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We theoretically study a circuit QED architecture based on a superconducting flux qubit directly coupled to
the center conductor of a coplanar waveguide transmission-line resonator. As already shown experimentally
�A. A. Abdumalikov, Jr. et al., Phys. Rev. B 78, 180502�R� �2008��, the strong coupling regime of cavity QED
can readily be achieved by optimizing the local inductance of the resonator in the vicinity of the qubit. In
addition to yielding stronger coupling with respect to other proposals for flux qubit based circuit QED, this
approach leads to a qubit-resonator coupling strength g which does not scale as the area of the qubit but is
proportional to the total inductance shared between the resonator and the qubit. Strong coupling can thus be
attained while still minimizing sensitivity to flux noise. Finally, we show that by taking advantage of the large
kinetic inductance of a Josephson junction in the center conductor of the resonator can lead to coupling
energies of several tens of percent of the resonator frequency, reaching the ultrastrong coupling regime of
cavity QED where the rotating-wave approximation breaks down. This should allow an on-chip implementa-
tion of the E � � Jahn-Teller model.

DOI: 10.1103/PhysRevA.80.032109 PACS number�s�: 03.65.Yz, 42.50.Lc, 03.65.Ta

I. INTRODUCTION

Combined with the large electric dipole moment of super-
conducting charge qubit, the large vacuum electric field of
microwave transmission-line resonators can be used to reach
the strong coupling regime of cavity QED �1�. However,
charge qubits suffer from charge fluctuations which lead to
low coherence times. By working with a Cooper Pair Box
quibit in a parameter regime where charge dispersion is
small, the transmon qubit �2� has led to significant improve-
ment in coherence times �3�, in addition to larger qubit-field
coupling strengths g. This is, however, done at the cost of
lower anharmonicity, limiting gate speed. In Refs. �4,5�, it
was suggested that an alternative approach to reaching the
strong coupling regime with superconducting qubits is to in-
ductively couple flux qubits to the zero-point motion mag-
netic field of a transmission-line resonator. In this case, cou-
pling increases with qubit loop area A, with A�8 �m2

expected to be sufficient to reach coupling strengths of a few
tens of MHz �5�. While comfortably in the strong coupling
limit, the predicted values are almost an order of magnitude
lower than what can be obtained with transmon qubits �1�.
Larger couplings can be obtained by increasing the qubit
area, but only at the expense of increased sensitivity to flux
noise.

In this paper, we theoretically investigate an approach ex-
perimentally realized by Abdumalikov et al. �6� where flux
qubits are directly connected to the center conductor of a
coplanar waveguide transmission-line resonator. By chang-
ing the width of the center conductor to take advantage of the
kinetic inductance, the phase bias of the qubit by the resona-
tor is enhanced. We show how this approach leads to signifi-
cant qubit-resonator coupling easily reaching the strong cou-

pling regime. Inserting a Josephson junction in the center
conductor of the resonator, much stronger couplings can be
obtained, with g reaching several tens of percent of the reso-
nator frequency. In this ultrastrong coupling regime, the
ubiquitous rotating-wave approximation �RWA� is expected
to break down leading to as of yet unexplored physics in
cavity QED. In addition to the larger coupling, an advantage
of this approach over that presented in Refs. �4,5� is that g
does not scale with the qubit area. Moreover, with its multi-
level structure, the flux qubit can be used in the � configu-
ration �7� opening the possibility to realize electromagneti-
cally induced transparency in a cavity �8� and a wealth of
other quantum optics phenomena in circuit QED.

This paper is organized as follows. We start by finding the
normal modes of an inhomogeneous transmission-line reso-
nator. The case of a Josephson junction playing the role of
the inhomogeneity is then discussed. Building on these re-
sults, we obtain the Hamiltonian for a flux qubit directly
connected to the center conductor of the inhomogeneous
transmission line and obtain expressions for the qubit-
resonator coupling strength. Finally, numerical results for the
coupling strength are presented.

