
memories is much longer than the transmission delay L /c,
where L is the distance between the two parties and c is the
speed of light in the channel, the above assertion still holds
�7,8�. It is not clear, however, how the required resources
scale in the limit of large distances when �c is finite. Here,
we answer this question by assuming that the only error-
correction mechanism used in the system is entanglement
purification in conjunction with allowing for error-free, but
probabilistic, gates to be used instead of erroneous determin-
istic ones. We find that, even under optimistic assumptions,
the system cost explodes as a power of exp���L /c� /�c� for
�c�L /c, unless we employ a fault-tolerant scheme to rem-
edy the memory decay �7,18�.

In order to quantitatively address the cost factor in quan-
tum repeaters, we look at the generation rate of maximally
entangled states per employed memory in the system. We
employ proper entanglement measures �14�, instead of
merely looking at the fidelity, to find this rate. We obtain this
rate, in the steady state, assuming that the resources in our
system are being successively used, according to a proper
protocol, to create entangled states. Such a rate-over-cost
measure is useful for applications in quantum key distribu-

tion �QKD� �15�, where the generation rate of secure key bits
is proportional to the rate of entanglement generation. More-
over, it provides us with a fair and practical measure for
comparing different quantum repeater setups and their con-
trast with alternative schemes for entanglement distribution
that do not rely on using quantum memories, such as quan-
tum relay structures �16� or the direct transmission of en-
tangled photons. In the latter cases, the rate will decay expo-
nentially with distance as a result of loss in the channel.

Memory decay is one of the most challenging problems in
quantum repeater technology �17�. Its deteriorating effect,
however, has not yet fully scrutinized. In �7�, authors study
the role of memory errors in quantum repeaters, but they
treat the required initial entanglement as a given resource.
This approach cannot fully capture the memory decay prob-
lem as it neglects to account for the corresponding waiting
times during initial entanglement distribution. Entanglement
distribution, regardless of the employed scheme, is a proba-
bilistic process, mainly because of its dealing with the loss in
the channel, and therefore, the time required to entangle two
memories is a random variable. Collins et al. �8� consider
this probabilistic nature in a multiple-memory configuration,
and report a numerical-analytical rate analysis that includes
the effects of memory decay. They model the memory decay
by associating a lifetime window—within which the stored
entanglement is unaffected and beyond which it is
destroyed—to each memory. This simple model is not, how-
ever, sufficiently realistic to properly account for the effect of
memory errors on the rate, especially in the regime of short
coherence times.

In this paper, we report a partial nesting protocol, inspired
by the blind repeater protocol proposed in �7�, and find the
throughput in the two cases of perfect and imperfect memo-
ries, with or without purification, for a generic quantum re-
peater system that relies on probabilistic schemes for initial
entanglement distribution as well as for its entanglement
connection. Such probabilistic architectures for quantum re-
peaters �2,5,6� can adapt themselves to post-selection-based*mrazavi@iqc.ca

PHYSICAL REVIEW A 80, 032301 �2009�

1050-2947/2009/80�3�/032301�8� ©2009 The American Physical Society032301-1

http://dx.doi.org/10.1103/PhysRevA.80.032301


self-purification mechanisms, which—in the absence of
memory errors—will allow them to create high-fidelity en-
tangled states over moderately long distances without relying
on high-quality quantum gates �3�. Such an advantage comes
at the price of their achieving relatively low entanglement
generation rates owing to the probabilistic nature of their
operation. They are nevertheless attractive options for QKD
systems whose security over long distances can be guaran-
teed by a combination of such quantum repeater links and
sparsely located trusted nodes. To account for the above
practical issue, in Sec. II, we describe the probabilistic
framework of our multimemory quantum repeater system. In
Sec. III, we present our rate analysis for different scenarios.
Numerical results will be presented in Sec. IV, and we con-
clude the paper in Sec. V.

II. SYSTEM DESCRIPTION

In our analysis, we study a quantum repeater link of
length L with 2n sublinks of length L0, as shown schemati-
cally in Fig. 1, with n being the nesting level of the system.
At the end of each sublink there is a bank of N quantum
memories. We schematically refer to the banks in Fig. 1 by
nodes 1 to 2n+1. Nodes 2i and 2i+1, for i=1, . . . ,2n−1, form
physical stations Si at which Bell-state measurements
�BSMs� take place. For future reference, we also denote the
family of sublinks of length 2kL0, corresponding to nesting
level k=0, . . . ,n, that connect nodes 2k+1�i−1�+1 and 2k+1i,
for i=1, . . . ,2n−k, by Dk, and the set of all stations corre-
sponding to nesting level k�0 by S�k���S2k−1�2l−1� , l
=1, . . . ,2n−k�.

