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I. INTRODUCTION

The search for a permanent electric dipole moment
�EDM� of particles, violating both parity and time-reversal
invariance, has a long history �see, e.g., �1��. The standard
model predicts tiny EDMs, which cannot be detected at the
present level of experimental accuracy. However, different
extensions of the standard model �such as, e.g., supersymme-
try� predict much larger EDMs of the particles that, in prin-
ciple, could be found using the modern experimental tech-
nique. A reveal of such EDMs would unambiguously lead to
a contradiction with the standard model.

According to �2,3� previous limits on EDM produced
stringent constraints on electroweak bariogenesis and models
of CP violation, but fall short of ruling out the simplest
generic extensions of the standard model. It was stated that
the next generation of EDM experiments should be suffi-
ciently sensitive to provide a conclusive test.

A very significant step ahead in this direction has been
done in a recent work �4�. The authors reported result ob-
tained for a permanent EDM of 199Hg to be d�199Hg�
= �0.49�1.29stat�0.76syst��10−29e cm. Although the EDM
is still consistent with zero, its limit �d�199Hg���3.1
�10−29�e� cm is an improvement of the previous Hg limit by
a factor of 7. Motivated by this result and implying future
experimental progress, we have performed calculations of
different contributions to the atomic EDMs of 129Xe, 171Yb,
199Hg, 211Rn, and 225Ra. For these atoms the experiments
searching for EDMs are underway.

The paper is organized as follows. In Sec. II we discuss
different types of �P ,T�-odd interactions that can lead to an
appearance of a permanent atomic EDM. In Sec. III we de-
scribe the methods of calculations of the EDMs. We start our
calculations from the relativistic Hartree-Fock method. Than
we include many-body corrections using two different meth-
ods. First, we apply a simple random-phase approximation
�RPA� for the closed-shell atoms. Second, we apply the con-
figuration interaction �CI� combined with the many-body
perturbation theory �MBPT� �12� approach to valence elec-
trons while we use the RPA approach for the core. Section IV
is devoted to an analysis and discussion of the results. We

present the results obtained for different contributions to the
atomic EDMs and compare them with other available data.
In Sec. V we discuss the neutron and the proton contribu-
tions to the total nuclear spin using the spherical shell model
of a nucleus. Section VI contains concluding remarks and
two final tables where the recommended values of the con-
tributions to the EDMs of 129Xe, 171Yb, 199Hg, 211Rn, and
225Ra are gathered and the limits on CP-violating parameters
based on an experimental limit for 199Hg are presented.

II. GENERAL FORMALISM

Our goal is to find the atomic EDM dat defined as dat
�dat�F /F�, where F=J+I with J being total angular mo-
mentum. In this work we deal with the atoms with closed
shells in their ground states. In this case J=0, F=I, and dat
=dat�I / I�.

We consider several types of �P ,T�-odd interactions be-
tween particles leading to an appearance of an atomic EDM.
We restrict ourselves to contributions to the EDM which oc-
cur in the second order of the perturbation theory. The EDM
induced in an atomic state �0� due to an admixture of
opposite-parity states that appears in the second order of the
perturbation theory can be written as

dat = 2�
K

	0�D�K�	K�H�0�
E0 − EK

, �1�

where D=−�e�r is the electric dipole operator, e is the elec-
tron charge, and Ei are the energies of the states.

We will consider below �1� the tensor-pseudotensor
�P ,T�-odd electron-nucleon �e-N� interaction, �2� the
pseudoscalar-scalar �P ,T�-odd e-N interaction, �3� the
nuclear Schiff moment, and �4� the interaction of the electron
EDM with the internal nuclear magnetic field of the atom.

It is worth noting that the operators describing all these
interactions have certain similar features. All of them �1� are
proportional to the nuclear spin I and �2� have strong singu-
larity. The similar nature of these operators leads to a sug-
gestion that the calculations depend very little on their spe-
cific form. It allows us to expect that the relative
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contributions of different many-body parts of calculations
will remain approximately the same for all operators. As we
will show below this suggestion is fully justified.

A. Electron-nucleon (P ,T)-odd interactions

We start our consideration with brief reminder of the main
features of the e-N �P ,T�-odd interaction leading to appear-
ance of atomic electric dipole moments in the second order
of the perturbation theory. A detailed description can be
found elsewhere �1,5�. This interaction has the following
form �see, e.g., �5��:

H =
G

2

�
N

�CT
NN̄i�5���Nē�5���e + CP

NN̄i�5Nēe� . �2�

Here, CT
N and CP

N are dimensionless coupling constant char-
acterizing tensor-pseudotensor and pseudoscalar-scalar
�P ,T�-odd electron-nucleon interactions for the nucleon N,
���= �����−����� /2, and �5 and � are the Dirac matrices
�5= � 0 −1

−1 0 � and �= � 0 �
−� 0 �.