II. ENHANCED PHASE BIASING

A schematic of the circuit we consider is shown in Fig. 1.
A superconducting flux qubit is fabricated such that its loop
is closed by the center conductor of a transmission-line reso-
nator of length 2� �ranging from x=−� to +��. Assuming a
nonuniform resonator, the Lagrangian density reads
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Ltl =
C0�x��̇2�x,t�

2
−

1

2L0�x�� ���x,t�
�x

�2

, �2.1�

with ��x , t�=�−�
t dt�V�x , t��, C0�x� the position-dependent ca-

pacitance per unit length, and L0�x�=Lgeo
0 �x�+Lkinetic

0 �x� the
position-dependent inductance per unit length including both
geometrical and kinetic contributions.

The corresponding Euler-Lagrange equation of motion

d

dx
	 1

L0�x�
���x,t�

�x

 = C0�x��̈�x,t� �2.2�

is solved by first decomposing ��x , t� over �unitless� normal
modes un�x�,

��x,t� = �
n

�n�t�un�x� . �2.3�

Here �n is the flux amplitude of eigenmode n, of frequency
�n, and eigenfunction un�x� and is given by

�n�t� =
1

N
�

−�

+�

C0�x���x,t�un�x�dx , �2.4�

where N is a normalization constant. Assuming a large qual-
ity factor Q, the currents at the two ends of the resonator
vanish; the eigenmodes must satisfy the boundary conditions
�xun�x= ���=0. Spectral decomposition of the flux ��x , t� in
Eq. �2.2� leads to a Sturm-Liouville differential equation of
the form

d

dx
	 1

L0�x�
�un�x�

�x

 = − �n

2C0�x�un�x� , �2.5�

whose solutions 
un�x� ,�n� form an orthogonal basis. The
eigenfunctions un�x� respect a weighted orthogonality rela-
tion

�
−�

+�

C0�x�un�x�um�x�dx = Cr�nm, �2.6�

where the normalization constant is chosen to be the total
capacitance of the transmission line, Cr=�−�

� C0�x�dx.
By using spectral decomposition �2.3� in Lagrangian den-

sity �2.1� and using the orthogonality relation �2.6� along
with the Sturm-Liouville differential equation �2.2�, the total
Lagrangian simplifies to a sum over eigenmodes:

L = �
n

Cr

2
�̇n

2 −
Cr

2
�n

2�n
2. �2.7�

Defining the charge 	n=Cr�̇n as the conjugate momentum to
the flux �n, the corresponding Hamiltonian is

H = �
n

	n
2

2Cr
+

Cr

2
�n

2�n
2. �2.8�

By quantifying and introducing the operators

�̂n =� 


2�nCr
�an

† + an� ,

	̂n = i�
�nCr

2
�an

† − an� , �2.9�

with �an ,am
† �=�nm, we arrive at the standard form

Htl = �
n


�n�an
†an + 1/2� , �2.10�

completing the mapping of the inhomogeneous resonator to a
sum of harmonic oscillators. Unlike the homogeneous case,
the mode frequencies can be inharmonically distributed such
that the equality �n=n�0 is not satisfied in general. Like
most Sturm-Liouville problems, the eigenmodes un�x� and
eigenfrequencies �n are found numerically by exact diago-
nalization �9�. As discussed in Appendix A, details of the
transmission-line geometry are important in determining
these quantities.

Figure 2 shows the first mode u1�x� for three different
configurations of a constriction in the center conductor of the
resonator as detailed in Table I. As the constriction is made
narrower, and thus the local inductance made larger, an
abrupt change in u1�x� develops. A flux qubit connected on
either side of the constriction, as illustrated in Fig. 3, will
thus be strongly phase biased. As a result, an inhomogeneity
in the resonator can increase the qubit-resonator coupling