The probabilistic framework that we use for our rate
analysis is as follows. We denote the probability of success
for our employed entanglement distribution scheme over dis-
tance L0 by PS. The implicit assumption here is that our
entanglement distribution scheme is heralding, i.e., there is a
mechanism by which we can verify or become informed of

whether our entangling attempt has failed or succeeded �2�.
We also assume that the whole process of entanglement dis-
tribution from the time that it starts until we learn about its
result takes TED�L0 /c. This is the fundamental time period
at which we can attempt successively to entangle two spe-
cific memories at distance L0. We further assume that, in the
absence of memory errors, the memories A and B, upon a
successful entangling attempt, are in the maximally en-
tangled state 	�+
AB, where 	��
AB= �	01
AB� 	10
AB� /�2 and
	j
K is the logical qubit j=0,1 for memory K=A ,B. Simi-
larly, we associate a success probability PM �1 to each
BSM. This probability, in principle, depends on the state of
the memories before performing the BSM. In our optimistic
analysis, we assume PM is the maximum probability of ob-
taining a conclusive result for a given BSM module. For
instance, if we rely on a specific pattern of photodetection
events for performing a BSM, the inefficiency of photode-
tectors may result in inconclusive outcomes, in which case
we consider the BSM has failed.

The probabilistic nature of our measurement modules im-
poses stringent conditions on how a quantum repeater proto-
col may run. In the nested purification protocol �NPP� pro-
posed in �1�, in order to extend the existing entanglement on
Dk−1 links to Dk links, we must perform BSMs at stations
S�k�, for k=1, . . . ,n. Suppose that we have access to deter-
ministic gates for local operations and measurements, and
that no purification is required. Then, after establishing en-
tanglement over all D0 links, one can potentially perform all
required BSMs simultaneously at all stations. In our proba-
bilistic setup, however, there is no guarantee that the BSM at
one nesting level provides us with entangled states required
for the next nesting level. More generally, in a multiple-
memory configuration, it is important to know on which pair
of memories a BSM can be performed, and for that one
needs to communicate between the nodes. This is also the
case for the NPP if the employed purification scheme is
probabilistic �11�.
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FIG. 1. �Color online� A quantum repeater with multiple quantum memories per node. At each round, we first employ an entanglement
distribution protocol to entangle any unentangled memory pairs over D0 links. It takes at least TED=L0 /c to learn about the success or failure
of these attempts, which succeed with probability PS, hence TED is the shortest period at which any protocol can run. At any such cycle, we
also match up entangled pairs at different stations, according to our partial nesting protocol �see the text�, to perform Bell-state measurements
�BSMs�, which succeed with probability PM.
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The above observation requires us to distinguish between
two types of BSMs that one can perform. In our protocol, we
consider a BSM at nesting level k=1, . . . ,n to be “informed”
if it is performed on a pair of memories in nodes 2i and 2i
+1 known to station Si�S�k� to be entangled with one of the
memories in the relevant distant locations. A BSM is called
“blind” if the above condition does not necessarily hold �7�.

With the above considerations, our mth-order partial nest-
ing protocol �m-PNP�, for m=1, . . . ,n, proceeds as follows.
The m-PNP is a cyclic protocol with period TED. At each
TED-long cycle, we first attempt to entangle unused memo-
ries of D0 links. We learn about the success or failure of
these attempts by the next cycle. At each cycle, intermediate
stations also match up as many memories as possible in their
two banks for performing BSMs. In our protocol, we per-
form informed BSMs at stations S�k�, for k=1, . . . ,m, on
memories known to be entangled over Dk−1, and perform
blind BSMs on memories known to be entangled over Dm−1,
but not necessarily over Dk−1, at stations S�k�, for k=m
+1, . . . ,n; see Fig. 2. These blind BSMs are performed as
soon as such measurements can be done. Purification may or
may not be used over the first m nesting levels. After each
measurement, or after creating entanglement over distance L,
the involved memories will be released to be used again in
the process of entanglement distribution. The required time
for quantum measurement and processing is considered to be
negligible throughout the paper.

