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We formally link the concept of steering (a concept created by Schrödinger but only recently formalized by
Wiseman, Jones, and Doherty �Phys. Rev. Lett. 98, 140402 �2007��) and the criteria for demonstrations of
Einstein-Podolsky-Rosen �EPR� paradox introduced by Reid �Phys. Rev. A 40, 913 �1989��. We develop a
general theory of experimental EPR-steering criteria, derive a number of criteria applicable to discrete as well
as continuous-variable observables, and study their efficacy in detecting that form of nonlocality in some
classes of quantum states. We show that previous versions of EPR-type criteria can be rederived within this
formalism, thus unifying these efforts from a modern quantum-information perspective and clarifying their
conceptual and formal origin. The theory follows in close analogy with criteria for other forms of quantum
nonlocality �Bell nonlocality and entanglement�, and because it is a hybrid of those two, it may lead to insights
into the relationship between the different forms of nonlocality and the criteria that are able to detect them.
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I. INTRODUCTION

In their seminal 1935 paper �1�, Einstein, Podolsky, and
Rosen �EPR� presented an argument which demonstrates
the incompatibility between the concepts of local causality1

and the completeness of quantum mechanics. Apart from
the foundational importance of that work, it had long-
reaching consequences �5�: it was the first time that physi-
cists clearly noticed the strange phenomena associated with
entanglement—the resource at the basis of modern quantum
information science.

The situation depicted by EPR is often referred to as the
“EPR paradox.” The authors themselves did not intend to
point out a true paradox, instead they argued that quantum
mechanics was an incomplete theory, that is, that it did not
give a complete description of reality. Schrödinger �6� seems
to have been the first to name the situation a “paradox,” as he
could not believe with EPR that quantum mechanics was
indeed incomplete but neither could he see a flaw in the
argument. In hindsight, we now know �since Bell �7�� that,
while the argument is sound, one of the premises—local
causality—is false. However, we will retain the historically
prevalent term paradox because we still do not have a fully
satisfactory understanding of the nature of quantum nonlo-
cality.

The original EPR paradox involved an example of an ide-
alized bipartite entangled state of continuous variables mea-
sured at the two subsystems. Later, Bohm �8� extended the
EPR paradox to a scenario involving discrete �spin� observ-
ables. The essence of both of these arguments involved per-
fect correlations, and therefore neither the original EPR para-
dox nor Bohm’s version could be directly tested in the
laboratory without additional assumptions. Criteria for the
experimental demonstration of the EPR paradox, which can

be used in situations with nonideal states, have been derived
for the continuous-variable scenario by Reid in 1989 �3� and
more recently for discrete systems by Cavalcanti et al.
�9,10�.

In another recent development �11�, Wiseman et al. intro-
duced a new classification of quantum nonlocality, a formal-
ization of the concept of steering introduced by Schrödinger
in 1935 �12� in response to the EPR paper. In that letter, the
authors claimed that any demonstration of the EPR paradox,
as proposed by Reid, is also a demonstration of steering.
While that claim was essentially correct, the proof proposed
there was incomplete, as we will see later in this paper. We
will provide the missing proof and further show that the
converse is also true: any demonstration of steering is also a
demonstration of the EPR paradox. In other words, the EPR
paradox and steering are equivalent notions of nonlocality.

In Ref. �11� Wiseman et al. showed that EPR-steering
constitutes a different class of nonlocality intermediate be-
tween the classes of quantum nonseparability and Bell non-
locality, with the distinction between these being explainable
as a matter of trust between different parties. Therefore, be-
sides its foundational interest, this classification could prove
important in the context of quantum communication and in-
formation. It would be thus desirable to devise criteria to
determine to which classes a given state �or a set of observed
correlations� belongs. For that purpose we will formulate and
develop the theory of EPR-steering criteria, defined as any
criteria which are sufficient to demonstrate EPR-steering ex-
perimentally. The theory will proceed in close analogy to the
theories of entanglement criteria �13–16� and of Bell in-
equalities �or Bell-nonlocality criteria� �7,17–27�.

The structure of the paper is as follows. In Sec. II we will
review some of the history and concepts surrounding the
EPR paradox and steering. The main purposes of this section
are to review the conceptual motivation for the formulation
and to put the steering criteria proposed here in context with
the relevant literature. In Sec. III we will review the three
classes of nonlocality, including the steering of Wiseman and
co-workers �11�, and argue in more detail than in previous
papers �28� as to why it provides the correct formalization of

1This is Bell’s terminology �2�. It is also commonly called local
realism �3�, which is arguably closer to EPR’s terminology. See
however Ref. �4� for a discussion of Einstein’s later writings on
locality and realism.
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Schrödinger’s concept. In Sec. IV we will introduce the for-
malism for derivation of general EPR-steering criteria. We
develop two broad classes of EPR-steering criteria: the mul-
tiplicative variance criteria and the additive convex criteria
�which includes linear EPR-steering inequalities as a special
case�. We show how the criteria in the existing literature can
be rederived as special cases within this modern unifying
approach. In Sec. V we will apply the criteria derived in Sec.
IV to some classes of quantum states, comparing their effec-
tiveness in experimentally demonstrating EPR-steering. We
consider both continuous variables �as in the original EPR
paradox� and spin-half systems �as in Bohm’s version�.

II. HISTORY AND CONCEPTS

A. The Einstein-Podolsky-Rosen argument

The EPR argument has been exhaustively commented in
the literature. However, since in this paper we will discuss a
mathematical formulation of it, it will be important to review
it in detail.

The essence of the 1935 argument of Einstein and co-
workers �1� is a demonstration of the incompatibility be-
tween the premises of local causality and the completeness
of quantum mechanics. EPR started the paper by making a
distinction between reality and the concepts of a theory, fol-
lowed by a critique of the operationalist position, clearly
aimed at the views advocated by Bohr, Heisenberg, and the
other proponents of the Copenhagen interpretation.

“Any serious consideration of a physical theory must take
into account the distinction between the objective reality,
which is independent of any theory, and the physical con-
cepts with which the theory operates. These concepts are
intended to correspond with the objective reality, and by
means of these concepts we picture this reality to ourselves.
In attempting to judge the success of a physical theory, we
may ask ourselves two questions: �1� ‘Is the theory correct?’
and �2� ‘Is the description given by the theory complete?’ It
is only in the case in which positive answers may be given to
both of these questions, that the concepts of the theory may
be said to be satisfactory” �1�.

Any theory will have some concepts which will be used to
aid in the description and prediction of the phenomena which
are their subject matter. In quantum theory, Schrödinger in-
troduced the concept of the wave function and Heisenberg
described the same phenomena with the more abstract matrix
mechanics. EPR argued that we must distinguish those con-
cepts from the reality they attempt to describe. One can see
the physical concepts of the theory as mere calculational
tools if one wishes, but it was those authors’ opinion that one
must be careful to avoid falling back into a pure operation-
alist position; the theory must strive to furnish a complete
picture of reality.

EPR follow the previous considerations with a necessary
condition for completeness:

EPR’s necessary condition for completeness. “Whatever
the meaning assigned to the term complete, the following
requirement for a complete theory seems to be a necessary
one: every element of the physical reality must have a coun-
terpart in the physical theory” �1�.

Soon afterward they note that this condition only makes
sense if one is able to decide what are the elements of the
physical reality. They did not attempt to define “element of
physical reality,” saying “the elements of the physical reality
cannot be determined by a priori philosophical consider-
ations but must be found by an appeal to results of experi-
ments and measurements. A comprehensive definition of re-
ality is, however, unnecessary for our purpose.” Instead they
provide a sufficient condition.

EPR’s sufficient condition for reality. “We shall be satis-
fied with the following criterion, which we regard as reason-
able. If, without in any way disturbing a system, we can
predict with certainty �i.e., with probability equal to unity�
the value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity”
�1�.

Later in the same paragraph it is made explicit that this
criterion is “regarded not as a necessary, but merely as a
sufficient, condition of reality.” This is followed by a discus-
sion to the effect that, in quantum mechanics, if a system is
in an eigenstate of an operator A with eigenvalue a, by this
criterion, there must be an element of physical reality corre-
sponding to the physical quantity A. “On the other hand,”
they continue, if the state of the system is a superposition of
eigenstates of A, “we can no longer speak of the physical
quantity A having a particular value.” After a few more con-
siderations, they state that “the usual conclusion from this in
quantum mechanics is that when the momentum of a particle
is known, its coordinate has no physical reality.” We are left
therefore, according to EPR, with two alternatives.

EPR’s dilemma. “From this follows that either �1� the
quantum-mechanical description of reality given by the wave
function is not complete or �2� when the operators corre-
sponding to two physical quantities do not commute the two
quantities cannot have simultaneous reality” �1�.