FIG. 1. �Color online� Schematics of a three-junction flux qubit
directly connected to the center conductor of an inhomogeneous
superconducting transmission-line resonator.
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FIG. 2. �Color online� First mode �normalized to 1� for alumi-
num transmission-line resonators with the different constriction pa-
rameters listed in Table I. As the central line is reduced in cross
section, the slope of the flux field increases inside the constriction.
The inset shows the geometry of the constriction in the center con-
ductor of the resonator.
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making the strong coupling regime easier to reach.
Qubit-resonator coupling can also benefit from the kinetic

inductance of superconducting materials with large London
penetration depth �L, such as niobium where �L=39 nm,
when the dimensions of the cross section of the central line
reaches dimensions comparable with �L. Alternatively, a Jo-
sephson junction with large Josephson inductance LJ
��0

2 /EJ can replace the constriction shown in Fig. 1 to pro-
vide even stronger coupling. In Appendix B, we show how in
this case, the field ��x , t� becomes discontinuous at the loca-
tion of the junction and presents an important flux difference
across the junction. We also show how the Hamiltonian of
the transmission-line plus junction can be written in the stan-
dard form of Eq. �2.10� �10�. Consequences of this very large
coupling will be discussed further below.

III. QUBIT-RESONATOR HAMILTONIAN

In this section, we obtain the qubit-resonator Hamiltonian
for the system of Fig. 1 focusing on the case of the inhomo-
geneous resonator. Derivation of the Hamiltonian in the pres-
ence of a fourth junction instead of a constriction can be
done following these lines and is discussed in Appendix B.
Figure 3 shows in more detail the qubit connected to the
center conductor of the resonator. Including the flux qubit,
the Lagrangian reads �11�

L = Ltl + �
k=1

3 �CJk

2

̇k

2 + EJk cos�
k/�0�� , �3.1�

where CJk is the capacitance of junction k, EJk its Josephson
energy, 
k the flux difference across it, and �0=�0 /2� is the

reduced flux quantum. Junctions 1 and 3 are assumed to be
equivalent, CJ1=CJ3�CJ and EJ1=EJ3�EJ, while junction 2
is such that CJ2=�CJ and EJ2=�EJ with ��1 �12�. The flux
differences 
1�2� depend explicitly on the resonator voltage
through ��x1�2��, with x1 and x2 the positions of the resonator
where the qubit loop is connected. Finally, the phase differ-
ences satisfy


1 + 
2 − 
3 − �tl = �ext, �3.2�

where �tl=��x2�−��x1� and �ext is an externally applied
flux. This constraint is used to eliminate 
2 from Eq. �3.1�.

In obtaining the Hamiltonian, we assume that the qubit
does not significantly perturb the resonator such that the
mode decomposition for ��x , t� found in the previous section
is a good approximation even in the presence of the qubit.
This approximation is accurate for small qubit capacitances
such that the capacitive terms in Eq. �3.1� do not induce large
frequency shifts of the resonator, and if the inductance of the
centerline of the resonator of length w=x2−x1 where the qu-
bit is connected is smaller than the total inductance of the
qubit �i.e., L0�x1�w /�kLj,k�1 with Lj,k=�0

2 /EJk the Joseph-
son inductance of junction k� such that most of the current is
flowing through the resonator. Both of these assumptions can
satisfied in practice with small junctions. We note that while
these constraints are useful in deriving the system Hamil-
tonian, the main results hold even if they are not strictly
respected.

It is useful to introduce the sum and difference fluxes

�= 
�
3+��x2��� �
1+��x1��� /2, where 
1+��x1� and

3+��x2� represent the flux on the island of the qubit sepa-
rated from the resonator by junctions 1 and 3, respectively.
The charges conjugate to these fluxes are q�=�L /�
̇�. Us-
ing these conjugate variables, the Hamiltonian is easily ob-
tained in the usual way �11�. After transformation under the
unitary T+T−, with

T� = �
n

exp	− i

2

�nq��n

�
 , �3.3�

where �n
�=un�x2��un�x1� and using phase variables ��

=
� /�0, the Hamiltonian reads

TABLE I. Inductance ratio Lin
0 /Lout

0 inside and outside the constriction, resonant frequency �1 /2� of the
first mode, flux gradient inside the constriction ���1�x� /�x�x=0 and qubit-resonator flux coupling g�̂,1

ge at
�ext=�0 /2 for different values of the resonator center conductor width Sin and thickness tin at the location of
the constriction assuming a length of w=5 �m of the shared part between the qubit and resonator. Qubit
parameters are given in the text while resonator parameters are given in Appendix A.