The key to the polynomial scaling of the rate in quantum
repeaters is in performing informed, rather than blind, BSMs.
That can better be understood by comparing the special case
of m=n, which corresponds to the probabilistic NPP, with
quantum relays �16�. In quantum relays, one attempts to es-
tablish entanglement over D0 and subsequently performs
BSMs at all stations without learning about the success or
failure of previous entangling attempts. Quantum relays can,
in principle, be run at a rate faster than 1 /TED and may not
need to use quantum memories, but their overall rate of en-

tanglement generation will be proportional to PS
2n

PM
2n−1

� �PSPM�L/L0, which, for PSPM �1, is exponentially decaying
with L. This is in contrast with the probabilistic NPP, in
which, as we will show, for ideal quantum memories, the rate
scales polynomially with L as PSPM

n � �L /L0�log2 PM.
Informed BSMs, however, require us to wait for classical

signals. Even if we neglect the operation time for local gates
and measurements, as we do throughout the paper, it still
takes Tk�2k−1TED, for k=1, . . . ,n, to transfer information
from a station in S�k� to its closest station in S�k+1�. This
implies that there is a minimum delay of TED+�k=1

m−1Tk=Tm,
in the m-PNP, between our initial entangling attempts and
the time that we can perform informed BSMs at the mth
nesting level, during which memory decay is in effect. The
memory decay will effectively reduce the rate of entangle-
ment generation. An optimum rate may then be obtained by a
combination of informed BSMs in the first few nesting levels
and blind BSMs in the remaining final nesting levels.

To minimize the delay incurred by classical communica-
tion and the probabilistic nature of entanglement distribution
and connection, we have shown that we must use a large
number of memories per each node of our quantum repeater
�9,10�. To find an optimistic estimate of the rate, we then
assume that N�1; the rate behavior for a finite number of
memories has been addressed in �8–10�.

III. RATE ANALYSIS

In this section we obtain optimistic estimates for the nor-
malized rate, the rate of entanglement generation per em-
ployed memory, in the two cases of perfect and imperfect
memories. In the latter case, the only source of error consid-
ered is memory dephasing, whose effect on the rate is stud-
ied in conjunction with different types of purification.

A. Ideal memories

Let us first calculate the rate in the case of ideal quantum
memories, i.e., when there is no source of error, and, there-
fore, no need for purification in the system. In the m-PNP,
starting with no entanglement at time zero, and for N�1, the
average number of entangled pairs over Dn that we create at

time Tm, is given by Nm
�n��NPSPM

�2n−m+1+m−2�. Here, NPS is the
average number of entangled pairs over each D0 link at time
TED, NPSPM

m−1 is the average number of entangled pairs over
each Dm−1 link after performing m−1 levels of informed

BSMs, and PM
�2n−m+1−1� accounts for the remaining BSMs,

where 2n−m of which are informed BSMs for the mth nesting
level and the rest are blind; see Fig. 2�b�. At time TED, there
are on average N−NPS unused memory pairs in each D0
link, which can be used to create new entangled pairs. We
overestimate N−NPS by N, and repeat the above argument to
obtain the same value Nm

�n� for the average number of en-
tangled pairs created over distance L at time TED+Tm. By
reusing the same argument for each cycle, in the steady state,
Nm

�n� gives an optimistic estimate of the average number of
entangled pairs created per cycle. That implies that the
steady-state rate of entanglement generation per each of

0L BSM1X Y0L BSM2 0L0L BSM1

1
02m L� BSMmX YBSMm+1 BSMm

1
02m L� 1

02m L�

(a)

(b)

2A 3A 4A 5A 6A 7A

2mA 2 1mA + 12mA + 12 1mA + +

FIG. 2. �Color online� �a� A quantum repeater link with nesting
level n=2. Here, we have only shown memories A2 , . . . ,A7 that
contribute to entanglement generation between memories X and Y.
In the 2-PNP, all measurements are informed so if measurements
labeled by BSM1 occur at time t1, BSM2 will occur at time t1

+T1. In the 1-PNP, however, all measurements happen at time t1. In
such a case, BSM2 will be a blind BSM. �b� A snapshot of memo-
ries involved in creating entanglement between X and Y in the
general case of m-PNP. The assumption here is that we know that X
and A2m, A2m+1 and A2m+1, and so on are entangled because all pre-
vious measurements have been informed. The remaining measure-
ments in 2n /2m−1−1 stations shown above all occur at the same
time. Among these BSMs, those measurements that correspond to
nesting level m, labeled by BSMm are informed, and the rest are
blind.
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N2n+1 ideal memories used in the m-PNP, m=1, ¯ ,n, is
approximated by

Qm
�n� �

Nm
�n�

TEDN2n+1 =
PSPM

�2n−m+1+m−2�

2L/c
. �1�

Here, m=n represents the special case of the probabilistic
NPP, which is the optimum scenario when memories are per-
fect.