They justify this by reasoning that “if both of them had
simultaneous reality—and thus definite values—these values
would enter into the complete description, according to the
condition for completeness.” And in the crucial step of the
reasoning, “if then the wave function provided such a com-
plete description of reality it would contain these values;
these would then be predictable �our emphasis�. This not
being the case, we are left with the alternatives stated.” Bras-
sard and Méthot �29� �correctly� pointed out that strictly
speaking EPR should conclude that �1� or �2�, instead of
either �1� or �2�, since they could not exclude the possibility
that �1� and �2� could be both correct. However, this does not
affect EPR’s conclusion. It was enough for them to show that
�1� and �2� could not both be wrong, and therefore if one can
find a reason for �2� to be false, �1� must be true.2

The next section in EPR’s paper intends to find a reason
for �2� to be false, that is, to find a circumstance in which one

2The further conclusion of Brassard and Méthot that the EPR
argument is logically unsound is not based on this mistake, which
they acknowledge as irrelevant. Their conclusion is, in the present
authors’ opinion, based on a misinterpretation of EPR’s paper. They
read the following quote: “In quantum mechanics it is usually as-
sumed that the wave function does contain a complete description
of the physical reality �…�. We shall show however, that this as-
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can say that there are simultaneous elements of reality asso-
ciated to two noncommuting operators. They consider a
composite system composed of two spatially separated sub-
systems SA and SB which is prepared, by way of a suitable
initial interaction, in an entangled state of the type

��� = �
n

cn��n�A � �un�B, �1�

where the ��n�A denotes a basis of eigenstates of an operator,

say Ô1, of subsystem SA and �un�B denotes some �normalized
but not necessarily orthogonal� states of SB. If one measures

the quantity Ô1 at SA and obtains an outcome corresponding
to eigenstate ��k�A the global state is reduced to ��k�A
� �uk�B. If, on the other hand, one chooses to measure a non-

commuting observable Ô2, with eigenstates ��s�A, one should
instead use the expansion

��� = �
s

cs���s�A � �vs�B, �2�

where �vs�B represent, in general, another set of states of SB.
Now if the outcome of this measurement is, say, the one
corresponding to ��r�A, the global state is thereby reduced to
��r�A � �vr�B. Therefore, “as a consequence of two different
measurements performed upon the first system, the second
system may be left in states with two different wave func-
tions.” This is just what Schrödinger later termed steering
and we will return to that later. Now we enter the crucial
assumption of locality, justified by the fact that the systems
are spatially separated and thus no longer interacting.

EPR’s necessary condition for locality. “No real change
can take place in the second system in consequence of any-
thing that may be done to the first system” �1�.

Einstein et al. never explicitly used the term locality but
took this assumption for granted. Because of this we call this
a “necessary condition for locality,” as this is the most con-
servative reading of EPR’s reasoning: if they had explicitly
defined some assumption of locality, this would certainly be
an implication of it, but there is no reason �and no need� to
take it as a definition.

“Thus,” EPR concluded, “it is possible to assign two dif-
ferent wave functions to the same reality.” EPR could have
now simply concluded by noting that two different �pure�
states can in general assign unit probability �and thus an
element of reality, according to the locality assumption and
the sufficient condition for reality� to each of two noncom-
muting quantities, in contradiction of statement �2�; this
would imply, by way of EPR’s dilemma, that quantum me-
chanics is incomplete. Instead, they consider a specific ex-
ample, depicted in Fig. 1, where those different wave func-
tions are respective eigenstates of position and momentum.
Because they are canonically conjugate, this guarantees that

�un� is different from �vs� for every possible outcome n or s.
The paradox is thus guaranteed to be realized—one cannot
attempt to hide behind statistics. If the initial state was of
type

��xA,xB� = �
−�

�

eixAp/�e−ixBp/�dp , �3�

then if one measures momentum p̂A at SA and finds outcome
p, the reduced state of subsystem SB will be the one associ-
ated with outcome −p of p̂B. On the other hand, if one mea-
sures position x̂A and finds outcome x, the reduced state of SB
will be the one corresponding to outcome x of x̂B. By mea-
suring position or momentum at SA, one can predict with
certainty the outcome of the same measurement on SB. But
p̂B and x̂B correspond to noncommuting operators. EPR con-
clude from this the following:

“In accordance with our criterion of reality, in the first
case we must consider the quantity �p̂B� as being an element
of reality, in the second case the quantity �x̂B� is an element
of reality. But, as we have seen, both wave functions �corre-
sponding to −p and x� belong to the same reality” �1�.

In other words, by using the sufficient condition for real-
ity, the necessary condition for locality, and the predictions
for the entangled state under consideration, EPR concluded
that there must be elements of reality associated to a pair of
noncommuting operators. So horn �2� of EPR’s dilemma is
closed, leaving as the only alternative option �1�, namely,
that the quantum-mechanical description of physical reality
is incomplete.

In more modern terminology, the conclusion of EPR was
to infer the existence of a set of local hidden variables
�LHVs� underlying quantum systems which should be able
to reproduce the statistics. It is trivial to reproduce the statis-
tics of EPR’s example with LHVs even though that is not
possible with some entangled states, as later proved by Bell
�7�. Schrödinger arrived at a different conclusion from an
analysis of the paradox raised by EPR, as we will see in Sec.
II B.

In hindsight, as we now know that the premise of locality
is not justified, we can read EPR’s argument as demonstrat-
ing the incompatibility between the premises of locality, the
completeness of quantum mechanics, and some of its predic-
tions.

B. Schrödinger’s response: The concept of steering

EPR’s argument prompted an interesting response from
Schrödinger �6,12�. He also considered nonfactorizable pure
states describable by the wave function given by Eq. �1�.
Schrödinger, however, had of course developed the wave
function for atoms and believed that it gave a complete de-

sumption, together with the criterion of reality given above, leads to
a contradiction,” as stating that ¬�1�∧ �2�→ false. If that was the
correct formalization of the argument we would agree with their
conclusion. However, by “criterion of reality given above” EPR
clearly mean their “sufficient condition for reality,” not statement
�2�.

Alice Bob

XA , PA XB , PB

FIG. 1. �Color online� The EPR scenario. Alice and Bob are two
spatially separated observers who can perform one of two �position
or momentum� measurements available to each of them.

EXPERIMENTAL CRITERIA FOR STEERING AND THE … PHYSICAL REVIEW A 80, 032112 �2009�

032112-3



scription of a quantum system. So while he was not prepared
to accept EPR’s conclusion that quantum mechanics was in-
complete, neither could he see a flaw with their argument.
For this reason he termed the situation described by EPR a
paradox.

Clearly Schrödinger was also interested in implications
arising from composite quantum systems described by non-
factorizable pure states. He described this situation, coining a
famous term, as follows: “If two separated bodies, each by
itself known maximally, enter a situation in which they in-
fluence each other and separate again, then there occurs regu-
larly… �an� entanglement of our knowledge of the two bod-
ies.” �6�.

Having defined entanglement, Schrödinger then defined
the process of disentanglement which occurs when a nonde-
generate observable is measured on one body: “After estab-
lishing one representative by observation, the other one can
be inferred simultaneously… this procedure will be called
the disentanglement.” This leads us directly to the EPR para-
dox, as Schrödinger describes it:

“�EPR called attention� to the obvious but very discon-
certing fact that even though we restrict the disentangling
measurements to one system, the representative obtained for
the other system is by no means independent of the particu-
lar choice of observations which we select for that purpose
and which by the way are entirely arbitrary” �6�.

Schrödinger describes this ability to affect the state of the
remote subsystem as steering:

“It is rather discomforting that the theory should allow a
system to be steered or piloted into one or the other type of
state at the experimenter’s mercy in spite of his having no
access to it” �6�.

EPR’s example concerning position and momentum was
recast in the context of steering as the following:

“Since I can predict either x1 or p1 without interfering
with system No. 1 and since system No. 1, like a scholar in
examination, cannot possibly know which of the two ques-
tions I am going to ask it first: it so seems that our scholar is
prepared to give the right answer to the first question he is
asked anyhow. He must know both answers; which is an
amazing knowledge” �6�.

The remainder of Schrödinger’s paper is a generalization
of steering to more than two measurements:

“�System No. 1� does not only know these two answers
but a vast number of others and that with no mnemotechnical
help whatsoever, at least none that we know of” �6�.

By “mnemotechnical help” Schrödinger presumably
means a cheat sheet �to use his scholar analogy�. That is, a
set of LHVs that determine the measurement results. Thus,
unlike EPR, Schrödinger explicitly rejected LHVs as an ex-
planation of steering. Perhaps because he had performed ex-
plicit calculations generalizing EPR’s example �which can be
explained trivially using LHVs�, he recognized steering as “a
necessary and indispensable feature” �30� of quantum me-
chanics. We now know, thanks to Bell’s theorem, that
Schrödinger’s intuition was correct: there is no possible local
hidden-variable model �or local mnemotechnical help� to ex-
plain the correlations between measurement outcomes for
certain entangled states �31�.

Like EPR, Schrödinger was troubled by the implications
of steerability of entangled states for quantum theory. Unlike

EPR, however, he saw the resolution of the paradox lying in
the incorrectness of the predictions of quantum mechanics.
That is, he was “not satisfied about there being sufficient
experimental evidence for” steering in nature �30�. This
raises the obvious question: what evidence would have con-
vinced Schrödinger? The pure entangled states he discussed
are an idealization, so we cannot expect ever to observe pre-
cisely the phenomenon he introduced. On the other hand,
Schrödinger was quite explicit that a separable but classi-
cally correlated state which allows “determining the state of
the first system by suitable measurement of the second or
vice versa” �30� could never exhibit steering. For this situa-
tion, he says that “it would utterly eliminate the experiment-
er’s influence on the state of that system which he does not
touch.” �30�. Thus it is apparent that by steering Schrödinger
meant something that could not be explained by Alice simply
finding out which state Bob’s system is in, out of some pre-
defined ensemble of states. Following this reasoning leads to
the general definition of steering as presented in Ref. �11�.
We return to this concept in Sec. III.

