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In this paper, employing the It stochastic Schrodinger equation, we extend Bell’s beable interpretation of
quantum mechanics to encompass dissipation, decoherence, and the quantum-to-classical transition through

quantum trajectories. For a particular choice of the source of stochasticity, the one leading to a dissipative
Lindblad-type correction to the Hamiltonian dynamics, we find that the diffusive terms in Nelsons stochastic
trajectories are naturally incorporated into Bohm’s causal dynamics, yielding a unified Bohm-Nelson theory. In
particular, by analyzing the interference between quantum trajectories, we clearly identify the decoherence
time, as estimated from the quantum formalism. We also observe the quantum-to-classical transition in the

convergence of the infinite ensemble of quantum trajectories to their classical counterparts. Finally, we show
that our extended beables circumvent the problems in Bohm’s causal dynamics regarding stationary states in

quantum mechanics.
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I. INTRODUCTION

The breakthrough brought about by the Copenhagen in-
terpretation of quantum mechanics has been subject to many
criticisms from its early days. Instead of being obstacles,
such criticisms have contributed to broadening perspectives
on the quantum mechanics program, as happened with the
analysis provided by Einstein, Podolsky, and Rosen (EPR)
[1] on the quantum mechanical description of physical real-
ity. Within its spin version given by Bohm [2], the EPR
argument provided the framework for the development of
Bell’s theorem [3] and the subsequent experiments [4] dem-
onstrating nonlocality and thus the impossibility of a local
realistic interpretation of quantum mechanics. All those strik-
ing proposals, devised in the last two decades, which rely on
nonlocality—as quantum computation and communication
[5], quantum cryptography [6], and teleportation [7], apart
from entanglement degree measure [8], among other—owe
to the EPR argument and Bell’s theorem.

Apart from enlightening nonlocality and beyond the criti-
cisms to the Copenhagen interpretation, alternative formula-
tions have been developed to reconcile quantum mechanics
with classical concepts. On this regard, the causal interpreta-
tion proposed by Bohm [9] and the stochastic quantization
procedure by Nelson [ 10], comprehend deterministic theories
which, ascribing (hidden) trajectories to quantum particles,
provide the experimental statistics predicted by quantum me-
chanics. While in Bohm’s approach an effective quantum
potential derived from the quantum mechanical wave func-
tion is the key for the formulation of the causal trajectories,
Nelson’s completion relies on an underlying Brownian mo-
tion which substitutes the wave function by a diffusion
mechanism. Although not attempting to embrace classical
concepts, we finally mention Feynman’s path integral for-
malism where the motion of a particle is described by a
weighted sum over all possible trajectories connecting the
end points [11].

Pursuing a realistic description of quantum mechanics
that encompasses both the microworld and macroworld, Bell
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[3] proposed the beable interpretation as a counterpart to the
orthodox observable approach of the Copenhagen school.
This hidden-variable theory was intended to overcome limi-
tations of the existing positional causal and stochastic ap-
proaches by Bohm [9] and Nelson [10], respectively. In this
regard, Bell’s theory assigns precise values to all physical
properties, including discrete variables, even though we are
unable to follow them; moreover, extensions to the relativis-
tic limit seem to be straightforward. However, by focusing
on the spatial distribution of fermion number, Bell still privi-
leges the position representation, as did the previous ap-
proaches by Bohm [9] and Nelson [10].

In an earlier generalization of Bell’s accomplishment,
Vink [12] attributed a beable status to all observables, intro-
ducing the convenient assumption that on a sufficiently small
scale—unreachable anyway—all quantities take discrete val-
ues on a lattice. In Vink’s generalization, trajectories are as-
sociated with all physical quantities; when applied to posi-
tion in the lattice continuum limit, it is shown to reproduce,
with differing choices of manageable parameters, either the
causal [9] or the stochastic [10] interpretation.