Material
Sin

�nm�
tin

�nm� Lin
0 /Lout

0
�1 /2�
�GHz� ���1�x� /�x�x=0�10−6�0 /�m�

g�̂,1
ge /2�

�MHz�

Al 5000 200 1 13.12 12.97 71.8

Al 50 200 3.4 10.98 35.36 195.6

Al 50 50 4.1 10.52 40.22 222.5

Nb 50 50 8.3 8.62 65.10 360.2

ψ(x1) ψ(x2)

Ej1,Cj1
Ej2,Cj2

Ej3,Cj3
Φext

FIG. 3. �Color online� Closeup of the flux qubit fabricated at the
location of the constriction. The qubit is attached at positions x1 and
x2 on the resonator. �ext is an externally applied flux. A large Jo-
sephson junction inserted in the center conductor of the resonator
between x1 and x2 can lead to stronger coupling.
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H = �
n
	
�nan

†an +
q−

2

2Cn
− +

q+
2

2Cn
+ −

2Cj2

C̃n
2

�n
−q−	̂n


− EJ�2 cos �+ cos �− + � cos��ext + �̂ + 2�−�� .

�3.4�

In this expression, �̂ is a quantum flux bias given by

�̂ = �
n

�̂n�n
−/�0, �3.5�

where in general ��̂��1, and the resonator mode-dependent
capacitances are

1

Cn
− =

2Cr + 2Cj2��n
−�2

C̃n
2

,

1

Cn
+ =

Cr�Cj1 + 2Cj2� + Cj1Cj2��n
−�2

C̃n
2Cj1

, �3.6�

with C̃n
2=2�Cr�Cj1+2Cj2�+ ��n

−�2Cj1Cj2�. The Josephson po-
tential energy takes the usual form for a three-junction flux
qubit �12�. The usefulness of the unitary transformation is to
change the phase bias from vacuum fluctuations in the reso-
nator field to a flux bias �̂ directly on the qubit which is
simply adding to the external flux �ext=�ext /�0.

Defining the qubit capacitances C�=�nCn
� and expanding

the term proportional to �EJ to first order in �̂, the resulting
Hamiltonian becomes

H = Hr + Hqb + Hq̂ + H�̂, �3.7�

where Hr=�n
�nan
†an is the resonator Hamiltonian,

Hqb =
q−

2

2C− +
q+

2

2C+ − EJ�2 cos �+ cos �− + � cos��ext + 2�−��

�3.8�

the standard flux qubit Hamiltonian �12�, and

Hq̂ = − �
n

2Cj2

C̃n
2

�n
−q−	̂n, �3.9�

H�̂ = �EJ�̂ sin��ext + 2�−� �3.10�

describe charge and flux coupling of the qubit to mode n of
the resonator, respectively.

Projecting on the eigenstates 
�k�� of frequencies 
�k� of
the qubit Hamiltonian Hqb, the flux coupling Hamiltonian H�̂

can be expressed as

H�̂ = �
n

�
k,l


g�̂,n
kl �k��l��an

† + an� , �3.11�

where


g�̂,n
kl = �EJ��n�k�sin��ext + 2�̂−��l� . �3.12�

Here we have used Eq. �2.9� and defined ��n

=�n
−�
 /2Cr�n /�0. These matrix elements are easily evalu-

ated after diagonalizing Hqb numerically to find the exact

qubit eigenstates. At the flux sweet-spot, �ext=�0 /2, only
off-diagonal coupling g�̂,n

kl between states k and l of different
parity remain �7�.