C. Bohm’s version

Although making reference to a general entangled state,
the original EPR argument used the specific case of a
continuous-variable state for its final �and crucial� part. In his
1951 textbook �8�, Bohm presented a discussion of the EPR
paradox in a modified scenario involving two entangled spin-
1/2 particles. Although trivial in hindsight, this extension had
a fundamental importance. It was the scenario used by Bell
in the proof of his now famous theorem �7� and for most of
the subsequent discussions of Bell inequalities �a Bell-type
inequality directly applicable to continuous variables has
only recently been derived �27�� and was instrumental for
our present understanding of entanglement and particularly
for its applications in quantum information processing.

In Bohm’s version the system of interest is a molecule
containing two spin-1/2 atoms in a singlet state, in which the
total spin is zero,

��s� = �z+�A � �z−�B − �z−�A � �z+�B. �4�

Here �z�� represent the �1 /2 eigenstates of the spin projec-
tion operator along the z direction, Sz. Compare this state
with Eq. �1� used in the EPR argument. If Sz is measured on
system A and the outcome corresponding to �z+�A ��z−�A� is
obtained, the state of subsystem B is projected into �z−�B
��z+�B�. Thus, one predicts an element of reality for the z
component of the spin of the second atom. But the same state
can be written in the basis of eigenstates of another spin
projection, say Sx,

��s� = �x+�A � �x−�B − �x−�A � �x+�B. �5�

Similarly, the x component of the spin of the first atom could
be measured instead, allowing inference of an element of
reality associated with the x component of spin for the sec-
ond atom. With this mapping, the rest of the argument fol-
lows in analogy with EPR’s.

Bohm’s version of the EPR paradox is conceptually ap-
pealing, but �in his 1951 textbook at least� he did not present
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it as an argument for the incompleteness of quantum theory
�as EPR did�. Instead, he used it to argue that a complete
description of nature does not need to contain a one-to-one
correspondence between elements of reality and the math-
ematical description provided by the theory. Bohm defended,
in 1951, the interpretation that the quantum state represents
only “potentialities” of measurement results, which actually
occur only when a system interacts with an appropriate ap-
paratus. It is curious to find that already in 1952 Bohm must
have found this interpretation wanting since he then devel-
oped his famous nonlocal hidden-variable interpretation of
quantum mechanics �32,33�, where there is such a one-to-
one correspondence.

As the original continuous-variable example remained un-
realizable for decades, several early experiments followed
Bohm’s proposal, such as Bleuler and Bradt �1948� �34�, Wu
and Shaknov �1950� �35�, and Kocher and Commins �1967�
�36�. All of these suffered from low detection efficiencies
and had no concern with causal separation, however, making
their interpretation debatable.

D. The EPR-Reid criterion

While the EPR argument was logically sound, one could
block its conclusion by rejecting those statistical predictions
required to formulate it. As we have discussed in Sec. II B,
Schrödinger seems to have found this an appealing solution.
This move is particularly easy to make since the necessary
predictions are of perfect correlations, unobtainable in prac-
tice due to unavoidable inefficiency in preparation and detec-
tion of real physical systems. This problem was considered
by Furry already in 1936 �37� but experimentally useful cri-
teria for the EPR paradox were only proposed in 1989 by
Reid �3�, which we will discuss in detail later in this section.
The notation and terminology will closely follow that of a
recent review on the EPR paradox �38�. The essential differ-
ence in the derivation of the EPR-Reid criteria and the origi-
nal EPR argument is in a modification of the sufficient con-
dition for reality.3 This could be stated as the following.

Reid’s extension of EPR’s sufficient condition of reality. If,
without in any way disturbing a system, we can predict with
some specified uncertainty the value of a physical quantity,
then there exists a stochastic element of physical reality
which determines this physical quantity with at most that
specific uncertainty.

The scenario considered is the same as the one for the
EPR paradox above, as depicted in Fig. 1, but one does not
need a state which predicts the perfect correlations consid-
ered by EPR. Instead, the two experimenters, Alice and Bob,
can measure the conditional probabilities of Bob finding out-
come xB in a measurement of x̂B given that Alice finds out-
come xA in a measurement of x̂A, i.e., P�xB �xA�. Similarly
they can measure the conditional probabilities P�pB � pA� and
the unconditional probabilities P�xA�, P�pA�. We denote by
�2�xB �xA�, �2�pB � pA� the variances of the conditional distri-
butions P�xB �xA�, P�pB � pA�, respectively. Based on a result

xA, Alice can make an estimate of the result for Bob’s out-
come xB. Denote this estimate xB

est�xA�. The average inference
variance of xB given estimate xB

est�xA� is defined as

�inf
2 xB 	 
�xB − xB

est�xA��2� =� dxAdxBP�xA,xB��x − xB
est�xA��2.

�6�

Note that this average inference variance is minimized when
the estimate is just the expectation value of xB given xA, i.e.,
the mean of the distribution P�xB �xA� �38�. Therefore the
optimal �or minimum� inference variance of xB �pB� given a
measurement x̂A �x̂B� is given by

�min
2 xB = min

xB
est

��inf
2 xB� =� dxAdxBP�xA��2�xB�xA� , �7�

�min
2 pB = min

pB
est

��inf
2 pB� =� dpAdpBP�pA��2�pB�pA� . �8�

Reid showed, by use of the sufficient condition of reality
above, that since Alice can, by measuring either position x̂A
or momentum p̂B, infer with some uncertainty �infxB

=�inf
2 xB or �infpB=�inf

2 pB the outcomes of the correspond-
ing experiments performed by Bob; and since by the locality
condition of EPR her choice cannot affect the elements of
reality of Bob, then there must be simultaneous stochastic
elements of reality which determine x̂B and p̂B with at most
those uncertainties. Now by Heisenberg’s uncertainty prin-
ciple �HUP�, quantum mechanics imposes a limit to the pre-
cision with which one can assign values to observables cor-
responding to noncommuting operators such as x̂ and p̂. In
appropriately rescaled units the relevant HUP reads �x�p
�1. Therefore, if quantum mechanics is complete and the
locality condition holds, by use of the extended sufficient
condition of reality and EPR’s necessary condition for com-
pleteness, the limit with which one could determine the av-
erage inference variances above is

�infxB�infpB � 1. �9�

This is the EPR-Reid criterion. Violation of that criterion
signifies the EPR paradox and has been experimentally dem-
onstrated in continuous-variable quantum optics experiments
with quadratures �39–43� and actual position-momentum
measurements �44�. While these were performed with high
detection efficiency, none of these experimental demonstra-
tions have been able to achieve causal separation between
the measurements. For a detailed review see �38�.

E. Recent developments

Cavalcanti and Reid �9� recently showed that a larger
class of quantum uncertainty relations can be used to derive
EPR inequalities. For example, from the uncertainty relation
�2x+�2p�2, which follows from �x�p�1, one can derive,
in analogy with Sec. II D, the EPR criterion,

3Reid’s original paper did not explicitly include this assumption,
which was implicit in the logic.
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�inf
2 xB + �inf

2 pB � 2. �10�

Using instead the spin uncertainty relation �Jx�Jy �
1
2 �
Jz��,

one can obtain the EPR criterion,

�infJx
B�infJy

B �
1

2�
Jz

A

P�Jz
A��
Jz

B�Jz
A� , �11�

useful for demonstration of Bohm’s version of the EPR para-
dox. Here 
Jz

B�Jz
A is the mean of the conditional probability

distribution P�Jz
B �Jz

A�. A weaker version of Eq. �11�,

�infJx
B�infJy

B �
1
2 �
Jz

B�� , �12�

was used by Bowen et al. �43� to demonstrate an EPR para-
dox in the continuum limit for optical systems, with Stokes
operators playing the role of spin operators, in states where

Jz

B��0.
An inequality for demonstration of an EPR-Bohm para-

dox has also been derived using an uncertainty relation based
on sums of observables. The uncertainty relation �2Jx
+�2Jy +�2Jz� 
j�, where 
j� is the average total spin, has
been used in �15� for derivation of separability criteria and
recently in �10� to derive the following EPR criterion:4

�inf
2 Jx

B + �inf
2 Jy

B + �inf
2 Jz

B � 
jB� . �13�

All of the above EPR criteria will be rederived from a uni-
fying perspective in Sec. IV and shown to be special cases of
broader classes of EPR-steering criteria.

III. LOCALITY MODELS. EPR-STEERING

In �11�, a distinction was made between three locality
models, the failure of each corresponding to three strictly
distinct forms of nonlocality. To define those we will first
establish some notation.

Let a�M	 and b�M
 represent possible choices of
measurements for two spatially separated observers Alice
and Bob, with respective outcomes denoted by the upper-
case variables A�Oa and B�Ob, respectively. Here we fol-
low the case convention introduced by Bell �7�. Alice and
Bob perform measurements on pairs of systems prepared by
a reproducible preparation procedure c. We denote the set of
ordered pairs M	��a ,b� :a�M	 ,b�M
� a measurement
strategy. The joint probability of obtaining outcomes A and
B upon measuring a and b after preparation c is denoted by

P�A,B�a,b,c� . �14�

The preparation procedure c represents all those variables
which are explicitly known in the experimental situation.
The joint probabilities for all outcomes of all pairs of observ-
ables in a measurement strategy given a preparation proce-
dure define a phenomenon. Following Bell �45�, we represent
by ��� any variables associated with events in the union of
the past light cones of a ,A ,b ,B which are relevant to the
experimental situation but are not explicitly known and

therefore not included in c. In this sense they may be deemed
hidden variables, but our usage will not imply that they are
necessarily hidden in principle �although in particular theo-
ries they may be�.