In accordance with Eq. �2� we can represent the Hamil-
tonian H as H�HT+HP, where in the coordinate represen-
tation �atomic units �=me= �e�=1 are used throughout�

HT = i
2GCT�	�N�	�r� , �3�

HP = −
G

2

1

2mpc
CP�0 � 	�r�	�N� . �4�

Here, G is the Fermi constant, c is the speed of light �in
atomic units c=1 /
�137�, and mp is the nucleon mass.

We denote

CT	�N� � �CT
p�

p

�p + CT
n�

n

�n ,

CP	�N� � �CP
p�

p

�p + CP
n�

n

�n ,

where 	¯ � means averaging over the nuclear state with the
nuclear spin I.

In Eq. �4� we keep only the term in the lowest nonvanish-
ing approximation in mp

−1. Note that in this equation the op-
erator � acts only to 	�r�, where 	�r� is the nuclear density
distribution.

Since we are dealing with very singular operators the
model of the nuclear density distribution can be important.
To check this point we have carried out calculations for two
models. In one of them the nucleus was treated as a charged
sphere with the radius R, i.e.,

	�r� =
3

4�R3��R − r� . �5�

In other model it was used the Fermi distribution

	�r� =
	0

1 + exp
r − R

a

, �6�

where 	0 is the normalization parameter determined by
�	dV=Z. We have found that the results obtained for each of

these models were numerically very close to each other.
Similar to the expression for H it is convenient to repre-

sent dat as a sum of two terms dat=dat
T +dat

P, where dat
T and dat

P

correspond to the operators HT and HP given by Eqs. �3� and
�4�. Explicit expressions for dat

T and dat
P can be derived from

Eq. �1� by replacing the operator H to HT and HP, corre-
spondingly.

It is convenient to determine the quantities dat
T and dat

P as
follows: dat

T,P=dat
T,P	�N��dat

T,PI / I. The coefficient of propor-
tionality in this expression depends on a model of the
nucleus. An accurate treatment of the nuclear structure is
beyond the topic of this work. For a spherical shell model of
the nucleus this coefficient can be easily found for different
atoms. We will discuss this problem in more detail in Sec. V.

B. Nuclear Schiff moment

The Schiff moment is a nuclear moment violating both
parity and time-reversal invariance. It is caused by
�P ,T�-odd nuclear forces and it takes into account screening
of external electric field by atomic electrons. We use the
form of the Hamiltonian for the interaction of atomic elec-
trons with the nuclear Schiff moment suggested in Ref. �6�

HSM = −
3Sr

B
	�r� , �7�

where B��	�r�r4dr and S is the Schiff moment vector de-
fined as S=S�I / I� with S being the coupling constant.

Its contribution to the EDM of the closed-shell atoms has
been considered in detail in �7,8�. As it follows from �7� the
results obtained in the frame of multiparticle approach com-
bining the CI with the MBPT agreed �within 10%� with the
results obtained by the RPA method. Here, we perform simi-
lar calculations mostly for consistency test and for complete-
ness.

C. Electron EDM

An interaction of the electron EDM de with the electro-
magnetic field strength F�� can be written in the relativisti-
cally covariant form as

He =
de

2
̄�5���F��. �8�

Here, ̄=†�0 and  is determined in the Appendix.
Again we will consider here only the effect appearing in

the second order of the perturbation theory. It is character-
ized by an interaction of the electron EDM with the magnetic
field B created by the nuclear magnetic moment. The opera-
tor of this interaction �HB� can be written as

HB = − ide�B . �9�

The magnetic field B can be represented by

B = � �
�M � r�

r�
3 =

3�M · n�n − M

r3 ��r − R� +
2M

R3 ��R − r� ,

�10�

where
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��x� = �1, x � 0

0, x � 0
�

and n�r /r. The contribution to the atomic EDM can be
written as dat

B =dat
B�I / I� and found from Eq. �1� by replacing

H→HB.

III. METHODS OF CALCULATION

A. RPA for the closed shells

Here, we describe a simple method suitable for calcula-
tions of atomic EDM for atoms with closed shell. On the first
stage we solve Dirac-Hartree-Fock �DHF� equations in the
VN approximation �i.e., including all electrons forming the
ground state of the atom in a self-consistency procedure�

Ĥ0c = �cc. �11�

Here, H0 is the relativistic Hartree-Fock Hamiltonian and c
and �c are single-electron wave functions and energies.