Our extension of Bell’s beables was instigated by an ear-
lier contribution by Santos and Escobar [13], carried out
within Vink’s formalism, in which the Schrodinger equation
is replaced by its stochastic modification, derived for the
continuous spontaneous localization (CSL) model [14]. After
deducing a stochastic differential equation of motion, Santos
and Escobar [13] pointed out the convergence between tur-
bulence and the dynamics of the CSL model. Following the
reasoning in Ref. [13], we also adopt the It stochastic modi-
fication of the Schrédinger equation; however, instead of us-
ing its CSL version, we leave open the choice of the stochas-
tic source, thus generating a full extension of Bell’s beables
in which the Hamiltonian dynamics is corrected by an arbi-
trary Lindblad-like superoperator.

Aiming to introduce dissipation and decoherence into
quantum trajectories, we next specify the stochastic source as
the one prompting the dissipative Lindblad correction to
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Hamiltonian dynamics. We show that, within our open be-
ables, the diffusive terms, characteristic of Nelson’s stochas-
tic trajectories, are naturally incorporated into Bohm’s ones,
unifying the two interpretations. As a matter of fact, while
Bohm’s quantum potential stands out from the very formu-
lation of Bells beables, through the quantum mechanical
wave function, Nelson’s diffusion mechanism follows from
the introduced dissipative Lindblad dynamics, replacing the
wave function by the density operator.

The trajectories resulting from such a unified Bohm-
Nelson open model shed a new light on interesting aspects of
dissipation, decoherence, and the quantum-to-classical tran-
sition. We first mention that our derived decaying trajectories
fully account for the expected dissipative mechanisms we
have introduced. Moreover, we verify that the decoherence
time computed from the quantum formalism coincides ex-
actly with the time where the interference between trajecto-
ries is dynamically suppressed. Therefore, the decoherence
mechanism resulting from noise injection into the system—a
major open problem in quantum-information theory—can
also be observed from the quantum trajectories arising from
the unified Bohm-Nelson approach here presented.

Moreover, as an initial pure density operator is drawn into
a complete statistical mixture by the dissipation-fluctuation
dynamics described by the Lindblad operator, we also show
that the infinite ensemble of trajectories converges to a finite
number of classical counterparts. In fact, considering two-
state superpositions of harmonic oscillator states, we verify
that all the ensemble of trajectories reduces to the two clas-
sical paths associated to each state of the superposition,
which compose the diagonal elements of a maximally mixed
density operator. In short, our extended open beables are
shown to encompass dissipation, decoherence, and the
quantum-to-classical transition within a unified Bohm-
Nelson dissipative hidden-variable model.

We mention that in our analysis we take into account a
particular quantum system, the harmonic oscillator, and some
of its best-known states: the coherent, number, and squeezed
states, apart from a superposition of coherent states repre-
senting a “Schrodinger catlike” state. The coherent and
squeezed states are considered to address the dissipative
mechanism we have introduced in Bell’s beables, allowing
us to conclude that our decaying trajectories accounts for the
behaviors expected from quantum mechanics. The squeezed
states are also used to address the squeezing of the variances
of the quadrature operators, apart from the decoherence
mechanism through quantum trajectories. By its turn, the
number state is considered to illustrate the fact that our ex-
tended beables circumvent the problems in Bohm’s approach
regarding stationary states in quantum mechanics [15]. Fi-
nally, the Schrodinger catlike states enable us to readdress
the decoherence suppression from the perspective of a super-
position state, apart from the quantum-to-classical transition
through our decaying trajectories.

II. EXTENDED (OPEN) BEABLES

In our generalized beable approach we replace the
Schrédinger equation, as in [3], with its stochastic Itd ver-
sion,
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dly) = (— éHdt+O -dA - %yo* . Odt)|1,b>, (1)

where O={0}} is a set of operators on the Hilbert space of
the system, while A ={A}} is a set of random operators char-
acterized by a real Wiener process of strength 7, satisfying
dA\;=0, dAdA\;=yd,dt. As pointed out above, in Ref. [13]
Santos and Escobar started from a particular choice of the
Wiener process, the one considered in the CSL proposal of a
unified description of microscopic and macroscopic systems.