Using the expression of Eq. �2.9� for 	̂n, the above selec-
tion rule reduces the charge coupling Hq̂ to

Hq̂ = �
n

�
k,l�k


gq̂,n
kl ��k��l� − �l��k���an

† − an� , �3.13�

for states �k�, �l� of different parity and where


gq̂,n
kl =

2Cj2�n
−

iC̃n
2
�
Cr�n

2
�k�q−�l� �3.14�

is a real quantity and maximal between states �k , l�= �1,2�.
Comparing gq̂ to g�̂ we get

� g�̂,n
k,l

gq̂,n
k,l � �

�2� + 1�EJ


�n

�k�sin��ext + 2�−��l�
�k�q−/2e�l�

. �3.15�

Since in practice Ej �
�n for flux qubit, the charge matrix
elements are at best a fraction of unity in the vicinity of flux
degeneracy point, we find �g�̂

k,l /gq̂
k,l��102–103. Unsurpris-

ingly, charge coupling is negligible.

IV. JAYNES-CUMMINGS HAMILTONIAN

In the rotating-wave approximation �valid when g�̂,n
kl

� 
�n ,�min�k,l���, the full Hamiltonian takes the Jaynes-
Cummings form �13�

H = �
n


�nan
†an + �

k


�k�k��k� + �
n,k,l


gn
kl��k��l�an

† + H.c.� ,

�4.1�

where gn
kl=g�̂,n

kl −gq̂,n
kl �g�̂,n

kl .
In addition to the strong coupling and the low charge

noise, an important advantage of studying the Jaynes-
Cummings physics in this system is the very large anharmo-
nicity of the flux qubits compared to the transmon �2�. This is
illustrated in Fig. 4 which shows the first few eigenenergies
of the flux qubit Hamiltonian Hq. Moreover, with flux qubits
it is also possible to take advantage of the fact the first two
eigenstates can be localized in the wells of the potential,
while the higher eigenstate is delocalized. These three states
can be used as a � system �7� opening possibilities for many
quantum optics phenomena in cavity QED with supercon-
ducting circuits.

It is also worth pointing out that multiple qubits can be
coupled to the same resonator. With the qubits fabricated in
close proximity to a node of the eigenfunction to which they
are �most strongly� coupled, the Hamiltonian of the system
simply reduces to

H = Hr + �
j=1

N

�Hqb
j + Hq̂

j + H�̂
j � , �4.2�

where the coupling Hamiltonians are calculated by project-
ing the operators onto each qubit subspace. Two-qubit gates
can be generated in this system in the same way as with
charge-qubit based circuit QED �14�.
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V. COMPARISON TO GEOMETRIC COUPLING AND
NUMERICAL RESULTS

As shown in the last section, qubit-resonator flux coupling
is provided by the vacuum fluctuations of the resonator field
�̂ threading the qubit loop. For a qubit sharing a length w
with the resonator, this flux can be expressed as

�̂ = �
n

� 


2�nCr
�un�x1 + w� − un�x1���an

† + an�/�0

� − wL0�x1�Î�x1�/�0, �5.1�

where L0�x1� and Î�x1�=−�x�̂�x� /L0�x� �x1
are, respectively,

the inductance per unit length and the current in the resona-
tor at the location x1 of the qubit. The slope of the flux field

�x�̂1�x� at the location of the qubit is given in Table I for
different resonator geometries and materials. As can be seen
there, coupling is enhanced by locally increasing the resona-
tor inductance. This is to be compared to the case where the
qubit loop is mutually coupled to the resonator only by mu-
tual inductance �4,5�. In this situation, one finds �̂

=MÎ�x1� /�0 with

M �
�0w

2�
ln	d + L

d

 �5.2�

as given from the Neumann formulas for a rectangular loop
of length w and width L separated by a distance d from the
resonator center conductor, here approximated by a infinite
cylindrical wire. Geometric coupling will win over direct
coupling only if the ratio L /d is made such that

L

d
� eL0�x1�/��0/2�� − 1. �5.3�

Since L0�x1� can reach several units of �0 /2� in the constric-
tion due to the contribution of the kinetic inductance, geo-
metric coupling can only win by either increasing the qubit
area �w�L� or by reducing the distance between the qubit
loop and the resonator central line �d�. Large loops will make

the qubit more susceptible to surrounding flux noise, while
placing the qubit very close to the resonator can be challeng-
ing in addition to increasing the capacitive coupling to the
resonator. In contrast, direct coupling leads to a coupling
strength that scales with length w of the shared part between
qubit and resonator rather than with the area. Strong cou-
pling can therefore be reached without large sensitivity to
flux noise.