At the next step we construct virtual orbitals. Different
techniques can be used for this procedure. One approach is to
multiply the previous orbital of the same partial wave to a
smooth function of r with subsequent orthogonalization of
this orbital to all the rest orbitals. This method was described
in detail in Refs. �9,10�.

Another method is to construct a basis set using the
B-spline technique developed at the University of Notre
Dame �11�. We use 60 B splines of order 9 in a cavity of
radius Rmax=30aB, where ab is the Bohr radius. This rela-
tively large number of B splines is needed due to singularity
of the �P ,T�-odd operators. This requires a very detailed
description of the wave functions in the vicinity of the
nucleus.

Further, we consider an atom in external field and solve
the RPA equations �self-consistent DHF in an external field�

�Ĥ0 − �c��c = − �F̂ + �VF
N�c, �12�

where F̂ is the operator of external field and �VF
N is the cor-

rection to the self-consistent potential due to the effect of
external field. The index c numerates single-electron func-
tions �c� of the closed-shell core. The RPA equations �12�
are solved self-consistently for all states in the core for all
external fields involved in the problem.

B. CI+MBPT

A more sophisticated and accurate way to calculate
atomic EDMs is to use the configuration-interaction tech-
nique for valence electrons while still using the RPA ap-
proach for the core. This would allow us to check the accu-
racy of the RPA calculations. It is especially important for
the atoms having two external s electrons: Yb, Hg, and Ra.
The effect of external electrons on different properties of
these atoms is large, and an accurate treatment of the inter-
action between them is needed.

We consider Yb, Hg, and Ra as atoms with two valence
electrons above closed-shell cores �1s , . . . ,4f14�,
�1s , . . . ,5d10�, and �1s , . . . ,6p6�, respectively. In this paper

we follow approach suggested in �12� which combines the
many-body perturbation theory with the configuration-
interaction method. We will refer to it as the CI+MBPT
formalism. The MBPT is used to include excitations from the
core into the effective Hamiltonian for valence electrons. Af-
ter that, the multiparticle relativistic equation for valence
electrons is solved within the CI framework to find the wave
functions and the low-lying energy levels.

In the CI+MBPT method, the energies and the wave
functions are determined from the time-independent equation

Heff�En��n = En�n, �13�

where the effective Hamiltonian is defined as

Heff�E� = HFC + ��E� . �14�

Here, HFC is the Hamiltonian in the frozen core approxima-
tion and � is the energy-dependent correction, which takes
into account virtual core excitations. The operator � com-
pletely accounts for the second-order perturbation theory
over residual Coulomb interaction.

Since we are interested in calculating the atomic EDMs,
we need to construct the corresponding effective operators
for valence electrons �13–15�. To do that, we can extend the
concept of the effective Hamiltonian Heff to other operators
such as the effective dressed electric-dipole operator Deff and
the �P ,T�-odd operators. These operators account for the
core-valence correlations. As in pure RPA approach of Sec.
III A, we solve the RPA equations summing a certain se-
quence of many-body diagrams to all orders of MBPT
�13,16,17�. Since requirements to the accuracy of calcula-
tions are not very high, we disregard in this consideration
small corrections like normalization and structural radiation.

We perform the calculations in the CI+MBPT method in
VN−1 and VN−2 potentials. The former is a bit more “natural”
for the lowest-lying odd-parity states of the considered atoms
such as nsnp 3,1P1

o �n=6 for Yb and Hg and n=7 for Ra�,
because 6p1/2,3/2 �or 7p1/2,3/2� orbitals are constructed at the
stage of solving DHF equations for the configuration
�core�nsnp. The latter is somewhat simpler �e.g., due to an
absence of the subtraction diagrams�. We have checked that
the final results in both potentials are in good agreement with
each other. For this reason when we discuss results, we do
not distinguish between these potentials.

Two different basis sets described in Sec. III A were used
in the VN−1 and VN−2 approximations. First set �9,10� was
used in the VN−1 and B-spline set �11� was used in the VN−2

calculations. At the CI stage of the VN−1 calculations the
one-electron basis set for Yb included 1s-13s, 2p-13p,
3d-12d, 4f-11f , and 5g-7g orbitals, where the core and 5d
and 6p orbitals are Dirac-Hartree-Fock ones and all the rest
are the virtual orbitals. For Hg and Ra the basis sets were
insignificantly larger. In all cases the basis sets were numeri-
cally complete and the full CI was made for two valence
electrons. At the stage of the MBPT calculations a more
extended basis sets, including more basis functions, were
used. For instance, for Yb it included 1s-26s, 2p-26p,
3d-25d, 4f-17f , and 5g-12g orbitals.