Using the Itd calculus to derive the evolution of the sys-
tem density operator from Eq. (1), we obtain

B0 41+ 400001 - 40T 00}, (2)
dt h 2

generating the probability density P,(t)={@,|p(t)|@,)

=p,a(t) to measure the system in the eigenstate |¢,) of a

quantity satisfying ®|¢,)=n|¢,). The continuity equation in

the ® representation is thus given by
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where the last two terms on the right-hand side (rhs) of the
source matrix,

Jom =2 Im[{@,|H| 0, )@l ()] @,,)]
+ 72 (@0l @l p()| @, X €| O] @)
1

—Re[(¢,|0"| @, .0l elple) T}

which are added to Bell’s beables, follow from the stochastic
elements in Eq. (1). As the classical counterpart to the con-
tinuity equation [Eq. (3)] is given by the master equation

JdP,(t
(9#() = 2 (Tnum - TmnPn)’

t m

where T,,dt is the transition probability governing the jumps
from state ¢,, to ¢,, Bell’s shortcut from quantum observ-
ables to beables follows from the solution of T, derived by
equating

1

%Jnm = TomPm— TyunPn- 4)
A particular simplified solution to the mixed quantum-
classical equation [Eq. (4)] for a general complex source
matrix J,,, emerging from the stochastic ingredient is given
by

J nm +J :m

> ‘Inmzo
T,

nm — m

0, Ty = 0.

We stress that the summation X,,/,,, gives a real quantity, as
well as the source matrix following from the original beable
interpretation.

In Vink’s extension of the theory, where all the degrees of
freedom must be discrete and finite, the position is restricted
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to sites of a lattice which, in the one-dimensional case, be-
comes x,=ne, n being integers and & being the lattice dis-
tance. In the continuous limit € — 0, smooth wave functions
in the positional representations, I,Z/(x )=R(x,1)eS® 0" can

)=|x,)) as

Wlx, £ e,t) = P(x,,1) * s{AR(xm,t)

—R(xm,t)AS(xm,t)} B

leading to both source and transition matrices as expansions
to dominant order in &. We have defined the derivative
AF(x,t)=[F(x+e,t)-F(x,t)]/e.

We end up this section by noticing that when neglecting
the coupling strength y we recover exactly the formalism of
Bell’s beables. Therefore, as already mentioned, our contri-
bution consists of the extension of Bell’s beables consider-
ing, instead of the Schrodinger equation, its Itd stochastic
form.

III. OPEN BEABLES APPLIED TO THE HARMONIC
OSCILLATOR

Regarding the source of stochasticity, we choose the one
leading to the well-known dissipative Lindblad-type correc-
tion to Hamiltonian dynamics [16]. For the particular case of
the harmonic oscillator, governed by the discretized Hamil-
tonian,

K2 M w2x2

H 5m,n—1 - 25m,n) +

mn = 2M 2( m,n+1

=)

m,n>

our choice is carried out under the assumption that the whole
set {O;} reduces to the annihilation operator

1 Svetm—10
ayy = 77—\ Mwx,,9, +hw>.

Applying the above development for the open beables to the
harmonic oscillator we obtain, up to zero order in &, the real
part of the source matrix,

h
Re("mn) = M_[AS(Sn)P115n+l,m - AS(z':’/l)Pn(Sn—l,m]
€

2
+
2M we
- pn,m) 5n+1,m]» (5)

where the Kronecker deltas &, , and &,_;, allow both for-
ward and backward steps between the very closely spaced
lattice sites. Whereas the first two terms on the rhs of Eq. (5)
conform to Hamiltonian dynamics, the last two terms refer to
the stochastic ingredient.

To obtain the quantum trajectories, we compute, up to the
time interval df and first order in &, the system position
x(t) =x(t+dr) +eZ,,(m—n)T,,,dt, which results, for the for-
ward movement, in the quantum equation of motion,

zRe[(pmH,n - pm,n) Bn—l,m - (pn+1,m
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FIG. 1. Quantum trajectories x(¢) plotted (in units of /M)
plotted against the scaled times (a) yf and (b) wt for the dissipative
and nondissipative harmonic oscillators prepared in the coherent
state |ay), with |ap|?=5. We set w/y=10 for the dissipative case.