Table I shows the coupling g�̂,n
ge of directly connected qu-

bits for various transmission-line configurations. To obtain
these results, we have taken parameters close to those of Ref.
�15� with EJ1=259 GHz, �=0.8, and EJ /EC=35. These pa-
rameters were used in Fig. 4. The qubit’s loop width was
taken to be w=5 �m. For these realistic values, this system
easily reaches the strong coupling regime. Moreover, in all
cases shown here, the coupling strength is substantially
larger than the estimates for geometric coupling �4,5�.

VI. ULTRASTRONG COUPLING REGIME

Using a Josephson junction to locally change the induc-
tance can result in much stronger coupling. As illustrated in
Fig. 5, for a relatively large Josephson energies EJ
�1000 GHz, the phase bias seen by the qubit is so large that
the coupling energy can easily reach g�̂,1

ge /2��1000 MHz
and beyond corresponding to several tens of percent of the
resonator frequency. This coupling can be increased further
by lowering the Josephson energy of the inserted junction, as
long as the corresponding Josephson inductance is small
compared to that of the qubit.

In this ultrastrong coupling regime �16,17�, the RWA,
used in going from Eq. �3.11� to Eq. �4.1�, breaks down and
the full Hamiltonian must be considered. This circuit then
becomes a solid-state implementation of the E � � Jahn-
Teller model �20�. While coupling of the artificial atom to the
electric field of the resonator does not lead to super-radiant

FIG. 4. �Color online� Cut along the �+=0 axis of the double
well potential of the flux qubit with the first �full blue�, second
�dashed red�, and third �dotted green� eigenstates for qubit param-
eters EJ1=259 GHz, �=0.8, and EJ /EC=35 with �ext=�0 /2.
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FIG. 5. Flux bias ��1 and resultant qubit-resonator coupling
energy g�̂,1

ge as calculated from Eq. �3.12� induced by a Josephson
junction placed in the center of a homogenous aluminum
transmission-line resonator �see Table I� as a function of the Joseph-
son energy EJ. The inset shows that the qubit-resonator coupling
energy can reach several tens of percent of the resonator frequency.
Qubit parameters are given in the text.
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phase transition, magnetic coupling, which dominates here,
does �18,19�. In this situation, the ground state of the com-
bined qubit-resonator system can be an entangled state cor-
responding to the oscillator being displaced by a qubit-state
dependent quantity �21,22�. In this ground state, we can ex-
pect a finite photon population, something which could be
measured using a second resonator in a number splitting ex-
periment �23,24�.

In addition to the breakdown of the RWA, higher-order
terms in the expansion of the Josephson energy in Eq. �3.4�
have to be taken into account as the coupling strength in-
creases. Second-order corrections lead to an additional flux
coupling Hamiltonian H�̂

�2� of the form

H�̂
�2� = �

n


��̂,n
kl �k��l��an

† + an�2, �6.1�

where


��̂,n
kl =

�

2
EJ���n�2�k�cos��ext + 2�̂−��l� . �6.2�

This second-order correction leads to ac-Stark shifts and,
more interestingly, can be used to generate squeezing of the
microwave field inside the resonator. Tuning the circuit pa-
rameters can lead to detectable effects with ��̂,n

kl /2�

�1 MHz. We note that this also leads to resonator mode-
mode coupling. In practice, however, the frequency separa-
tion between these modes is large enough that this can be
neglected.