A. Bell nonlocality

Given that notation, it is said that a phenomenon has a
local hidden variable �LHV or Bell local or locally causal�
model if and only if �iff� for all a�M	, A�Oa, b�M
,
B�Ob, there exist �i� a probability distribution P�� �c� over
the hidden variables, conditional on the information about
the preparation procedure c,5 and �ii� arbitrary probability
distributions P�A �a ,c ,�� and P�B �b ,c ,��, which reproduce
the phenomenon in the form

P�A,B�a,b,c� = �
�

P���c�P�A�a,c,��P�B�b,c,�� . �15�

Any constraint on the set of possible phenomena that can
be derived from Eq. �15� is called a Bell inequality. A state
for which all phenomena can be given a LHV model, when
the sets M	 and M
 include all observables on the Hilbert
spaces of each corresponding subsystems, is called a Bell-
local state. If a state is not Bell local it is called Bell nonlo-
cal.

B. Entanglement

Similarly, it is said that a phenomenon has a quantum
separable model or separable model for simplicity iff for all
a�M	, A�Oa, b�M
, and B�Ob, there exist P�� �c� as
above and probability distributions PQ�A �a ,c ,�� and
PQ�B �b ,c ,�� such that

P�A,B�a,b,c� = �
�

P���c�PQ�A�a,c,��PQ�B�b,c,�� ,

�16�

where now PQ�A �a ,c ,�� represent probability distributions
for outcomes A which are compatible with a quantum state.
That is, given a projector a

A associated to outcome A of
measurement a and given a quantum density operator
�	�c ,�� for Alice’s subsystem �as a function of c and ��,
these probabilities are determined by

PQ�A�a,c,�� = Tr�a
A�	�c,��� .

Similar definitions apply for Bob’s subsystem.
Any constraint on the set of possible phenomena that can

be derived from assumption �16� is called a separability cri-
terion or entanglement criterion. A state for which all phe-
nomena can be given a separable model, when the sets M	

and M
 include all observables on the Hilbert spaces of each
corresponding subsystems, is called a separable state. A state
which is not separable is called nonseparable or entangled.

4More precisely, inequality �57� was presented in that work. The
following follows with the substitution explained below �Eq. �57��.

5In general one could have a continuum of hidden variables, and
Eq. �15� can be modified in the obvious way. No generality is
gained with that procedure, though, so we use the sum notation for
simplicity.
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This definition is of course equivalent to the usual definition
involving product states since if there is a separable model
for all possible measurement settings, then the joint state can
be given as a convex combination of product states,

� = �
�

P���c��	�c,�� � �
�c,�� . �17�

Conversely, if the state is given as a convex combination of
product states of form �17�, the joint probabilities for each
pair of measurements are given straightforwardly by Eq.
�16�.

C. EPR-steering

Strictly intermediate between the LHV and separable
models is the local hidden-state �LHS� model for Bob. This
was argued in �11� to be the correct formalization of non-
steering correlations. That is, violation of a LHS model for
Bob is a demonstration of EPR-steering, the concept intro-
duced by Schrödinger to refer to the situation depicted in the
EPR paradox. Following the previous notations, we say that
a phenomenon has a no-Bob-steering model or a LHS model
for Bob �or LHS model for short�6 iff for all a�M	, A
�Oa, b�M
, B�Ob there exist P�� �c�, P�A �a ,c ,��, and
PQ�B �b ,c ,��, defined as before such that

P�A,B�a,b,c� = �
�

P���c�P�A�a,c,��PQ�B�b,c,�� . �18�

In other words, in a LHS model Bob’s outcomes are de-
scribed by some quantum state, but Alice’s outcomes are free
to be arbitrarily determined by the variables �. We will call
any constraint on the set of possible phenomena that can be
derived from Eq. �18� an EPR-steering criterion or EPR-
steering inequality. A state for which all phenomena can be
given a LHS model, when the sets M	 and M
 include all
observables on the Hilbert spaces of each corresponding sub-
systems, is called an EPR-steerable state. A state which is
not steerable is called non-EPR-steerable.

D. Foundational relevance of EPR-steering

As we have seen in Sec. II B, Schrödinger was “discom-
forted” with the possibility of Alice being able to “steer”
Bob’s system “in spite of �her� having no access to it.” In
other words, the strange phenomenon revealed by the EPR
paradox which he termed steering was the possibility that
Alice could prepare, simply by different choices of measure-
ment on her own system, different ensembles of states for
Bob which are incompatible with a LHS model, that is,
which cannot be explained as arising from a coarse graining
from a pre-existing ensemble of local quantum states for
Bob. This is an inherently asymmetric concept, thus the
asymmetry in the formalization given by Eq. �18�.

For each choice of measurement a, Alice will prepare for
Bob one state out of an ensemble Ea	��̃a

A :A�Oa�. If the
state of the global system is Wc, the �un-normalized� reduced
state for Bob’s subsystem corresponding to outcome A will
be

�̃a
A 	 Tr	�Wc�a

A
� I�� . �19�

Evidently, the reduced density matrix for Bob is independent
of Alice’s choice, �
=Tr	�Wc�=�A �̃a

A for all a—otherwise
Alice could send faster-than-light signals to Bob.

In Ref. �11� it was shown that for pure states Wc, en-
tangled states, steerable states, and Bell-nonlocal states are
all equivalent classes. The difficulty �and interest� comes
when talking about mixed states. In this case, one certainly
does not want to consider it as an example of steering when
the ensembles prepared by Alice are just different coarse
grainings of some underlying ensemble of states. After all,
these ensembles can be reproduced if Bob’s local state is
simply classically correlated with some variables available to
Alice. These correlations would hardly constitute a puzzle
for Schrödinger, as we have argued in Sec. II B.

Thus, Wiseman and co-workers �11� considered
EPR-steering to occur iff it is not the case that there exists
a decomposition of Bob’s reduced state, �


=��P�� �c��
�c ,��, such that for all a�M	, A�Oa there
exists a stochastic map P�A �a ,c ,�� which allows all states in
the ensembles Ea to be reproduced as

�̃a
A = �

�

P�A�a,c,��P���c��
�c,�� . �20�

This definition leads directly to the formulation of a no-
steering model �Eq. �18��. According to the reduced state
�Eq. �20��, the probability for outcome B of Bob’s measure-
ment b, given an outcome A of Alice’s measurement a, is
given by P�B �A ,a ,b ,c�=Tr�b

B�̃a
A� / P�A �a ,b ,c�, where the

denominator is introduced for normalization. Therefore the
joint probability becomes

P�A,B�a,b,c� = Tr�b
B�̃a

A�

= �
�

P�A�a,c,��P���c�Tr�b
B�
�c,���

= �
�

P���c�P�A�a,c,��PQ�B�b,c,�� , �21�

as in Eq. �18�. The converse can also be trivially shown.
One could propose that the definition of EPR-steering

should take into account the fact that Alice’s state is also
describable by quantum mechanics. It can indeed be argued
�46� that the conjunction of the assumptions of local causal-
ity and the completeness of quantum mechanics �for both
Alice and Bob� lead directly to a quantum separable model,
and in that sense EPR’s conclusion that quantum mechanics
is incomplete �assuming local causality� could have been
reached by simply pointing out the predictions from any en-
tangled state. However, we are interested in capturing the
phenomenon which is central to EPR’s actual argument and
in Schrödinger’s generalization of this phenomenon and
hence we are led to the asymmetry in the definition. This is

6It would perhaps be more logical to use the term LHV/LHS model
to denote no steering and the other types of nonlocality by LHV and
LHS models, respectively, but we will use the simpler terminology
introduced in Ref. �11�, as we believe there is no risk of confusion.

EXPERIMENTAL CRITERIA FOR STEERING AND THE … PHYSICAL REVIEW A 80, 032112 �2009�

032112-7



the phenomenon that Einstein famously described as
“spooky action at a distance” �47�.

As we will see, this formalization also leads precisely to
existing EPR criteria, putting in a modern context the phe-
nomena that have already been discussed in the literature as
generalizations of the EPR paradox. Following Einstein’s in-
formal turn of phrase, we could even call them tests of
spooky action at a distance.

E. EPR-steering as a quantum information task

Wiseman and co-workers �11,28� showed that the distinc-
tion between the three forms of nonlocality above can be
formulated in a modern quantum information perspective as
a task. Suppose a third party, Charlie, wants proof that Alice
and Bob share an entangled state. Alice and Bob are not
allowed to communicate, but they can share any amount of
classical randomness. If Charlie trusts both Alice and Bob,
he would be convinced iff Alice and Bob are able to demon-
strate entanglement via violation of a separable model �Eq.
�16��. If Charlie trusts Bob but not Alice, he would be con-
vinced they share entanglement iff they are able to demon-
strate EPR-steering by violating the local hidden-state model
for Bob �Eq. �18��. If, on the other hand, Charlie trusts nei-
ther of them, Alice and Bob would have to demonstrate Bell
nonlocality, violating a local hidden-variable model �Eq.
�15��. The reason is that, in the absence of trust, it is possible
for the weaker forms of nonlocality to be reproduced with
the use of classical resources.