All B splines up to lmax=5 were used to calculate � in the
VN−2 approximation. 18 lowest basis states above the core in
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each partial wave up to lmax=3 were used on the CI stage of
the VN−2 calculations.

IV. RESULTS AND DISCUSSION

A. RPA for the closed shells

In the frame of the RPA method discussed in Sec. III we
have performed the calculations of different contributions to
the EDMs of the diamagnetic atoms presented in Table I. For
these atoms the experiments searching for the EDMs are
planned or are underway.

We can rewrite Eq. �1� as follows:

dat = 2�
a,k

	k�r�a�	k�H�a�
�a − �k

, �15�

where the summation is over the quantum numbers of the
one-electron core states “a” and excited states “k” and �i are
the one-electron energies.

1. (P ,T)-odd e-N interaction

We start the discussion from tensor-pseudotensor and
pseudoscalar-scalar e-N �P ,T�-odd interactions. Using the
Wigner-Eckart theorem and going over to the reduced matrix
elements �ME�, we obtain for the contributions dat

T and dat
P to

atomic EDM

dat
T =

2
2G

3
CT�

a,k

	k��r��a�	k��i�	�r���a�
�k − �a

, �16�

dat
P = −

GCP

3
2mpc
�
a,k

	k��r��a�	k��n�d	/dr��0��a�
�k − �a

. �17�

The explicit expressions for the reduced MEs of the
�P ,T�-odd operators in Eqs. �16� and �17� are given in the
Appendix.

In Table II we present the values of dat
T obtained for all

isotopes listed in Table I in pure DHF approximation and
including RPA corrections. Note that the RPA corrections
must be included only for one operator in Eq. �16� or Eq.
�17� �18�. In other words, when we include the RPA correc-
tions for the electric dipole operator r, we must not include
them for the �P ,T�-odd operator and vice versa. Certainly
both approaches should lead to the same result. It allows us
to test the consistency of the calculations.

Our results for Xe are in good agreement with other data.
Our RPA value for 199Hg is in excellent agreement with simi-

lar calculations by Maartensson-Pendrill �18� while the result
obtained in Ref. �19� is somewhat larger. There is also a
reasonable agreement between the result found in this work
and the estimate obtained by Sushkov et al. from the analyti-
cally derived formula �20�. To the best of our knowledge
there are no other data for Yb, Ra, and Rn to compare with.

As is seen from Table II, the inclusion of the RPA correc-
tions leads to increasing atomic EDM. For the noble gases
�Xe and Rn� the RPA corrections contribute at the level of
30%, while for the atomic Hg, Yb, and Ra, which have two
s electrons above closed shells, the RPA corrections are
much larger. In fact, they increase the EDM 2.5 times for Hg
and five times for Yb and Ra as compared to the DHF re-
sults. The reason for this increase is that the two s electrons
are loosely bound and can be easily excited. As a result, an
account for the higher orders of the perturbation theory �like
the RPA corrections� leads to significant change in the “bare”
results obtained in the DHF approximation.

The results obtained for dat
P are listed in Table III. In Ref.

�22� Flambaum and Khriplovich suggested a method to es-
tablish the correspondence between contributions of the
tensor-pseudotensor and pseudoscalar-scalar �P ,T�-odd op-
erators using the expressions for the reduced MEs of these
operators �see the Appendix�.

This correspondence can be obtained using the properties
of the wave functions fs, gs, fp1/2

, and gp1/2
in the vicinity of

the nucleus �see, e.g., �6��. For instance,

fp1/2
�r� � gp1/2

�R� 1
2Z
x�1 − 1

5x2� , �18�

where x�r /R.

TABLE I. The isotopes of the atoms considered in this work. �
are the magnetic moments expressed in nuclear magnetons.

Z A I �

Xe 54 129 1/2 −0.7778

Yb 70 171 1/2 0.4119

Hg 80 199 1/2 0.5059

Rn 86 211 1/2 0.60

Ra 88 225 1/2 −0.734

TABLE II. The values of dat
T in units �10−20CT	�N��e� cm� ob-

tained in DHF and RPA approximations are presented. The results
are compared with other data.