B. Imperfect memories

Now, let us consider the case of imperfect memories.
Here, we model the memory degradation by a dephasing
process in which a qubit state 	̂A, of memory A, is mapped,
after decaying for a time period t, to


t
A�	̂A� = p�t/2�	̂A + �1 − p�t/2��ẐA	̂AẐA, �2�

where ẐA is the Pauli Z-operator acting on memory A, p�t�
= �1+exp�−t /�c�� /2, and �c is the memory coherence time.
The above dephasing process maps �̂AB

+ �	��
AB���	 to the
following rank-two Bell-diagonal state:


t
A

� 
t
B��̂AB

� � = p�t��̂AB
� + �1 − p�t���̂AB

� � 	̂AB
� �t� , �3�

with fidelity p�t�. We can also show that a BSM on memories
B and C of a four-memory system initially in the state
	̂AB

+ �t� � 	̂CD
+ �t� leaves A and D, up to a local unitary, in the

state 	̂AD
+ �2t�. Using the above model, we estimate Rm

�n�, the
generation rate of maximally entangled states, per employed
memory, in the presence of dephasing errors. We first con-
sider the no-purification case, and then allow to use purifica-
tion, without restricting ourselves to any specific purification
protocol. In each case, for any memories X and Y at distance
L in the m-PNP, we obtain the final state 	̂ f ,XY upon estab-
lishment of entanglement between them. We denote by Ai
the memory in node i=2, . . . ,2n+1−1 that contributes to the
successful creation of entanglement between X and Y; see
Fig. 2.

To underestimate the decay effect, we make a further as-
sumption in calculating 	̂ f ,XY. In the m-PNP, after performing
the last set of BSMs, corresponding to nesting levels m and
higher, we must in principle wait, before claiming that X and
Y are entangled, until we receive the classical data from all
middle nodes. The effective state in such a case must then
include the decay during this last step of communication. In
certain applications such as QKD, however, we can perform
the required QKD measurements on X and Y concurrent with
the time that blind BSMs are performed, and later confirm
whether they are entangled or not. Under the latter assump-
tion, we do not need to account for the classical delays that
occur after the last set of BSMs corresponding to nesting
levels m and higher. Throughout the rest of this section, we
assume that we are operating under such conditions.

With the above assumptions, we overestimate the number
of maximally entangled states that can be obtained out of
Nm

�n� copies of 	̂ f ,XY by Nm
�n�EC�	̂ f ,XY�. For a state 	̂, EC�	̂� is

the entanglement cost, viz. the ratio M /K for starting with
��̂+��M and obtaining 	̂�K, in the limit of large K, using local
operations and classical communication �LOCC�. It is known

that for the asymptotic version E
�	̂� of any “well-behaved”
entanglement measure, we have ED�	̂��E
�	̂��EC�	̂�,
where ED�	̂� is the distillable entanglement, i.e., the ratio
M /K for distilling 	̂�K to ��̂+��M, in the limit of large K,
using LOCC �14�. Hence, our choice of entanglement cost as
our entanglement measure is in line with our other optimistic
assumptions. For 	̂XY

+ �t�, we have

EC„	̂XY
+ �t�… = H„ 1

2 + �p�t��1 − p�t��…

and

ED„	̂XY
+ �t�… = 1 − H�p�t�� ,

where H�p�=−p log2 p− �1− p�log2�1− p� �14�. Here, ED�t�
also gives the asymptotic yield for the one-way hashing pro-
tocol for purifying 	̂XY

+ �t� �12�.

1. Without Purification

Let us first consider the case where no purification is em-
ployed. Suppose that we attempt to entangle D0 links at time
zero. Then by the time that we become informed of the es-
tablishment of entanglement, memories have already de-
cayed for a period TED. For instance, X and A2 are in the state
	̂XA2

+ �TED�. At TED=T1, we also perform the BSMs corre-
sponding to the first nesting level. That leaves X and A4, right
after performing the BSM and up to a local unitary, in
	̂XA4

+ �2T1�. It takes T1 to inform A4 of the BSM success,
hence at time T2=TED+T1, X and A4 are in 	̂XA4

+ �3T1�. By
continuing the same argument, we can show that at time Tm,
	̂ f ,XY = 	̂XY