IV. EXPERIMENTAL CRITERIA FOR EPR-STEERING

The above definition of EPR-steering invites the follow-
ing question: what are the analogues for EPR-steering of Bell
inequalities or entanglement criteria, i.e., how can one derive
what we have termed EPR-steering criteria above? In Refs.
�11,28� the emphasis was on the EPR-steering capabilities as
a property of states, and an analysis was made of how the
steerability of some families of quantum states depends on
parameters which specify the states within those families.
This was necessary and useful for proving the strict distinc-
tion between entangled EPR-steerable and Bell-nonlocal
states. In an experimental situation, however, this kind of
analysis is insufficient. Quantum state tomography could be
used to determine those parameters, but what if the prepared
state is only approximately a member of the studied family?
What about states which are not even approximately mem-
bers of any useful class? An experimental EPR-steering cri-
terion should not depend on any assumption about the type
of state being prepared but only on the measured data. Com-
pare this situation with that of Bell inequalities, where a
violation represents failure of a LHV model, independently
of any assumption about the state being measured.

Another important issue is the relation between the EPR-
type criteria existing in the literature and the above formal-
ization of EPR-steering. In �11� Wiseman et al. provided a
partial answer by showing that for a class of Gaussian states
the EPR-Reid criterion is violated if and only if the state is
steerable by Gaussian measurements. However, the EPR-

Reid criterion is valid for arbitrary states, and therefore their
conclusion that it is merely a special case of EPR-steering
was not entirely justified. Furthermore, the relation between
this formalization of EPR-steering and the other existing
EPR-type criteria cited in Sec. II E was not discussed. Here
we will show that not only the EPR-Reid criterion but other
existing EPR-type criteria are indeed special cases of EPR-
steering. We will rederive those inequalities within this mod-
ern approach and also derive a number of criteria for EPR-
steering.

There is an important difference between Bell inequalities
and EPR-steering criteria. Since the LHV model �Eq. �15��
does not depend on the Hilbert space structure of quantum
mechanics, Bell inequalities are independent of the actual
measurements being performed. To be clear, the violation of
the inequality will certainly depend on which measurements
are performed �as well as the state being prepared�, but the
derivation of the inequality itself is independent of that in-
formation. In a Bell inequality the measurements are treated
as “black boxes” where the only important feature is �usually
but see �27�� their number of outcomes. In a LHS model, on
the other hand, Bob’s subsystem is treated as a quantum
state, and therefore it is important in general to specify the
actual quantum operators corresponding to Bob’s measure-
ment choices: just as in an entanglement criterion this infor-
mation is in general required for both Alice and Bob.7

The fact that in a no-steering model Bob’s probabilities
are constrained to be compatible with a quantum state sug-
gests the use of quantum uncertainty relations as ingredients
in the derivation of criteria for EPR-steering. A connection
between uncertainty relations and EPR criteria has been
pointed out by two of the present authors in �9� �although
using the logic of the EPR-Reid criteria and not the present
formalization of EPR-steering� and that between uncertainty
relations and separability criteria has been shown in �15�
among others.

We identify two main types of EPR-steering criteria: the
multiplicative variance criteria, which include the EPR-Reid
criteria and are based on product uncertainty relations in-
volving variances of observables, and the additive convex
criteria, based on uncertainty relations which are sums of
convex functions.

A. Existence of linear EPR-steering criteria

An interesting special case of additive convex criteria will
be the linear criteria, based on linear functions of expecta-
tion values of observables, and which can therefore be writ-
ten as the expectation value of a single Hermitian EPR-
steering operator S.

In general, for any �finite-dimensional� quantum state W,
if the state in question is steerable, then there exists a linear
criterion that would demonstrate EPR-steering for that phe-
nomenon.

7The qualification “in general” here is needed because a Bell in-
equality is an EPR-steering and an entanglement criterion. The fail-
ure of a LHV model implies the failure of a LHS model and of a
separable model. However, in general a Bell inequality is inefficient
as a criterion for these weaker forms of nonlocality.
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The proof is as follows. If the state is steerable, then by
definition there exists a measurement strategy which can
demonstrate steering with that state. Let M be that measure-
ment strategy. Consider the set P�M� of all possible phe-
nomena for M, i.e., the set of all possible sets of joint prob-
abilities P�A ,B �a ,b� for all pair of outcomes �A ,B� of each
pair of measurements �a ,b��M. Let M be the number of
possible settings for the pair of measurements performed by
Alice and Bob �i.e., the number of elements in M� and let O
be the number of possible pairs of outcomes �A ,B� for each
pair of measurements.

A phenomenon is defined by specifying the MO prob-
abilities for all possible outcomes of all measurements in the
measurement strategy. We represent those probabilities as an
ordered set, and thus an element P of P�M� is associated to
a point in RMO, where the joint probability for each
�A ,B ,a ,b� is associated to a coordinate xab

AB of RMO. For
example, in a phenomenon with two measurements per
site with two outcomes each, M =O=4 and the number of
probabilities to be specified is MO=16. Denoting those mea-
surements by a� �a1 ,a2� and the outcomes of each measure-
ment by A� �0,1� �and similarly for Bob�, these probabili-
ties would be represented by the vector P
= �P�0,0 �a1 ,b1� , P�0,1 �a1 ,b1� , . . . , P�1,1 �a2 ,b2��.

Now consider two phenomena associated to P1 and P2
and take a convex combination of the two vectors, i.e.,

P3 = pP1 + �1 − p�P2, �22�

where 0� p�1. If P1 and P2 have a no-steering model, then
P3 also does. The proof is simple: by assumption we can
write the joint probabilities given by P1 and P2 in form �18�.
Simple manipulation shows that Eq. �22� can also be written
in form �18�, with P3���= pP1���+ �1− p�P2���. In other
words, the set of phenomena NS�M��P�M� which do not
demonstrate EPR-steering is a convex set. �The same is also
true, of course, for the other forms of nonlocality.�

Now consider a phenomenon Ps�P�M� which does
demonstrate EPR-steering. By definition it is not in NS�M�.
Since, as shown above, that is a convex set, we can invoke a
well-known result from convex analysis: there exists a plane
in RMO separating Ps from points in NS�M�. Denote by n̂ a
unit vector normal to this plane pointing away from NS�M�
and by P0 an arbitrary point on the plane. Then all points
Ps̄�NS�M� satisfy

n̂ · �Ps̄ − P0� � 0. �23�

Inequality �23� is an EPR-steering criterion. If for an arbi-
trary point Pc�P�M�, n̂ · �Pc−P0��0, then Pc�NS and so
this phenomenon demonstrates EPR-steering. We can
decompose Pc=�A,B,a,b
a

Ab
B�cêab

AB, where 
a
Ab

B�c
	 P�A ,B �a ,b ,c�=Tr�Wc�a

A
� b

B�� and �êab
AB� is an ortho-

normal basis of RMO. Decomposing n̂=�A,B,a,b nab
ABêab

AB and
denoting d	−n̂ ·P0, Eq. �23� becomes �A,B,a,b nab

AB
a
Ab

B�c
+d�0. Defining a Hermitian operator S
	�A,B,a,b nab

ABa
Ab

B+dI we can rewrite the EPR-steering cri-
terion �23� as

Tr�WcS� � 0, �24�

which completes the proof.
However, this is merely an existence proof. It is quite a

different matter to produce the EPR-steering operator S
which will demonstrate EPR-steering for a given state Wc.
This is analogous to the situation with Bell inequalities and
entanglement, where one can prove the existence of a Bell
operator or entanglement witness for states which can dem-
onstrate the corresponding form of nonlocality but cannot
easily produce such operators beyond some simple cases.

Furthermore, in the case of EPR-steering �and also of en-
tanglement� the matter is even more complicated: there is an
infinite �and continuous� number of extreme points in the
convex set of phenomena which allow a LHS model �or a
separable model�—the set is not a polytope. Therefore even
for a finite measurement strategy, an infinite number of linear
inequalities are needed to fully specify the set. So in general
nonlinear criteria may be more useful, and we will consider
that general case in this paper.

In the following sections we will first derive the class of
multiplicative variance criteria, which will reduce to the
well-known EPR-Reid criterion as a special case. Then we
will introduce the quite general class of additive convex cri-
teria, a special case of which will be the linear criteria.

B. Multiplicative variance criteria

Following �3�, we consider a situation where Alice tries to
infer the outcomes of Bob’s measurements through measure-
ments on her subsystem. We denote by Best�A� Alice’s esti-
mate of the value of Bob’s measurement b as a function of
the outcomes of her measurement a. As in Sec. II D, the
average inference variance of B given estimate Best�A� is
defined by

�inf
2 B = 
�B − Best�A��2� . �25�

Here the average is over all outcomes B, A. Since for a given
A, the estimate that minimizes 
�B−Best�A��2� is just the
mean 
B�A of the conditional probability P�B �A�, the optimal
estimate for each A is just Best�A�= 
B�A. We denote thus the
optimal inference variance of B by measurement of a as

�min
2 B = �

A,B
P�A,B��B − 
B�A�2

= �
A

P�A��
B

P�B�A��B − 
B�A�2

= �
A

P�A��2�B�A� , �26�

where �2�B �A� is the variance of B calculated from the con-
ditional probability distribution P�B �A�. As explained above,

�inf
2 B � �min

2 B �27�

for all choices of Best�A�. This minimum is optimal, but not
always experimentally accessible, in EPR experiments since
it requires one to be able to measure conditional probability
distributions.