1
x(0) = x(t+dt) + £, (m— n){ 7o AS(en) 8

m

vﬁ
Mo

1
Re(pn+1 m pn,m) 5n+1,m}dt'

Expanding the density operators p,;,, and p,, to first order
in &, we thus obtain

@_ié’S(x,t)_l_ vh 1 JR(x,1)

= 6
dt M x 2Mw R(x,t)  dx ©

where the dissipation-fluctuation source furnishes Nelson’s
stochastic trajectories, whereas its absence (y=0) reduces
Eq. (6) to Bohm’s causal dynamics. We stress that the white
noise fluctuation which is also present in Nelson’s
approach—apart from the diffusion constant
D=yh/2Mw—can be straightforwardly accounted for
within our extended beables. To this end, we only
have to enlarge the Wiener process to dA;=0, dAdA;
=y6,dt+\(x,1)8,;0(x) 8(1)d7(1), taking into account a back-

032101-3



LORENZEN, DE PONTE, AND MOUSSA
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FIG. 2. Trajectories x(¢) (in units of \%/Mw) against yt for the
dissipative harmonic oscillator prepared in the Fock state |1), with
w/y=10.

ground fluctuation in space and time of state-dependent
strength A(x,?), with d#(t) describing the fluctuations where
(d1?)=2dt [12]. For the cases to be analyzed below—where
the harmonic oscillator is assumed to be prepared in a coher-
ent state or in a superposition of them—this background
static, with constant )\=\e’;, adds to the rhs of Eq. (6) the
desired correction \Dd n/2dt.

A general quantum equation of motion associated with the
mixed state, following from the same steps leading from Eq.
(5) to Eq. (6), is then

dx h 1 d
—=—————|Im| —p(x,x";1)
dt M Re p(x,x;1) Ox
y (9 )
——Re| —p(x,x";t . 7
+ L e( = ple's0) ] 7)

IV. COHERENT, NUMBER, AND SQUEEZED STATES

Before addressing a Schrodinger catlike state, we consider
the coherent, number, and squeezed states of the harmonic
oscillator aiming to analyze dissipation and decoherence
through quantum trajectories.

A. Coherent state: Noise-free dissipative dynamics

Starting with the coherent state |ay), the dissipative mas-
ter equation following from Eq. (2) leads to the solution
(x| a(1))=R(x,1)e™"""  where the functions

1/4 2
R(x,t) = (%) exp[— ( \/ %x - Re[a(t)]) ],
S(xf) = Im[a(t)](ﬁ \/ 21‘; O Re[a(z)]) ,

depend implicitly on time ¢, through the evolving coherent
state a(r)=ape~ "> and explicitly on position x. The as-
sociated equation of motion,
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FIG. 3. Trajectories x(r) (in units of \A/Mw) against yr for the

dissipative harmonic oscillator prepared in the (a) position and (b)
momentum squeezed states, with r=1, |ag|>=1, and w/y=40.

2h
\/%{waw + gaRm],

prompts the trajectories x(¢) vs y¢ drawn in Fig. 1(a) for unit
constants 7i=1 and M=1, together with |qy|’=5 and

dx 0%
—=—"x+
dt 2
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FIG. 4. In (a) we plot the quantum trajectories x(r) (in units of \%/M w) against the scaled time yz for the dissipative harmonic oscillator
prepared in the superposition state |#)=N{|ap)+|-ap)), with |ag|?=5, w/y=10% In (b) we focus on a small time scale y#<<1 to draw
attention to the decoherence process, while in (c) we look a little further than yr<<1 to visualize the quantum-to-classical transition. Finally,
in (d) we plot the trajectories x(z) X wr associated with a nondissipative Schrodinger catlike state, assuming the same parameters as in Fig.

4(a) except y=0.

w/y=10. As expected, the ensembles of trajectories associ-
ated with the initial positions distributed according to
|a(x)|? are constrained by the dissipative mechanisms to the
vacuum equilibrium state, differently from what happens for
the case where y=0. In fact, in Fig. 1(b) we plot x(r) vs wt,
assuming that a dissipation-free oscillator is again prepared
in the coherent state |a;), with the same parameters as in Fig.
1(a). A comparison between Figs. 1(a) and 1(b) reveals, apart
from the fact that the amplitude of the oscillating trajectories
remains unaltered for y=0, an in-phase evolution of the de-
caying trajectories for y# 0. We thus conclude that the quan-
tum trajectories derived from our extended beables corrobo-
rate the well-known and remarkable property that, for an
absolute zero reservoir, a dissipative system prepared in a
coherent state remains pure despite losing excitation [17,18],
ie., a(r)=age” "> In other words, the decaying quantum
trajectories depicted in Fig. 1(a) illustrate the fact that, at
absolute zero, a coherent state evolves coherently under a
noiseless dissipative dynamics, i.e., without the fluctuations
that usually go with the dissipation.