VII. CONCLUSION

We have obtained the Hamiltonian of a superconducting
flux qubit directly coupled to the center conductor of a co-
planar transmission-line resonator. By using a constriction in
the centerline of the resonator, the coupling strength between
the qubit and the resonator can be significantly increased.
This is due to the increase in the geometric and kinetic in-
ductance of the line and the resulting large phase bias seen
by the qubit. There are two main advantages of this approach
compared to coupling based on the mutual inductance be-
tween the qubit and the resonator: the coupling is much
stronger in magnitude and this is possible without working
with large qubit loops which would increase sensitivity to
flux noise. Together with the insensitivity of flux qubits to
charge noise, its large anharmonicity and its � configuration,
this approach leads to the possibility of studying numerous
quantum optics effects with superconducting circuits. Fi-
nally, by replacing the constriction with a Josephson junction
of large Josephson inductance, we have shown that the cou-
pling can be as large as several tens of percent of the reso-
nator frequency. In this situation, the breakdown of the RWA
should lead to an entangled qubit-resonator ground state.
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APPENDIX A: DESIGN AND CHARACTERISTICS OF
INHOMOGENEOUS TRANSMISSION LINES

Appropriate modeling of the inhomogeneous
transmission-line electrical characteristics is needed to com-
pute eigenmodes, frequencies, and ultimately the coupling
between the qubit and the resonator. In this section, we give
details on the geometry of the inhomogeneous resonators
that were used in Table I.

The capacitance per unit length C0�x�, the inductance per
unit length L0�x�, and the impedance Z0�x� of the coplanar
transmission-line resonator depend on the ratio between the
width of the center electrode S and the distance between the
two ground planes S+2W, W being the distance between the
ground plane and the edge of the central line �25�:

C0 = 2�0��r + 1�
K�k0�
K�k0��

, Lgeo
0 =

�0

4

K�k0��
K�k0�

,

Z0 =�Lgeo
0 + Lkin

0

C0 , �A1�

where �r is the dielectric constant of the substrate, k0=S / �S
+2W� is the aspect ratio, k0�=�1−k0

2, and K�x� is the com-
plete elliptic integral of the first kind. By decreasing the as-
pect ratio k0 along the line, the inductance and impedance of
the line are locally increased while the capacitance is de-
creased. For superconducting resonators, the kinetic induc-
tance can be expressed as �26�

Lkin
0 = �0�L�T�

C

4ADK�k0�	 1.7

sinh�t/2�L�T��

+
0.4

���B/A�2 − 1��1 − �B/D�2�

 , �A2�

where �L�T� is the London penetration depth of the super-
conductor at temperature T, t is the thickness, and

A = −
t

�
+

1

2
��2t

�
�2

+ S2, B =
S2

4A
,

C = B −
t

�
+�� t

�
�2

+ W2, D =
2t

�
+ C . �A3�

As for the geometrical inductance, a decrease in the aspect
ratio will increase the kinetic inductance of the line but the
effect is rather marginal unless the dimensions of the cross
section of the central electrode become of the order of �L.

The geometry of the inhomogeneous transmission line
used in Table I is depicted in Fig. 6. We consider a regular
initially homogeneous transmission line resonator made of
either aluminum ��L=16 nm� or niobium ��L=39 nm� with
a total length of 2�=5 mm. The central electrode is t
=200 nm thick and S=5 �m wide. The ground planes are
W=2.5 �m away from the edge of the central line. For sim-
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plicity, the distance between the ground planes �S+2W� is
not modified. The width and thickness of the central elec-
trode are reduced at the center of the resonator to create a
constriction. The dimensions are reduced gradually over a
length d from the initial outer values Sout, Wout, and tout down
to the minimal inner values Sin, Win, and tin at x=0. The
electrode width S�x�, thickness t�x�, and ground-plane spac-
ing W�x� are continuous smooth functions for ease of com-
putation.

Table I summarizes the numerical results obtained for in-
homogeneous resonators made of Al and Nb and character-
ized by width, thickness, and ground-plane spacing as illus-
trated in Fig. 6. For aluminum, as the central line cross-
section dimensions are reduced from 5 �m�200 nm down
to 50�50 nm2, the total inductance per unit length can be
increased by a factor of 4. As it is shown in Fig. 2, the slope
of the flux field ��x�1�x��= ��xu1�x���
 /2Cr�1 inside the con-
striction is also increased by a factor of 4. On the other hand,
because of the larger London penetration depth, the kinetic

inductance of niobium resonators can be very important. In
this case, the local inductance can be increased by a factor of
�8 for a cross section of 50�50 nm2 leading to a fivefold
increase in the slope of the flux field.