+ �tm
�n��, where tm

�n��Tn+1+ �m−1�Tn, for m=1, . . . ,n.
By time Tm, we do not necessarily know whether X and Y are
entangled, but as mentioned before, in some applications
such as QKD, we can often use X and Y at time Tm, and later
verify whether they are entangled or not. Under this assump-
tion, our optimistic rate is given by

Rm
�n� 
 Qm

�n�EC„	̂XY
+ �tm

�n��…, �no purification� . �4�

Given that, to the first order, EC(	̂XY
+ �t�)� t exp�−2t /�c� for

t��c, and that tm
�n��L /c, the rate in Eq. �4� exponentially

decays with distance for a finite value of �c. This implies that
the partial nesting protocol cannot help us avoid the expo-
nential decay of the normalized rate with distance if we do
not use any purification.

2. With Purification

Now, let us consider the case when we allow to use puri-
fication. In the m-PNP, our last chance to purify memories is
in the mth nesting level. In order to obtain an upper bound on
the rate, suppose that at the nesting level m−1�1, we are
provided with maximally entangled states �̂+ over Dm−2
links. �We consider the special case of m=1 later.� The
BSMs at stations S�m−1�, upon success, will leave us, up to a
local unitary, in �̂+. There will be, however, a delay of Tm−1
to inform stations S�m� of the success or failure of the above
BSMs, during which the memories decay to 	̂+�Tm−1�. In the
special case of m=1, the minimum delay is given by TED,
hence the decayed state will be 	̂+�TED�. The rate is then
optimistically approximated by
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Rm
�n� 
 Qm

�n�EC„	̂XY
+ �Tm

�n��…, �with purification� , �5�

where Tm
�n�=max�TED,Tm−1�. Here, for a fixed value of n,

EC(	̂XY
+ �Tm

�n��) is a decreasing function of m, whereas Qm
�n� is

an increasing function of m. That implies that, for fixed val-
ues of �c and L, there are optimum values of m and n that
maximize the normalized rate, and such a maximum may
scale better than exponentially with distance, as we show
next.

In order to find the asymptotic behavior of Ropt
�maxm,n Rm

�n� in the limit of large distances, we consider all
possible choices that we have for our system parameters m
and n. The only additional assumption in our analysis is that
PS�exp�−�L0�, where � is inversely proportional to the at-
tenuation length of the channel. This is a reasonable assump-
tion as most proposed entanglement distribution schemes re-
quire the transmission of a single photon along the channel
�2,5,6�. Now let us consider the following cases for the op-
timum values of m and n, respectively, denoted by mopt and
nopt, all in the limit of large distances:

�1� Suppose nopt is finite, then, because PS�exp
�−�L /2n�, Ropt degrades exponentially with L.

�2� Suppose nopt→
 but nopt−mopt is finite. Then the en-
tanglement cost term in Eq. �5�, will scale as exp
�−L / �c�c2

nopt−mopt+1��, which again represents an exponential
decay of the normalized rate with distance.

�3� Suppose nopt→
 and nopt−mopt→
, then

Ropt � exp�− �L0
opt�exp� L ln�PM�

2mopt−1L0
opt�

�EC�	̂XY
+
„2mopt−2L0

opt/�c�c�…� , �6�

where L0
opt=L /2nopt. �Note that R1

�n��R2
�n�, therefore Tmopt

�nopt�

=2mopt−2L0
opt /c.� Now, if 2moptL0

opt is finite, then the entangle-
ment cost term in the above equation will be a constant,
whereas the second term, so long as PM �1, decays expo-
nentially with L. If 2moptL0

opt→
, we can then replace the
entanglement cost term in Eq. �6� with its asymptotic value
to obtain

Ropt � exp�− �L0
opt�exp� L ln�PM�

2mopt−1L0
opt�exp�− 2mopt−1L0

opt/�c�c�� .