B. Number state: Decay of initially stationary states

Next we consider the number state to address the fact that,
although the Bohmian mechanics ascribes no motion to a
quantum system in an stationary state [15], the unified dissi-
pative Bohm-Nelson version deduced here unequivocally re-
veals the evolution of an initially stationary state toward the
vacuum. Assuming that a harmonic oscillator is prepared in
the Fock state |1), the trajectories governed by the equation

@_z(il )
i 2\ Mox

are plotted in Fig. 2, obtained with Ai=M=w/y=1. We ob-
serve that the ensembles of trajectories, distributed according
to the initial values |<x| 1) 2 all converge, as expected, to
both maximum probability densities prescribed by quantum
mechanics, at x=*1 for the choice of parameters made
above. Therefore, our extended beables provide a satisfac-
tory scenario for the trajectories associated with stationary
states in quantum mechanics, a controversial point in Bohm-
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FIG. 5. In (a) we plot the quantum trajectories x(7) (in units of
VAh/Mo) against the scaled time ¢ for the dissipative harmonic
oscillator prepared in the superposition state |i)=N{|ap)+|-ap)),
with |a|?=10, and w/y=10% Tn (b) we focus on a small time scale
yt<<1 to draw attention to the decoherence process, while in (c) we
look a little further than y#<<1 to visualize the quantum-to-classical
transition.

ian mechanics. Putting it differently, whereas the Bohmian
approach is unable to assign trajectories to quantum systems
in stationary states, within our open beables an initially sta-
tionary state undergoes decaying trajectories converging to
the expected quantum mechanics predictions.
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C. Squeezed states: Variances and decoherence

To address variances and decoherence, we assume that the
harmonic oscillator is prepared in the displaced squeezed
state |a, )=D(@)S({)|0), where D(a)=exp(aa’—a*a) and
S(§)=exp[(Za™*=*a?)/2] are the displaced and squeezed
operators. The complex number a=|ale’? is related to the
position and momentum coordinates by a=(x,+ip,)/\2,
whereas {=re'? defines the squeezing factor r and direction
in-phase space [19]. Computing the density operator from
the Glauber-Sudarshan P function, we obtain the result

') = Mw
ple,x";0) =4/ — ex

g2 (x,x"51)
2f_(1)

@ N2 g 21‘40)—#2 B
—4ﬁ(x )T+ (D] =in P e " (x—x")

XIm[ a(e™ cosh r+ ¢ ) sinh r)] (,

where

fo() =1+ e [2 sinh? r + cos(2wt + 6)sinh(2r)],

Mw
) ’;t == T~
gx,x";0) =~/ %

X[(x=x")e " sin(Qwt + O)sinh(2r) +i(x +x")]
+2ie™""? Re[ (e’ cosh r— e~ (%) ginh r)].

Using Eq. (7), we present in Figs. 3(a) and 3(b) the trajecto-
ries associated with the position and momentum squeezed
states, with #=0 and 6=, respectively, and r=1. We have
assumed i=M=1, |ay|*=1, and the ratio w/y=40. As seen
in both figures, the initial distribution of positions, giving by
p(x;0), is naturally quite distinct for =0 and 7, being, as
expected, squeezed in the first case and stretched in the sec-
ond, relative to the coherent state case (r=0). As a matter of
fact, =0 (7r) prompts a state squeezed in position (momen-
tum), with the variance Ax,=((x2)—(x,)*)"? (Ap,) being
less than the vacuum fluctuation.