APPENDIX B: TRANSMISSION LINE INTERSECTED BY
A JOSEPHSON JUNCTION

Inserting a Josephson junction in the center conductor of
the resonator at the location of the qubit can lead to signifi-
cantly stronger coupling. We note that having four, rather
than three, junctions is natural for a flux qubit �27�. If the
Josephson inductance of the resonator junction is much
smaller than the total inductance of the qubit loop, the qubit
acts once again as a simple perturbation on the resonator
eigenmodes. The theoretical description of a resonator with
an integrated Josephson junction can be found elsewhere
�10� and we recall only the main results �see Fig. 7�.

For a transmission-line resonator is interrupted by a Jo-
sephson junction of linear Josephson inductance LJ=�0

2 /EJ
and capacitance CJ, the eigenmodes can be described by spa-
tially oscillating functions um�x� given by

um�x� = Am�cos�km�x + ��� x � xj

Bm cos�km�x − ��� x � xj .
� �B1�

If the junction is placed at the center x=0 of the resonator,
Bm=−1 and the wave vectors km are solutions of the tran-
scendental eigenvalue equation

S(x)

W(x)
2

4 y (�m)

x

t(x) (nm)

a)

b)

c)

x
-2

-4

-0.5

-1

1

0.5

x

200

100

0

y (�m)

FIG. 6. Geometry of the inhomogeneous transmission line used
in numerical simulations. Central-line width S�x� and ground-plane
spacing W�x� are shown in �a� for the total length of the line 2�
=5 mm and in �b� around the constriction indicated by the dashed
square in �a�. The thickness of the central line is shown in �c�. In
this example, the outer dimensions of the homogeneous part of the
line are Sout=5 �m, Wout=2.5 �m, and tout=200 nm while the
inner dimensions inside the constriction at x=0 with Sin=50 nm,
Win=4.95 �m, and tin=50 nm.
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FIG. 7. �Color online� First mode �normalized to 1� for the
niobium transmission line �dashed black� and for a homogeneous
aluminum transmission line intersected by a �pointlike� Josephson
junction of plasma frequency �p /2�=40 GHz with EJ

=6000 GHz �full blue�. The transmission-line characteristics are
detailed in Table I. The inset shows an enlarged view of the mode in
the vicinity of the junction. The abrupt variation in the mode at the
position of the junction enables a much greater flux bias on the
qubit.
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2L0

LJ
�1 −

�m
2

�p
2 �cot�km�� = km, �B2�

where �m=km /�L0C0 are the resonance frequencies of the
circuit and �p=1 /�LJCJ is the plasma frequency of the junc-
tion. The eigenmodes of the circuit are found to obey a gen-
eralized orthogonality equation

�
−�

�

dxC0um�x�um��x� + CJ�m
− �m�

− = C��mm�, �B3�

where �m
− =um�0+�−um�0−� is the dimensionless mode gap at

the junction and C�=2�C0+CJ is the total capacitance of the
circuit. This orthogonality equation is used to fix the normal-
ization Am.

It follows that in the linear approximation of the Joseph-
son inductance, the resonator can be described by sum of
harmonic oscillators of frequency �m,

H = �
m


�m�am
† am + 1/2� , �B4�

where the ladder operators obey the commutation relation

�am
† ,am��= i�mm� and define flux �̂m and charge 	̂m operators

given by Eq. �2.9� with the appropriate capacitance and fre-
quency definitions. As it is shown in Fig. 4, the presence of
the junction creates a very abrupt discontinuity in the modes.

This leads to a large flux field slope �x�̂1�x�, which in turn
leads to very strong qubit-resonator coupling. We note that
very strong coupling can be attained even for negligible non-
linearity of the resonator mode �10�.
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