We assume that the statistics of experimental outcomes of
Alice and Bob can be described by a LHS model, i.e., by a
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model of form �18� �omitting henceforth, for notational sim-
plicity, the preparation c and the measurement choices a ,b
from the conditional probabilities P�A ,B �a ,b ,c�, etc.�,

P�A,B� = �
�

P���P�A���PQ�B��� . �28�

Assuming this model, the conditional probability of B given
A is

P�B�A� = �
�

P���P�A���
P�A�

PQ�B��� = �
�

P���A�PQ�B��� .

�29�

As in Sec. III, PQ�B ���=Tr�b
B��� represents the probability

for B predicted by a quantum state ��. It is a general result
that if a probability distribution has a convex decomposition
of the type P�x�=�yP�y�P�x �y�, then the variance �2x over
the distribution P�x� cannot be smaller than the average of
the variances over the component distributions P�x �y�, i.e.,
�2x��yP�y��2�x �y�. Therefore, by Eq. �29�, the variance
�2�B �A� satisfies

�2�B�A� � �
�

P���A��Q
2 �B��� , �30�

where �Q
2 �B ��� is the variance of PQ�B ���. Using this result,

we can derive a bound for Eq. �26�,

�min
2 B � �

A,�
P�A,���Q

2 �B��� = �
�

P����Q
2 �B��� . �31�

Suppose Bob’s set of measurements consists of M


= �b1 ,b2 ,b3�, with respective outcomes labeled by B1 ,B2 ,B3.
Alice measures M	= �a1 ,a2 ,a3�. Suppose the corresponding

quantum observables for Bob, �b̂1 , b̂2 , b̂3�, obey the commu-

tation relation �b̂1 , b̂2�= ib̂3. The outcomes must then satisfy
the product uncertainty relation,

�Q�B1����Q�B2��� �
1
2 �
B3��� , �32�

where �Q�Bi ��� and 
Bi�� are the standard deviation and the
average of Bi in the quantum state �, respectively.

We will use the uncertainty relation above and
the Cauchy-Schwarz �CS� inequality to obtain an
EPR-steering criterion. The CS inequality states that,
for two vectors u and v, �u��v�� �u ·v�. Define u
= �P��1��Q�B1 ��1��, �P��2��Q�B1 ��2� , . . .� and v
= �P��1��Q�B2 ��1� ,P��2��Q�B2 ��2� , . . .�. Then by Eq.
�31�

�minB1 = �min
2 B1 � �u� ,

�minB2 = �min
2 B2 � �v� . �33�

We thus obtain, from Eq. �33�, the CS inequality and the
uncertainty relation �32�,

�minB1�minB2 � �u��v� � �u · v� = �
�

P����Q�B1����Q�B2���

�
1

2�
�

P����
B3��� . �34�

Here we denote by 
B�� the expectation value of B calculated
from PQ�B ���. Using again Eq. �29� and the fact that f�x�
= �x� is a convex function, that is, that �x P�x��x�
� ��x P�x�x�, we obtain a bound for the last term,

�
�

P����
B3��� = �
A3,�

P�A3,���
B3���

� �
A3

P�A3���
�

P���A3�
B3���
= �

A3

P�A3��
B3�A3
� 	 �
Bi��inf. �35�

Using now Eq. �27�, we obtain, from Eqs. �34� and �35� the
EPR-steering criterion,

�infB1�infB2 �
1
2 �
B3��inf. �36�

This inequality was introduced in �9�, but its derivation was
based on the conceptual scheme of the EPR-Reid criterion.
Here we have shown that it follows directly from the LHS
model �Eq. �28��. Its experimental violation implies the fail-
ure of the LHS model to represent the measurement statis-
tics, that is, it is an experimental demonstration of EPR-
steering. It is important to note that the choices of
measurement a1 ,a2 ,a3 used by Alice to infer the values of
the corresponding measurements of Bob are arbitrary in this
derivation; the specific quantum observables âi played no
role in the above because in a LHS model Alice’s probabili-
ties are allowed to depend arbitrarily on the variables �. In
an experimental situation, one should choose, of course,
those which can maximize the violation of Eq. �36�.

One can also derive criteria involving collective variances
such as �2�gkAk+Bk�, where gk is a real number. These mea-
surements are often simpler to be realized as they do not
require the full conditional distributions. These are just the
average inference variances �inf

2 Bk= 
�Bk−Best�Ak��2� with a
linear estimate Best�Ak�=−gkAk+ 
Bk+gkAk�, as shown in
�38�. We can therefore straightforwardly derive, from Eq.
�36�,

��g1A1 + B1���g2A2 + B2� �
1
2 �
B3��inf, �37�

keeping in mind that the measurements for Alice and the
values of gk are arbitrary and should be chosen so as to
optimize the violation of the inequality.

Examples

The first example of a multiplicative variance criterion is
the original EPR-Reid criterion �3�, reviewed in Sec. II D. It
was developed for continuous variables observables x̂B and
p̂B, which obey an uncertainty relation �Q�xB ����Q�pB ���
�1, arising from the commutation relation �in appropriate
units� �x̂B , p̂B�=2i. Substituting B1=xB, B2= pB, and B3=2 in
Eq. �36� we obtain the EPR-Reid criterion �Eq. �9��,
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�infx
B�infp

B � 1. �38�

This provides a formal proof of the incomplete conjecture
put forth in �11�, that the EPR-Reid criterion is a special case
of EPR-steering. It is a direct consequence of the assumption
of a LHS model; in particular this derivation does not require
Reid’s extension of EPR’s necessary condition for reality.

For angular momentum observables, obeying a com-

mutation relation �Ĵx
B , Ĵy

B�= iĴz
B �and its cyclical permutations�

the corresponding quantum uncertainty relation is
�Q�Jx

B ����Q�Jy
B ����

1
2 �
Jz

B��� �and permutations�. Substitut-
ing these in Eq. �36�, with B1=Jx

B, B2=Jy
B, and B3=Jz

B, we
obtain the criterion �11� reviewed in Sec. II E,

�infJx
B�infJy

B �
1
2 �
Jz

B��inf, �39�

and, of course, its permutations. Violation of one of these
inequalities corresponds to a demonstration of the EPR-
Bohm paradox discussed in Sec. II C. The inequality of Bo-
wen et al. �43� �Eq. �12�� is the special case in which Alice’s
choice of measurement used to infer �
Jz

B��inf is the identity.
We can see that it is a weaker criterion than the above by
noting that the convexity of the function f�x�= �x� implies
�
Jz

B��inf	�Jz
A P�Jz

A��
Jz
B�Jz

A�� �
Jz
B��. Inequality �12� should be

violated only if inequality �39� is also violated. In particular,
Eq. �39� can detect EPR-steering for states in which the ex-
pectation value of Jz

B is zero, such as the symmetric state
originally considered by Bohm �8�. Applications of these cri-
teria to specific classes of quantum states will be given in
Sec. V.

C. Additive convex criteria

We now present the derivation of the class of additive
convex criteria. Suppose one has an uncertainty relation in
the broadest sense—a general constraint which must be
obeyed by all quantum states of Bob’s subsystem—of form

�
j

f j�
Bj��,	 j� � 0, �40�

where j indexes observables on Bob’s subsystem, 
Bj�� de-
notes the expectation value of observable bj on a quantum
state �, 	 j �R are parameters of the constraint which can
take any values in some set Oaj

�the significance of which
should be clear soon�, and the functions f j are convex on the
interval containing the possible values of the first argument
�i.e., the possible expectation values 
Bj��, which is the con-
vex hull Hconvex�Obj

� of the set of possible outcomes of bj�.
This last requirement means that for all x ,y�Hconvex�Obj

�,
for all z�Oaj

and for all p� �0,1�,

f j„px + �1 − p�y,z… � pf j�x,z� + �1 − p�f j�y,z� . �41�

Although the product uncertainty relations considered in
Sec. IV B are not of form �40� since they include terms such
as 
B1

2�
B2
2�, a large class of uncertainty relations can be writ-

ten in this form. The negative of the variance of a variable B,
that is, −�2B= 
B�2− 
B2�, is a sum of two convex functions
f1�
B��+ f2�
B2�� �with f1�x�=x2 and f2�x�=−x� and thus we
can obtain EPR-steering criteria from uncertainty relations

that involve sums of variances of observables. For example,
the relation �2B1+�2B2� �
B3�� �48� can be rewritten as

�
B3�� − 
B1
2� + 
B3�2 − 
B3

2� + 
B3�2 � 0, �42�

which is of form �40�, with five terms in the sum. All terms
are convex since the coefficients of the square terms and
absolute-value terms are positive. Any term linear on the
expectation values 
Bj�� is clearly also of that form. As in
Sec. IV B, the assumption that the statistics of Alice and Bob
can be described by a LHS model of form �28� implies that
the conditional probability of outcome B given outcome A
can be written as

P�B�A� = �
�

P���A�PQ�B��� . �43�

The average of this conditional probability, 
B�A, can be thus
written as


B�A = �
�

P���A�
B��, �44�

and we remind the reader that 
B��	�BPQ�B ���B=Tr�b̂���.
If f is a convex function, Eq. �44� then implies, for all A,

f�
B�A,A� = f��
�

P���A�
B��,A� � �
�

P���A�f�
B��,A� .