�7�

In the above equation, there are two competing terms: the
second term that decays exponentially with L / �2mopt−1L0

opt�
and the third term that decays exponentially with 2mopt−1L0

opt.
The best rate-versus-distance scaling can be achieved when
these two terms scale the same with L. That can be achieved
by assuming 2mopt−1L0

opt=��L, for some ��0, in which case
both above-mentioned terms decay exponentially with �L.
After optimizing over � and assuming that mopt→
, we find
that

Ropt � exp�− 2�L ln�1/PM�
c�c

� , �8�

which is exponentially decaying with �L, rather than L as
obtained for cases �1� and �2�. This is in fact the best rate-
versus-distance scaling achievable for our quantum repeater

system under our optimistic assumptions. Given that the
above optimized rate is obtained in the regime of mopt ,nopt
→
, we can further manipulate the ratios Rm+1

�n+1� /Rm
�n� and

Rm+1
�n� /Rm

�n� to find that, for large distances, the optimum rate is
obtained at

L0
opt 
 2 ln PM

−1/� , �9�

which is a constant identical to what one obtains for the
ideal-memory case, and

2mopt 
 ��2Lc�c/ln PM
−1. �10�

This shows that the optimum rate is obtained when 2nopt�L
and 2mopt��L. Such an improvement over the no-purification
case is associated with the employed purification scheme as
we discuss next.

The proposed purification schemes can be divided into
one-way and two-way protocols �12�. In most proposed one-
way protocols, it is commonly the case that after performing
proper local operations on one side, the measurement results
are sent to the other side at which, after further manipulation,
the purified states are obtained. In other words, the operation
of such schemes is equivalent to that of a quantum code, in
which errors occurred during both the processing as well as
the storage time may be corrected. In most proposed two-
way purification protocols, it is commonly the case that we
perform local operations on both sides, and exchange the
measurement results between the two parties. The purifica-
tion process can then be completed only after the receipt of
classical data. The problem with these protocols is that the
faulty memories will decay during the transmission of clas-
sical data. That may result in an exponential decay of rate
with distance as detailed below.

To see the effect of a typical two-way purification scheme
on the normalized rate, suppose that in order to purify 	̂AB,
an arbitrary two-qubit state between two partners A and B at
distance l, we apply local operations and measurements on
M copies of 	̂AB to obtain K�M copies of 	̂AB

pur. Then, we
communicate between A and B, to verify whether the purifi-
cation is successful. Upon success we perform another set of
local operations, modeled by a quantum operation �, on
�
l/c

A
� 
l/c

B ��K��	̂AB
pur��K�. For many schemes proposed in �11�,

� is just the identity operator due to a discard-or-keep action,
so we further assume that the dephasing process modeled by

l/c

A
� 
l/c

B commutes with �. Under these conditions, we
show that the fidelity of memories A and B after purification
cannot exceed p�l /c�. Suppose 	̂AB

F ���	̂AB
pur�, where F

=tr��̂+	̂AB
F � is the fidelity of the state after purification with-

out considering the memory decay. The fidelity of such state
after memory decay for a period t= l /c will then satisfy

tr��̂AB
+ 
t

A
� 
t

B�	̂AB
F �� = tr�
t

A
� 
t

B��̂AB
+ �	̂AB

F �

= tr��p�t��̂AB
+ + �1 − p�t���̂AB

− �	̂AB
F �

� p�t�F + �1 − p�t���1 − F�

� p�t� , �11�

where the first equality comes from the cycling property of
the trace operator, and equality holds for the first inequality if
	̂AB

F =F�̂AB
+ + �1−F��̂AB

− . We used F�1 in the last inequality.
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This implies that even if 	̂AB
pur= �̂AB

+ , by the end of the above
purification procedure, we ideally end up with 	̂AB

+ �l /c�. Us-
ing such purification schemes in the m-PNP will then leave
memories X and A2m, at best, in the state 	̂X,A2m

+ �Tm�, right

before performing the last set of BSMs. This is the case too
for other similar pairs of memories. After performing the
remaining BSMs, we end up with 	̂ f ,XY = 	̂XY

+ �Tn+1�, for which
the entanglement cost scales as exp�−2L / �c�c��, and that
proves our claim.

Whereas the two-way purification schemes considered
above cannot provide us with the optimum rate-versus-
distance scaling shown in Eq. �8�, there are one-way purifi-
cation schemes that achieve a similar scaling. For instance,
in the m-PNP, suppose we perform no purification up until
the mth nesting level, at which point we perform a one-way
hashing protocol �12� on entangled states distributed over
Dm−1. These entangled memories, before applying the puri-
fication and up to a local unitary, are in the state 	̂+�tm