129Xe 171Yb 199Hg 211Rn 225Ra

This work �DHF� 0.45 −0.70 −2.4 4.6 −3.5

Ref. �18� �DHF� 0.41 −2.0

Ref. �21� �DHF� 0.41

Ref. �20� 0.6 −3.9

This work �RPA� 0.57 −3.4 −5.9 5.6 −17

Ref. �18� �RPA� 0.52 −6.0

Ref. �19� �RPA� −6.75

TABLE III. The values of dat
P in units �10−23CP	�N��e� cm� ob-

tained in DHF and RPA approximations are presented. The results
are compared with other data.

129Xe 171Yb 199Hg 211Rn 225Ra

This work �DHF� 1.3 −2.4 −8.7 17.3 −13.0

This work �RPA� 1.6 −11.5 −21.3 21.0 −63.7

Rescaling �RPA�a 1.6 −11.3 −21.3 21.3 −64.7

aThese numbers are obtained using the correspondence CP↔CT

given by Eq. �20� as explained in the text.
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At r=R we obtain

fp1/2
�r� � gp1/2

�R� 1
2Z
 � 0.8 �19�

and after some transformations we find the correspondence

CP ↔
5mpR

Z

CT � 3.8 � 103A1/3

Z
CT. �20�

The final coefficient connecting CP and CT in Eq. �20� differs
by a factor of 6/5 from that obtained in �22�.

Given the results obtained in this work in the RPA ap-
proximation for dat

T and using Eq. �20�, we can find the values
of dat

P. These values are listed in Table III in the entry “res-
caling �RPA�.” As is seen from the table there is an excellent
agreement between the calculated and the rescaled values. It
is worth noting that Eq. �20� turns out to be insensitive to Z.
For the comparably light Xe and for heavy Ra the agreement
of the numerical results and the results obtained with use of
Eq. �20� is equally good. It means that Eq. �20� works well
for atoms with different Z.

2. Schiff moment

The contribution to the atomic EDM due to the Schiff
moment HSM is naturally to determine as dat

SM =dat
SM�I / I�,

where dat
SM is given by

dat
SM = − 2

S

B
�
a,k

	k��r��a�	k��r	�r���a�
�k − �a

. �21�

In explicit form the ME of the operator �r	�r�� is given in the
Appendix.

The results for the Schiff moment contribution to the
atomic EDMs are presented in Table IV. There is a very
good agreement with previous calculations �7,8�. Few-
percent difference for Hg and Ra is within the accuracy of
the calculations for these atoms.

A reason of the discrepancy with the result obtained in
Ref. �23� is unclear for us. The authors of this work state that
a possible reason of the difference between their result and
those obtained in Ref. �7� is due to electron correlations
which drastically change the final result. However, according
to our calculations, the correlations included in the CI
+MBPT approach change the results insignificantly, on the
level of 10–15 % as compared to the RPA calculations. The

same conclusion was made in Ref. �7�. Below we will return
to this problem.

3. Electron EDM

Usually in experiments searching for atomic EDMs atoms
are placed in an external electric field Eext. It leads to appear-
ance of the interaction datEext=−de�5�Eext. The operator
��5�� is P even and T odd. If the hyperfine interaction Hhf is
accounted for, a contribution to the atomic EDM caused by
this operator appears already in the second order of the per-
turbation theory and looks as follows:

2�
K

	0�Hhf�K�	K�de�5��0�
E0 − EK

. �22�

But as it was shown in �22�, this contribution has the mag-
nitude �deZ

3
4 /mp and is negligibly small. We disregard it
in this work.

For calculating the contribution of the electron EDM �de-
scribed by the operator HB� to the atomic EDM, we use the
same approach as for studying the e-N interaction. We de-
note the contribution to the atomic EDM due to HB as dat

B

=dat
B�I / I�. Using Eq. �1� and replacing H→HB, after simple

transformations we arrive at the following expression:

dat
B = de

�

3mpc�
a,k

	k��r��a�	k��HB
el��a�

�k − �a
. �23�

Here, HB
el is the electronic part of the operator HB. The ex-

plicit expression for the ME of the operator HB
el is given in

the Appendix.
The results obtained for this contribution to the atomic

EDMs is presented in Table V. Comparing our results ob-
tained for Xe and Hg with those of Maartensson-Pendrill and
Öster, we see a very good agreement between them. It is seen
that the RPA corrections change the results obtained in the
DHF approximation for Yb, Hg, and Ra very significantly.
For Yb and Ra the DHF and the RPA results differ by a
factor of 5. This behavior is quit similar to what we found for
dat

T , dat
P, and dat

SM �see Tables II–IV�. It is not surprisingly if
we take into account the similar nature of all these �P ,T�-odd
operators. To the best of our knowledge there are no other
available data for Yb, Rn, and Ra.