Another crucial feature of both figures is the destruction
of interference between the trajectories associated with the
initial position distribution p(x;0). It is expected and evident
from Figs. 3(a) and 3(b) that the interference between the
trajectories is more pronounced as they get closer to each
other and mutually deforming each other, around the origin,
i.e., for y#<<1. As time goes on, the interference mechanism
between trajectories is suppressed, leading to the loss of co-
herence which occurs around the decoherence time of both
squeezed states, given by

1
D= 4 inh?

as computed by a technique developed in Ref. [20]. In agree-
ment with Figs. 3(a) and 3(b), the coherence loss occurs
around 7,=0.2 for r=1.

Therefore, our decaying trajectories illustrates, beyond the
squeezing of the variances of the quadrature operators, the
decoherence mechanism as the loss of interference between
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trajectories. Moreover, the decaying trajectories enable us to
estimate the decoherence time, in good accordance with the
results derived from quantum mechanics.

D. Schrodinger catlike state: Decoherence
and the quantum-to-classical transition

We finally consider the case of a harmonic oscillator pre-
pared in a superposition of two equally excited coherent
states |#)=N{|ap)+|-ayp)), which is dragged into a statistical
mixture described in the position representation by

2
plrx":0) =N > 2ol (1= (1-5y)
=1

X (x| (= Y a(X(= DFa(n)|x'). (8)

The equation of motion [Eq. (7)] provides the trajectories
x(t) vs yt associated with the density matrix [Eq. (8)], which
are drawn in Figs. 4(a) and 5(a) for |ay|>=5 and 10, respec-
tively. We again take # and M to be unity, with w/y=10. In
Figs. 4(b) and 5(b) we focus on a small time scale (y#<<1) to
show clearly that the scaled decoherence time y7, of the
catlike state |, computed from the quantum mechanics for-
malism to be around (2|ay|?)™! [21], is manifested in the
behavior of the trajectories. In fact, it is exactly within the
scaled times of 0.1 and 0.05, associated with |ay|*=5 and 10,
respectively, which we observe interference between the tra-
jectories, causing them to deviate substantially from their
paths. Moreover, around these scaled times the two en-
sembles of trajectories, each associated with a component of
the superposition, begin to draw apart from each other. Fi-
nally, in Figs. 4(c) and 5(c), we move on to a slightly greater
time scale than yr,<<1 to focus on the quantum-to-classical
transition, as the reservoir drives the pure state superposition
into a statistical mixture. In fact, in both figures, all the tra-
jectories generated from the distribution [¢/{* of the initial
positions—Ilinked to interference and, thereby, quantum
statistics—converge to their two classical counterparts.

For comparison with the decaying motion in Fig. 4(a), we
plot in Fig. 4(d) the trajectories x(¢) vs wt, following from
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Eq. (6) with the same parameters as in Fig. 4(a), except
v=0. As expected, in this case the interference between the
trajectories associated with each component of the superpo-
sition remains unaffected.

V. CONCLUDING REMARKS

We have further extended Bell’s beables interpretation,
within Vink’s first generalization of the theory, to visualize in
the quantum trajectories the phenomena of dissipation, deco-
herence, and quantum-to-classical transition. Instead of start-
ing from the Schrodinger equation, as Bell did, we worked
with its It6 stochastic form and, for a particular choice of the
source of stochasticity—the one leading to a dissipative
Lindblad correction to the Hamiltonian dynamics—we have
unified Bohm’s and Nelson’s approaches. Evidently, other
choices of the stochastic source, not addressed here, may
provide other still more general equations of motion account-
ing, for example, for temperature effects.

Our extended Bell’s beables enabled us to observe clearly
the loss of quantum interference between trajectories exactly
around the decoherence time computed from quantum
theory. We also observe the convergence of all trajectories to
their classical counterparts as the pure density operator is
driven into a complete statistical mixture. Therefore, all
quantum features related to the quantum-to-classical transi-
tion are incorporated into our unified Bohm-Nelson dissipa-
tive hidden-variable model. The extended open beables also
provide trajectories for states which reduce, in the limit y
— 0, to the stationary states of quantum mechanics, thus cir-
cumventing a controversial point in Bohm’s formalism. We
finally suggest that our analysis could provide insights into
the classical counterparts of other interesting quantum phe-
nomena, not treated here, related to open quantum systems,
such as dissipative tunneling and entanglement sudden death.
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