�m� /2�.
To perform the hashing protocol, we need to perform encod-
ing measurements on one side of each entangled link over
Dm−1 and send the results to the nodes on the other side of
the link. Suppose the nodes that receive this encoding infor-
mation are those at which the mth nesting level measure-
ments will occur. For all other nodes, we not only can per-
form, at time Tm, the measurements required for the hashing
protocol but also, at the same time, we can perform those
blind BSMs, according to our partial nesting protocol,
needed for entanglement swapping as well as the required
measurements on the end nodes with regard to our QKD
application. By this trick, only memories located at S�m� will
undergo an additional Tm-long decay due to the transmission
delay before getting purified. The normalized rate after per-
forming the above purification as well as the remaining
BSMs is then given by Qm

�n�ED(	̂XY
+ �tm

�m� /2+Tm /2�), which,
for m=1 and L0��L, degrades exponentially with �L similar
to Eq. �8�. Here, we used the fact the asymptotic yield of the
one-way hashing protocol for our decayed state is given by
the entanglement of distillation ED(	̂XY

+ �t�)�exp�−2t /�c�, for
t��c.

The above example shows that with even one step of pu-
rification we can achieve the optimum scaling achievable by
a quantum repeater system that only relies on entanglement
purification for mitigating the effect of memory errors. This
is a weaker requirement than what needed for fully fault-
tolerant schemes, which rely on the frequent use of error-
correction schemes. Although here we assumed that the gates
used in the purification scheme are deterministic and error-
free, we can possibly relax this assumption by using proba-
bilistic gates for purification. How the rate decays in this new
scenario is a matter of further investigation.

IV. NUMERICAL RESULTS

In this section, we numerically study the effect of differ-
ent system parameters on the normalized rate. In all graphs
presented, we assume PS=0.2�10−0.01L0, which is an appro-
priate choice for the schemes proposed in �2,5�. Furthermore,
The underlying physical channel is assumed to be an optical
fiber with 0.17 dB/km loss, for which c=2�108 m /s and
1 /�=50 km. For numerical purposes, we have used the nor-
malized rate given by Eqs. �4� and �5�, for, respectively, sys-
tems without and with purification.

Figure 3�a� shows the rate in Eq. �5� versus nesting level
n for L=1000 km, hence L /c=5 ms. For each value of n,
we have optimized m to maximize the rate. The optimum
values of m turned out to be equal to n for all the marked
points in Fig. 3�a�. This figure clearly shows the criticality of
L /c as a benchmark for the required coherence time.
Whereas the rate drops over an order of magnitude when the
coherence time is reduced from 5 to 1 ms, there is only
a slight improvement in the rate if we use memories with
100 ms coherence time. We should bear in mind, however,
that these values are only valid in the case of N�1. The
benefit of using quantum memories with longer coherence
time is that we can still achieve the same value of Rm

�n� with a
lower number of employed memories �10�. Another interest-
ing point in Fig. 3�a� is that the achievable rate for both
values of n=3 and n=4 is about the same. Although, numeri-
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FIG. 3. �Color online� An optimistic estimate to the generation rate of maximally entangled states per employed memory, Rm
�n�, for the mth

order partial nesting protocol, in the presence of memory dephasing. The implicit assumption is that we employ a sufficiently large number
of memories to minimize the waiting times due to classical communication. In �a�, we have plotted Rm

�n�, optimized over m, versus the nesting
level, for three different values of coherence time. In �b�, we have plotted Rm

�n� versus coherence time, optimized over m and n. For fixed
values of �c, the rate degrades exponentially in �L. The pairs �n ,m�, on several points on the graph, show the optimum nesting levels, n, and
the optimum numbers of informed BSMs, m, at those points. In both �a� and �b�, we assume that our entanglement distribution succeeds with
probability PS=0.2�10−0.01L0 and the total distance is L=1000 km, thus L /c=5 ms in optical fibers.
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cally, n=4 attains the maximum rate, for practical purposes,
it is beneficial to use the less costly architecture correspond-
ing to n=3. One last point about this figure is the difference
in the slope of rate for values of n smaller than the optimum
value of n, and those that are larger. It is because for n
�nopt, loss is the dominant factor, whereas for n�nopt the
BSM success probability brings the rate down.