There is also the third-order contribution to atomic EDM
proportional de �22�, which is actually larger than the second-
order contribution discussed here. We will consider it in a
separate publication.

TABLE IV. The values of dat
SM in units

�10−17�S / ��e�fm3���e� cm� obtained in DHF and RPA approxima-
tions and in the frame of the coupled-cluster single-double �CCSD�
method �23� are presented. The results are compared with other
data.

129Xe 171Yb 199Hg 211Rn 225Ra

This work �DHF� 0.29 −0.42 −1.2 2.5 −1.8

This work �RPA� 0.38 −1.9 −3.0 3.3 −8.3

Ref. �7� �RPA� 0.38 −2.8 3.3 −8.5

Ref. �8� �RPA� −1.9

Ref. �23� �CCSD� −5.07

TABLE V. The values of dat
B in units �de�10−4� obtained in

DHF and RPA approximations are presented. The results are com-
pared with other data.

129Xe 171Yb 199Hg 211Rn 225Ra

This work �DHF� 0.85 1.0 4.9 −11 −11

Ref. �24� �DHF� 0.86 5.1

This work �RPA� 1.0 5.1 12.5 −13 −55

Ref. �24� �RPA� 1.05 13
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B. CI+MBPT

We use the CI+MBPT approximation for the calculations
for Yb, Hg, and Ra atoms, which have two s electrons above
closed shells. For the noble gases such as Xe and Rn, the
RPA is known to be good for describing their properties �see,
e.g., �25�� and there is no need to use the CI+MBPT for
them.

We start the discussion of the properties of Yb, Hg, and
Ra from the results obtained for the low-lying energies of
these atoms. In Table VI we present the energy-level values
obtained in the pure CI and the CI+MBPT approximation.
As seen from Table VI the removal energies of the two s
electrons differ by �10% from the experimental values at
the CI stage. An accounting for the MBPT corrections leads
to almost ideal �better than 0.1%� agreement between these
quantities. The energies of the excited states �calculated rela-
tively to the ground state� are also noticeably improved at the
CI+MBPT stage. The differences between theoretical and
experimental values do not exceed 3%. These results indicate
the accuracy of wave functions produced at different stages
of the CI+MBPT method.

The calculations of the atomic EDM dat in the CI
+MBPT approach are more complicated than in the RPA
method. Again we start from Eq. �1� keeping in mind that the
summation in this equation is going over many-electron
states. Following �26,27� dat can be divided into two parts:

dat = dat
v + dat

core, �24�

where dat
v includes excitations of valence electrons and dat

core

includes excitations of core electrons and a correction to dat
core

that appears because of possible excitations of core electrons
into the closed valence s shell, which is forbidden by the
Pauli principle. Note that the correction restoring the Pauli
principle is not small. In certain cases it constitutes �50% of
the total core contribution.

With the wave functions obtained from Eq. �13�, the va-
lence part dat

v is computed with the Sternheimer �28� or the
Dalgarno-Lewis �29� method implemented in the CI
+MBPT+RPA framework. Given the wave function �0� and
its energy E0, we find an intermediate-state wave function
�in from the inhomogeneous equation

��in� =
1

Heff − E0
�
K

�K�	K��rz�eff�0� =
1

Heff − E0
�rz�eff�0� .

�25�

Given �in we can compute dat
v as

dat
v = 2	0��rz�eff��in� . �26�

An additional contribution dat
core coming from particle-hole

excitations of the core is incorporated in the frame of the
RPA approach discussed above.

In Table VII we list the results obtained for the valence
and the core contributions to the EDM of the atoms. For
completeness and comparison we also present the values ob-
tained in the RPA calculations. As seen from the table the
largest differences between the results obtained in the RPA
and the CI+MBPT methods occur for Hg. But even in this
case these differences do not exceed 15%. Taking into ac-
count the similar nature of the �P ,T�-odd operators consid-
ered in this work, we can expect that the relative difference
between the results found in both approximations would be

TABLE VI. The removal energies for both 6s electrons for Yb
and Hg and both 7s electrons for Ra are presented in the first row of
each respective atom. Energies of excited states are presented �in
cm−1� with respect to the ground state. The results are obtained in
the CI and CI+MBPT approximations.