�45�

Taking the average over A we obtain

�
A

P�A�f�
B�A,A� � �
A,�

P�A,��f�
B��,A� . �46�

We now introduce the subscripts j, sum both sides of Eq.
�46� over j, and apply the quantum constraint �40� to obtain

�
j,Aj

P�Aj�f j�
Bj�Aj
,Aj� � �

Aj,�
P�Aj,���

j

f j�
Bj��,Aj� � 0.

�47�

Introducing the simplifying notation Eb�a�f j�
	�Aj

P�Aj�f j�
Bj�Aj
,Aj�, we write the general EPR-steering

criterion,

�
j

Eb�a�f j� � 0. �48�

A weaker version of the inequality �i.e., one that detects
steerability less efficiently� can be obtained by using the fol-
lowing bound, which is a consequence of the convexity of f j,
when f j does not depend explicitly on Aj:

f j�
Bj�� � Eb�a�f j� . �49�

One can therefore substitute Eb�a�f j� by f j�
Bj�� for some j in
Eq. �48� and the inequality still holds.

1. Examples: Criteria from inference variances

We will now give some examples of criteria that can be
obtained with the general form of Eq. �48�. We note, to make
contact with the previous notation, that when the f j’s involve
variances, the corresponding expressions on the left-hand
side of Eq. �48� are just
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�
A

P�A��
B�A
2 − 
B2�A� = − �min

2 B , �50�

as defined on Eq. �25�. As before, the bound

�inf
2 B � �min

2 B �51�

can be used in the derivation of the inequalities.
We start considering arbitrary observables obeying com-

mutation relation �b̂1 , b̂2�= ib̂3 and use the uncertainty rela-
tion �2�B1 ���+�2�B2 ���� �
B3���, which is of form �40� as
shown above. Expanding this in terms of the f j’s, substituting
on Eq. �48�, and using Eqs. �50� and �51� we obtain the
EPR-steering inequality,

�inf
2 B1 + �inf

2 B2 � �
B3��inf, �52�

where as before �
B3��inf	�A3
P�A3��
B3�A3

� and the bound
�
B3��inf� �
B3�� can be used if needed.

For continuous-variable observables �x̂B , p̂B�=2i, Eq. �52�
becomes inequality �10�,

�inf
2 xB + �inf

2 pB � 2, �53�

and for angular momentum observables inequality �Eq. �52��
reads

�inf
2 Jx

B + �inf
2 Jy

B � �
Jz
B��inf. �54�

Inequality �53� has been derived �within the EPR-Reid for-
malism� in �9�. However, these inequalities are weaker than
the corresponding multiplicative variance criteria: since for
any pair of real numbers x2+y2�2xy, inequality �36� di-
rectly implies Eq. �52� and thus the latter can be violated
only if the former is violated.

Another special case of additive convex criterion has been
recently derived in �10�. Consider Schwinger spin operators
defined as

Ĵx
B = 1

2 �b̂−b̂+
† + b̂−

†b̂+� ,

Ĵy
B =

1

2i
�b̂−b̂+

† − b̂−
†b̂+� ,

Ĵz
B = 1

2 �b̂+
†b̂+ − b̂−

†b̂−� ,

N̂B = �b̂+
†b̂+ + b̂−

†b̂−� , �55�

where b̂� are boson operators for two field modes of Bob’s

subsystem, obeying commutation relations �b̂� , b̂�
† �=1.

Similar operators are defined for Alice. The situation of the
EPR-Bohm setup is therefore extended with number mea-
surements. We now use the quantum uncertainty relation �15�

�2�Jx
B��� + �2�Jy

B��� + �2�Jz
B��� �

1
4�2�NB��� + 1

2 
NB��,

�56�

and rewrite it in the form of Eq. �40�, −�2�Jx
B ���−�2�Jy

B ���
−�2�Jz

B ���+ 
NB�� /2�0, dropping the positive but noncon-
vex term �2NB /4. Substituting this in Eq. �48� and using
Eqs. �50� and �51�, we obtain

�inf
2 Jx

B + �inf
2 Jy

B + �inf
2 Jz

B �

NB�

2
. �57�

In the angular momentum basis ��j ,m��, where j�j+1� are the

eigenvalues of Ĵ2= �Ĵx
2+ Ĵy

2+ Ĵz
2� and m are the eigenvalues of

Ĵz, the operator N̂ /2 corresponds to the “total angular mo-

mentum” operator ĴT=� j j�m�j ,m�
j ,m�, i.e., the operator
which has a spectral decomposition in terms of projectors
onto each subspace of constant j, with corresponding eigen-
values j.8 Any criteria in which 
NB� occurs can therefore be
modified by substituting 
NB� /2= 
JT

B�. For a spin-j particle,
this is just 
JT

B�= j. With this substitution we obtain inequality
�13�.

Using again the linear inferences Best�Ak�=−gkAk+ 
Bk
+gkAk� as discussed in the paragraph above Eq. �37�, we can
derive directly from Eqs. �57�, �53�, and �52� the respective
criteria

�2�gxJx
A + Jx

B� + �2�gyJy
A + Jy

B� + �2�gzJz
A + Jz

B� �

NB�

2
,

�58�

�2�gxx
A + xB� + �2�gppA + pB� � 2, �59�

and

�2�g1A1 + B1� + �2�g2A2 + B2� � �
B3��inf. �60�

Again we should keep in mind that the corresponding opera-
tors for Alice and the values of gk are arbitrary and therefore
should be chosen so as to optimize the violation of the cri-
teria. Inequality �59�, which was introduced in �38�, is the
analogue for EPR-steering of the entanglement criteria of
Duan et al. �13� and Simon �14�. Note that the bound is half
that of those authors �making it harder to violate�, a conse-
quence of the fact that EPR-steering is a stronger form of
nonlocality than entanglement. Inequality �58� is the ana-
logue of the separability criteria in �15�.

The inference variance criterion has an immediate inter-
pretation as a demonstration of the situation described by
EPR, as they are based on an apparent violation of the un-
certainty principle by inference of the variances of the distant
subsystem. However, in general any constraint that can be
derived from the LHS model is an EPR-steering criterion and
by the arguments of Secs. II and III, a demonstration of the
EPR paradox. We present below examples of such more gen-
eral criteria which can be derived as special cases of the
additive convex criterion �48�.

2. Examples: Linear criteria

We first illustrate this approach by deriving a simple cri-
terion for the case of two qubits. We start with a quantum
constraint on expectation values of spin-1/2 observables,

8Note that the angular momentum-square operator J2 is not the
square of this operator. Although they have the same eigenvectors,
the eigenvalues of J2 are j�j+1� and not j2.
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Jx�� + 
Jy�� �
2

2
. �61�

This must be satisfied by any quantum state of a qubit:
1
2

�Ĵx+ Ĵy�	 Ĵ� is simply the observable corresponding to the
spin projection on a direction at �=45° between x and y, and

so for any quantum state �, 
Ĵ����
1
2 .

Now it must then also be the case that, for a pair of

observables Ĵx
B , Ĵy

B for Bob and Ĵx
A , Ĵy

A for Alice, and where
	i� �− 1

2 , 1
2 � represent possible values for the outcomes of

observable Ĵi
A,

	x
Jx
B�� + 	y
Jy

B�� �
2

4
�62�

for all values of 	x ,	y. This is easy to see by noting that the
different values of �	x ,	y� lead to one of �

1
2 
Jx

B�Jy
B� and

for each of these the argument of the previous paragraph
leads to Eq. �62�. This is of form �40� and therefore, by
substituting on Eq. �48� and noting that �A P�A�Ji

A
Ji
B�A

= 
Ji
AJi

B�, it leads to the EPR-steering criterion,


Jx
AJx

B� + 
Jy
AJy

B� �
2

4
. �63�

Following a similar procedure and using the quantum con-
straint 	x
Jx

B��+	y
Jy
B���−

2
4 , which is valid for the same

reason as Eq. �62�, we can derive the inequality 
Jx
AJx

B�
+ 
Jy

AJy
B��−

2
4 . These two inequalities can be summarized in

the EPR-steering criterion,

�
Jx
AJx

B� + 
Jy
AJy

B�� �
2

4
. �64�

A similar more powerful inequality can be derived from
the analogous constraint on three observables,

−
3

2
� 	x
Jx�� + 	y
Jy�� + 	z
Jz�� �

3

2
, �65�

which follows, as Eq. �62�, from the fact that Ĵ�	 1
3

�Ĵx+ Ĵy

+ Ĵz� is another observable corresponding to a spin projec-
tion. From Eq. �65� we can derive, following similar steps as
above, the EPR-steering criterion,

�
Jx
AJx

B� + 
Jy
AJy

B� + 
Jz
AJz

B�� �
3

4
. �66�

We can now generalize this to an arbitrary total spin. For
a spin-j particle, the quantum constraint �	x
Jx��+	y
Jy��

+	z
Jz����3j2 holds. To see this, note that Ĵ�	�	xĴx

+	yĴy +	zĴz� /	x
2+	y

2+	z
2 is again a spin projection opera-

tor and that 	x
2+	y

2+	z
2�3j. Following the same steps as

for the derivation of Eq. �64� this leads to the EPR-steering
inequality,

�
Jx
AJx

B� + 
Jy
AJy

B� + 
Jz
AJz

B�� � 3j2. �67�

3. Generalization for positive operator valued measure (POVMs)

In all of the above we have assumed that the measure-
ments on Bob’s system can be described by observables,
with projection operators associated to eigenvalues. There is
no loss of generality in this assumption if we allow Bob’s
system to be supplemented by an ancilla system, uncorre-
lated with any other system �49�. However it is often conve-
nient to consider generalized measurements, described by a
POVM, that is, a set of positive operators F� associated to
measurement outcomes �, which sum to unity. In terms of
finding appropriate EPR-steering criteria, the additive con-
vex criteria are the ones most naturally generalizable to this
case. We replace the f j�
Bj� ,	 j� in Eq. �40� by

f j��
F�
j ��:��,	 j� ,

where for all j and �, F�
j �0, and for all j, �� F�

j =1.
The convexity requirement in 
Bj�� would be replaced by

a more general convexity requirement that for all j and 	 j, all
� and ��, and 0� p�1,

f j��
F�
j ���:��,	 j� � pf j��
F�

j ��:��,	 j�

+ �1 − p�f j��
F�
j ���:��,	 j� , �68�

where ��= p�+ �1− p���. The derivation of Eq. �48� then fol-
lows exactly as before.