Figure 3�b� shows the optimum rate versus coherence
time for three values of PM at L=1000 km. On several
points on the graph, we have indicated pairs �n ,m� that
achieve the maximum achievable rate. For �c�L /c, the par-
tial nesting protocol favors using blind BSMs as they require
memories with shorter coherence times. For lower values of
PM, one needs to use fewer nesting levels to attain the maxi-
mum achievable rate. The optimum values of n in the above
cases agree with the relation L0

opt
2 ln�PM
−1� /� found in the

previous section.
Figure 4 demonstrates the rate behavior in both limits of

long and short coherence times. The solid lines represent the
optimistic normalized rate when entanglement cost is used as
our entanglement measure as in Eqs. �4� and �5�. The dashed
lines represent the achievable normalized rate when en-
tanglement of distillation is used instead. It can be seen that
the difference between the two cases is small. It is noticeable
that the normalized rate, regardless of the employed en-
tanglement measure or purification scheme, approaches a
constant value, maxn Qn

�n�, when �c�L /c, in accord with
what reported in �7,8� and Eqs. �4� and �5�. In the other
unexplored extreme of L�c�c, however, the situation is
much different. In the no-purification case, because, to the
first order, EC(	̂XY

+ �t�)� t exp�−2t /�c� for t��c, the rate in
Eq. �4� exponentially decays with distance. Proper use of
purification helps, but only a little. As shown by the dash-
dotted line in Fig. 4, at the optimum values of m and n, Rm

�n�

in Eq. �5� scales as a power of exp�−��L /c� /�c�. The same
effect has been shown in Fig. 5, where we have plotted the

optimized rate versus L for several values of coherence time.
It can be seen that for �c=100 ms, the logarithm of rate
scales linearly with log L, which represent a polynomial scal-
ing of rate with distance. For short coherence times, how-
ever, we will observe the exponential decay with �L as dis-
cussed before. Another interesting point is the optimum
values of m and n, which scale, respectively with log�L and
log L.

V. CONCLUSIONS

In this paper, we studied quantum repeaters that relied on
probabilistic schemes for entanglement distribution and con-
nection. We introduced a proper rate-over-cost figure of
merit for such systems by looking at the ratio between the
rate of entanglement generation—when the system resources
are being fully employed to successively create entangled
states—and the total number of employed memories. We
used entanglement measures to quantify the generation rate
of entanglement. We believe that to properly compare differ-
ent quantum repeater setups, one must study such a normal-
ized rate instead of merely considering the fidelity of gener-
ated entangled states at the end of only one round of the
protocol. We studied the effect of memory dephasing under
the assumption that the only mechanism employed to miti-
gate errors is purification. We further assumed that the num-
ber of memories employed per node is sufficiently large such
that, by parallel entangling attempts, we can minimize the
unavoidable communication delay between relevant nodes.
The memory decay, in principle, can be dealt with using
complex fault-tolerant schemes �18�, which may not be
available in the near future, and has not been considered in
our work. We showed that, whereas in the ideal case of infi-
nitely long coherence times the normalized rate scales poly-
nomially with distance, with imperfect quantum memories
the rate-over-cost asymptotically scales, at best, as a power
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FIG. 4. �Color online� Estimates for the generation rate of maxi-
mally entangled states per employed memory, Rm

�n�, versus coher-
ence time, optimized over m and n, for PM =0.75, PS=0.2
�10−0.01L0, L=1000 km, and L /c=5 ms. The employed entangle-
ment measures in these graphs are entanglement cost for the solid
lines, and entanglement of distillation for the dashed lines. For fixed
values of �c, the curves scale exponentially in L if no purification is
used and exponentially in �L with purification; see dash-dotted line
for comparison. The two-tuples �n ,m�, on several points on the
graph, show the optimum nesting levels, n, and the optimum num-
bers of informed BSMs, m, at those points.
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FIG. 5. �Color online� Estimates for the generation rate of maxi-
mally entangled states per employed memory, Rm

�n�, versus total dis-
tance L, optimized over m and n, for different values of coherence
time at PM =0.5 and PS=0.2�10−0.01L0. The employed entangle-
ment measure in these graphs is the entanglement cost and a proper
purification protocol is used. It can be seen that, for �c�L /c, the
curves scale polynomially with L, whereas, for �c�L /c, they scale
exponentially with �L. The two-tuples �n ,m�, on several points on
the graph, show the optimum nesting levels, n, and the optimum
numbers of informed BSMs, m, at those points. They, respectively,
scale with log L and log�L, for large distances.
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of exp�−��L /c� /�c�, with �c being the memories’ coherence
time. This rate behavior is nevertheless superior to the fully
exponential decay of rate with distance in quantum relays,
which do not use quantum memories, or in systems that do
not employ purification but use decaying memories. Our
analysis helps us estimate the minimal cost of our quantum
communication systems. In the particular case of QKD, to
create 1000 secure key bits/s over 1000 km, we may need

thousands of memories with coherence times exceeding or
on the order of 10 ms.
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