Config. Level CI CI+MBPT Experiment

Yb 6s2 1S0 138795 148707 148712

6s6p 3P0
o 14368 17562 17288

6s6p 3P1
o 15029 18251 17992

6s6p 3P2
o 16537 19995 19710

6s6p 1P1
o 24215 25715 25068

Hg 6s2 1S0 213969 235409 235469

6s6p 3P0
o 30676 37537 37645

6s6p 3P1
o 32446 39375 39412

6s6p 3P2
o 36541 44405 44043

6s6p 1P1
o 48195 54116 54069

Ra 7s2 1S0 116301 124316 124416

7s7p 3P0
o 10706 13108 13078

7s7p 3P1
o 11587 14003 13999

7s7p 3P2
o 13892 16693 16686

7s7p 1P1
o 19011 20597 20716

TABLE VII. The valence and core and contributions to dat
T �in

10−20CT	�N��e� cm�, dat
P �in 10−23CP	�N��e� cm�, dat

SM �in
10−17�S / ��e�fm3���e� cm�, and dat

B �in 10−4de� are presented. The en-
try “total” means the sum of the valence and core contributions. The
accuracy of the values total is estimated at the level of 15–20 %.
The results obtained in the RPA method �VN approximation� are
given for comparison. We denote this entry as “RPA.”

dat
T dat

P dat
SM dat

B

171Yb Val. −4.24 −14.2 −2.43 6.24

Core 0.54 1.8 0.31 −0.79

Total −3.70 −12.4 −2.12 5.45

RPA −3.37 −10.9 −1.95 5.05

199Hg Val. −5.71 −20.5 −2.95 12.0

Core 0.59 2.1 0.32 −1.3

Total −5.12 −18.4 −2.63 10.7

RPA −5.89 −20.7 −2.99 12.3

225Ra Val. −20.6 −75.0 −10.25 −65.2

Core 3.0 10.8 1.41 9.5

Total −17.6 −64.2 −8.84 −55.7

RPA −16.7 −61.0 −8.27 −53.3
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approximately the same for all operators for a given atom. As
we see from Table VII, this condition is fulfilled. This is a
good consistency test of the calculations.

In this way we arrive at the conclusion that the electron
correlations do not affect the final results too much. Based on
this observation we estimate the accuracy of the values “to-
tal” listed in Table VII is at the level of 15–20 %. Similar
accuracy is expected for Xe and Rn atoms.

V. SHELL MODEL OF THE NUCLEUS

In certain cases it is possible to impose additionally the
constraints on the strength of the couplings for protons and
neutrons. Below we will obtain such constraints for a simple
case of the spherical shell model of a nucleus. This model
describes well the nuclei of 129Xe and 199Hg. The former
contains a neutron in the s1/2 state and the latter contains a
neutron in the p1/2 state above the closed shells. Although the
nuclei in the atoms have a valence neutron, it is possible to
deduce also the proton contribution to the total nuclear spin
using the information on the nuclear magnetic moments. If
we assume that the magnetic moment of the nucleus is com-
posed entirely from the spin magnetic moment of the valence
neutron and the spin magnetism of polarized nuclear core,
then

� = �n	�z
�n�� + �p	�z

�p�� ,

	�z
�n�� + 	�z

�p�� = 	�z
�0�� . �27�

Here, �p�2.793 and �n�−1.913 are the magnetic moments
of the proton and the neutron expressed in nuclear magne-
tons. Numerical estimates show that the main contribution to
the nuclear magnetic moments � of 129Xe and 199Hg comes
from the neutron and proton spin contributions. This is due
to that the neutron orbital contribution is zero and the proton
orbital contribution �for the orbitals with a low orbital mo-
mentum� is small in comparison with its spin contribution.
Neglecting the spin-orbit interaction leads to conservation of
the total spin, which is equal to the average spin of the neu-
tron above the unpolarized core 	�z

�0��. Taking into account
that, in the spherical shell model the nuclear spin I is deter-
mined by the total momentum of the unpaired nucleon, we
can write

	�N� = 	�z
�0��I/I , �28�

with

	�z
�0�� = �1, I = lI + 1/2

− I/�I + 1� , I = lI − 1/2,
�

where lI is the orbital quantum number of the valence
nucleon. Using Eq. �28�, we determine 	�z

�n�� and 	�z
�p�� for

observationally relevant cases of 129Xe and 129Hg as shown
in Table VIII.

As seen from Table VIII the contribution of the proton
spin into the total nuclear spin of 129Xe is as high as 30%,
and therefore the proton couplings CT

p and CP
p �see the equa-

tions below Eq. �5�� are also limited in the experiments
searching for the EDM. For 199Hg the limit on the proton
couplings is ten times weaker than the limit on the neutron
couplings.

Note that the simple shell model of a nucleus considered
above is hardly applicable to the nuclei of 171Yb, 211Rn, and
225Ra. The problem is that the nucleus of 171Yb is quadru-
pole deformed and the nuclei of 211Rn and 225Ra are octu-
pole deformed. For this reason more sophisticated nuclear
models are required for a proper description of these nuclei.