V. APPLICATIONS TO CLASSES OF QUANTUM STATES

We now apply the criteria derived in Sec. IV C 3 to some
classes of quantum states of experimental interest. Violations
of those inequalities amount to demonstrations of the effect
termed steering by Schrödinger in his response to EPR, re-
viewed in Sec. II B. In the continuous variables case, this
provides a more modern and unifying approach to the dem-
onstration of the correlations considered by EPR in their
original example, discussed in Sec. II A. In the discrete vari-
ables case this represents a modern approach to the demon-
stration of EPR-Bohm correlations discussed in Sec. II C. We
consider each case in turn.

A. Continuous variables

We consider as a continuous-variable example the case of
two-mode Gaussian states prepared by optical parametric
amplifiers �50�. Such states include the original EPR state as
a special case with zero entropy and infinite energy. We de-
fine x̂A= â+ â† and p̂A=−i�â− â†� as the position and momen-
tum observables to be measured by Alice, where â and â† are
the annihilation and creation operators for a bosonic field
mode at Alice’s subsystem. We define x̂B , p̂B analogously for
Bob’s subsystem in terms of the annihilation and creation

operators b̂ and b̂† for his field mode. When the entangle-
ment is symmetric between the two modes the covariance
matrix describing such states has a particularly simple form.
The continuous-variable entanglement properties of such a
state have recently been characterized experimentally �50�.
In this case the covariance matrix of the state W has just two
parameters, � and n̄,
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CM�Wn̄
�� = V2

	
 =�
� 0 � 0

0 � 0 − �

� 0 � 0

0 − � 0 �
� , �69�

where �=1+2n̄ and �=2�n̄�1+ n̄�. Here n̄ is the mean pho-
ton number for each party and � is a mixing parameter de-
fined such that the covariance matrix is linear in � and that
0���1 such that �=0 corresponds to an uncorrelated state
and �=1 corresponds to a pure state �28�. It has been shown
by Duan et al. �13� and Simon �14� that if a quantum state
such as Wn̄

� is separable it must satisfy

�2�xA − xB� + �2�pA + pB� � 4. �70�

It is straightforward to show that for states defined by Eq.
�69� this leads to the condition that

� �
n̄

n̄�1 + n̄�
�71�

indicates entanglement. This condition is plotted in Fig. 2,
where states above the line are entangled.

As discussed in Sec. IV, the generalization of the en-
tanglement criterion of Duan et al. and Simon to EPR-
steering is given by inequality �59�. For states of the form of
Eq. �69�, the relevant criterion becomes, using the optimal
scale factors gx=−1 and gp=1,

�2�xA − xB� + �2�pA + pB� � 2. �72�

For the two-mode symmetric states we find

�2�xA − xB� = �2�pA + pB� = 2� − 2� . �73�

Substituting into Eq. �72� and rearranging we find that

� �
1 + 4n̄

4n̄�1 + n̄�
�74�

indicates EPR-steering. This condition is plotted in Fig. 2,
where states above the line are steerable. For this particular
state the additive convex criterion �72� and the correspond-
ing multiplicative criterion

�2�xA − xB��2�pA + pB� � 1, �75�

derived from Eq. �37�, give the same results since both vari-
ances are identical in this case.

For comparison, recall the EPR-Reid criterion �Eq. �38��,
which tells us that the violation of

�infx
B�infp

B � 1 �76�

indicates EPR-steering. Evaluating the left-hand side of Eq.
�76� for two-mode symmetric Gaussian states, using the op-
timal inference variances �minx

B as defined in Eq. �26�, we
thus obtain

� � 1 + 2n̄

2�1 + n̄�
�77�

as a condition indicating the demonstration of EPR-steering.
Also in this case inequality �76� detects EPR-steering just as
well as the analogous additive criterion �53� since both infer-
ence variances for xB and pB have the same value. In Fig. 2
we see that Eq. �76� provides a lower bound on steerability
than that provided by Eq. �72� �although for n̄�1 the two
bounds become arbitrarily close�. This is not surprising when
one remembers, as discussed in Sec. IV A, that the optimal
conditional variances �76� are lower bounds for the linear-
estimate inference of the form �2�gxx

A+xB�. In other words,
as pointed out in Sec. IV, the EPR criterion is a more sensi-
tive witness to EPR-steering than inequality �72�, derived as
the steerability generalization of the entanglement criterion
of Duan et al. and Simon.

B. Discrete variables

To illustrate the use of EPR-steering criteria in the dis-
crete variable case we will make use of the Werner states
�51�. For the case of a two-dimensional subsystems, these are
a natural mixed-state generalization of the singlet state con-
sidered by Bohm and can be written as follows:

�W = ���S�
�S� + �1 − ��
I

4
, �78�

where ��S�= 1
2

�� 1
2 ��− 1

2 �− �− 1
2 �� 1

2 ��, I is the identity over both
subsystems, and � is a mixing parameter that can take values
��1, with �=0 again corresponding to a product state �11�.

It was shown in Ref. �11� that the Werner state is steerable
in theory with an infinite number of measurements whenever
��1 /2. In order to demonstrate EPR-steering in a realistic
experimental setup it is sufficient to instead test a suitable
EPR-steering criterion.

FIG. 2. �Color online� Boundaries between different classes of
symmetric two-mode Gaussian states. The lower line �green, dot-
ted� is an entanglement boundary given by Eq. �70�: states above
the line are entangled. The central �blue, dashed� line is a steerabil-
ity �lower� boundary based on Eq. �77� for the EPR paradox: states
above this line are steerable. The upper line �red, full� is a second
steerability �lower� boundary based on a generalization of the en-
tanglement criterion of Duan et al. �13� and Simon �14�: states
above this line are steerable.
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We will first evaluate the criterion given by inequality
�39�. Calculation shows that for the Werner state �78�,

�inf
2 Jz

B = 1
4 �1 − �2�

and

�
Jz
B��inf =

�

2
.

The Werner state is rotationally symmetric and thus �infJx
B

=�infJy
B=�inf

2 Jz
B. We therefore find that inequality �39� will be

violated �demonstrating EPR-steering� for �� �5−1� /2
�0.62. This inequality cannot therefore detect all steerable
states.

For inequality �57� we make the substitution �as explained
below Eq. �57�� 
NB� /2= j=1 /2, and with the values for
�inf

2 Jz
B a simple calculation reveals violation whenever �

�1 /3�0.58, This inequality, more symmetric between the
different measurements, thus detects more steerable states
�within the class of Werner states� than the less symmetric
inequality �39�.

We now proceed to evaluating the linear inequalities �64�
and �66�. The expectation value of the products of observ-
ables required for those inequalities, given the Werner state,
is


Ji
AJi

B� = −
�

4
,

where again by symmetry those expectation values are the
same for all i� �x ,y ,z�. Substituting in Eq. �64� we obtain a
violation for ��1 /2�0.71 and in Eq. �66� violation for
��1 /3�0.58. The first inequality, with only two measure-
ments per site, performs worse �detects less steerable Werner
states� than Eq. �39�, but the second, with three measure-
ments, detects a larger range. Note that the range of states for

which violation is predicted using Eq. �57� is the same as
that detected with Eq. �66�. The latter, however, offers the
advantage of being simpler to measure and calculate.

VI. CONCLUSION

We have developed a general theory of EPR-steering cri-
teria. These criteria are the experimental consequences of a
LHS model for one party �Bob�, just as Bell inequalities are
the experimental consequence of a LHV model and entangle-
ment criteria are consequences of a quantum separable
model. The essential ingredients in the derivation of the cri-
teria are the convexity of the set of correlations that allow a
LHS model and �generalized� uncertainty relations which de-
fine bounds on how Bob’s outcomes can be described by
quantum states.

Analyzing the different forms of nonlocality, we see that
they differ only in how they treat the states of Alice and/or
Bob, but they are all convex combinations of separable prob-
ability distributions. Some of the criteria derived here were
therefore similar to known entanglement criteria, but with a
more restrictive bound due to the fact that Alice’s subsystem
is treated as an arbitrary hidden-variable state. However oth-
ers, in particular the linear EPR-steering criteria, are entirely
new. These criteria open the possibility to new experimental
demonstrations of the EPR-steering phenomenon, with close
links to topics in quantum information including entangle-
ment witnesses and quantum cryptography.
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