VI. CONCLUSION

In conclusion, we have carried out calculations of differ-
ent contributions to the EDMs of 129Xe, 171Yb, 199Hg, 211Rn,
and 225Ra by the RPA and the CI+MBPT methods. Two of
these contributions are due to tensor-pseudotensor and
scalar-pseudoscalar e-N �P ,T�-odd interactions, and two
more contributions are caused by the nuclear Schiff moment
and the electron EDM. The recommended values for noble
gases Xn and Ra are based on the results obtained in the RPA
calculations while for Yb, Hg, and Ra they based on the
calculations carried out in the frame of CI+MBPT+RPA
approach. These numbers are gathered in Table IX.

Finally, using the results obtained in this work for atomic
mercury and recently obtained upper bound �dat�

199Hg��
�3.1�10−29�e� cm �4�, we are able to find limits on
CP-violating parameters CT, CP, and S. We do not put a
constraint on the coupling constant de because the contribu-
tion of the electric dipole electron moment to the atomic
EDM in the third order of the perturbation theory is known
to be �10 times larger than its contribution in the second

TABLE VIII. Composition of the nuclear spin.

Nucleus Neutron state 	�z
�0�� 	�z

�n�� 	�z
�p��

129Xe s1/2 1 0.76 0.24
199Hg p1/2 −1 /3 −0.31 −0.03

TABLE IX. The recommended values of the contributions to
atomic EDM.

129Xe 171Yb 199Hg 211Rn 225Ra

dat
T �10−20CT	�N��e� cm� 0.57 −3.7 −5.1 5.6 −18

dat
P �10−23CP	�N��e� cm� 1.6 −12 −18 21 −64

dat
SM �10−17�S / ��e�fm3���e� cm� 0.38 −2.1 −2.6 3.3 −8.8

dat
B �10−4de� 1.0 5.5 11 −13 −56

TABLE X. Limits on CP violating parameters CT, CP, and S
based on an experimental limit for �dat�

199Hg���3.1�10−29�e� cm
�4�.

Parameter Limit

CT 1.9�10−9

CP 5.2�10−7

S ��e�fm3� 1.2�10−12
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order �22�. It means that a dominating contribution from the
electron EDM still has to be considered. This is a subject of
another work. Applying again the spherical shell model to
199Hg and, respectively, having 	�N�=− 1

3 �I / I�, we arrive at
the numbers listed in Table X.
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APPENDIX

To calculate the MEs of the �P ,T� operators we define the
one-electron wave function �a��a�r� as follows:

a�r� = � fa�r�� jalama
�n�

iga�r�� jal̃ama
�n� � , �A1�

where l̃a=2ja− la.
The MEs of the �P ,T�-odd operators characterizing the

tensor-pseudotensor and the pseudoscalar-scalar interactions
are given by the following expressions:

	nb�b��i�	�r���na�a�

= 	�b��C1���a��
0

�

�fbga��a − �b + 1�

+ fagb��b − �a + 1��	�r�r2dr , �A2�

	nb�b��n�d	/dr��0��na�a�

= 	�b��C1���a��
0

�

�gbga − fbfa�r2d	

dr
dr . �A3�

If the nuclear density distribution is given by Eq. �5� �see the

main text� Eq. �A3� is further simplified leading to

	nb�b��n�d	/dr��0��na�a� = 	�b��C1���a�
3

4�
�gbga − fbfa

r
�

r=R
,

�A4�

where spherical harmonics Clm are defined as

Clm�n� =
 4�

2l + 1
Ylm�n� , �A5�

�= �l− j��2j+1�, and the reduced ME 	�b��C1���a� is given by

	�b��C1���a� = ��lb + la + 1��− 1� jb+1/2
�2ja + 1��2jb + 1�

�� jb ja 1

− 1/2 1/2 0
� , �A6�

where

��x� = �1, if x is even

0, if x is odd.
�

The reduced ME characterizing the nuclear Schiff mo-
ment is given by

	nb�b��r	�r���na�a� = 	�b��C1���a��
0

�

�gbga + fbfa�r3	�r�dr .

�A7�

The reduced ME of the operator HB
el can be represented as

	nb�b��HB
el��na�a�

= − 	�b��C1���a���
R

�

�fbga��b − �a + 2�

+ fagb��a − �b + 2��
dr

r
− 2�

0

R

�fbga��b − �a − 1�

+ fagb��a − �b − 1��
r2dr

R3 � . �A8�
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