
Mesoscopic quantum switching of a Bose-Einstein condensate in an optical lattice
governed by the parity of the number of atoms

V. S. Shchesnovich
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-170, SP, Brazil

�Received 5 April 2009; revised manuscript received 11 May 2009; published 3 September 2009�

It is shown that for a N-boson system the parity of N can be responsible for a qualitative difference in the
system response to variation in a parameter. The nonlinear boson model is considered, which describes tun-
neling of boson pairs between two distinct modes X1,2 of the same energy and applies to a Bose-Einstein
condensate in an optical lattice. By varying the lattice depth, one induces the parity-dependent quantum
switching, i.e., X1→X2 for even N and X1→X1 for odd N, for arbitrarily large N. A simple scheme is proposed
for the observation of the parity effect on the mesoscopic scale by using the bounce switching regime, which
is insensitive to the initial state preparation �as long as only one of the two Xl modes is significantly populated�,
stable under small perturbations, and requires an experimentally accessible coherence time.
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Mesoscopic quantum phenomena lie in between the big
and the small: the macroscopic classical and the microscopic
quantum worlds. The Bose-Einstein condensate �BEC� is
such a mesoscopic effect, i.e., a big “matter wave.” An order
parameter governed by the Gross-Pitaevskii equation �1–3� is
usually attributed to BEC. The order parameter corresponds
to the mean-field theory, i.e., to the limit of large number of
bosons: N→� at a constant density. The latter, on the other
hand, is equivalent to the classical limit of the discrete WKB
approach �4�, with 1 /N playing the role of the Planck con-
stant �see, for instance, Refs. �5,6��.

The mean-field limit is a singular limit of the full
quantum description and suffers from deficiency, e.g.,
at a dynamic instability �3�, due to the back-reaction of the
quantum fluctuations �7� or the appearance of the
Schrödinger catlike states �8�. In this connection one can
mention the “even-odd” effect, first predicted for the spin
systems �9� and observed in the small �S�10� magnetic mo-
lecular clusters as the parity-dependent tunneling splitting
�10�. The parity effect was also found in the decay of the
Josephson � states �11� and in the boson-Josephson model
�12�. The tunneling splitting, however, decreases exponen-
tially in N, for N�1, restricting its observation to the sub-
mesoscopic scale. One may wonder whether it is possible to
magnify the microscopic parity difference to a mesoscopic
scale and how. Such an effect would be also an interesting
manifestation of the singularity in the N→� limit of the
discrete WKB.

The aim of this Rapid Communication is to present a
solution: one must look for a dynamic parity effect which
allows for a massive constructive quantum interference.
Moreover, the feasibility of the experimental observation is
shown. The mesoscopic parity effect appears in the response
to variation in a parameter in the nonlinear two-mode boson
model �5�, a nonlinear variant of the celebrated boson-
Josephson model �13,14�.

The nonlinear two-mode boson model is formulated as
follows. Suppose that a single-particle Hamiltonian H0 has
two equal energy states X1 and X2 and that the interaction

term Hint=
g
2�d3x �†�x��†�x���x���x� in the many-body

Hamiltonian H=�d3x �†�x�H0��x�+Hint is smaller than the
energy gap of H0 isolating the resonant subspace. Projecting
on the resonant states, ��x�=b1�X1

�x�+b2�X2
�x�, one

arrives at the Hamiltonian Hint=
g
2 ���i1,i2,j1,j2

bi1
† bi2

† bj1
bj2

	
�i1 , i2 , j1 , j2� �1,2	�, where �i1,i2,j1,j2


�d3x �Xi1

� �Xi2

� �Xj1
�Xj2

.

We consider the situation when the bosons hop between the
modes Xl by pairs, i.e., when �12j j =0 for j=1,2. This type of
coupling describes the intraband tunneling of BEC in a
square optical lattice �5�, where the resonant modes are the
high-symmetry points of the Brillouin zone, X1= �kB ,0� and
X2= �0,kB�, and the quasimomentum conservation makes
�12j j vanish. Moreover, it also applies to BEC on a rotated
ring lattice �15�. The intraband BEC tunneling Hamiltonian
reads

Ĥ =
1

2N2 �n1
2 + n2

2 + ��4n1n2 + �b1
†b2�2 + �b2

†b1�2�	 , �1�

where nj =bj
†bj and �=�1122 /�1111 �0���1� is the only

parameter in the model �see for details Refs. �5,14��. The
corresponding Schrödinger equation is cast as ih�	�
�
= Ĥ�
�, where h=2 /N is the effective Planck constant and
the dimensionless time 	= �2gN�1111 /��t, with g
=4��2as /m, depends on N through the density only.

Hamiltonian �1� features �14� a quantum phase transition
at the top of the spectrum related to the mean-field
symmetry-breaking bifurcation between the stationary point
�b1

†b1� /N=1 /2, �
arg�b2
†�2b1

2�=0�, corresponding to
the equally populated Xl modes, which is stable for
��c=1 /3, and the self-trapping stationary points
�b1

†b1� /N�1 or b2
†b2� /N�1, � undefined�, stable for �

��c. It also has a parity-dependent energy spectrum �see
also Fig. 1�a��. There are two invariant subspaces corre-
sponding to the even and the odd occupation numbers k in
the Fock basis, i.e., �
�=�k=0

N Ck�k ,N−k�, with �k ,N−k�

��b1

†�k�b2
†�N−k /�k ! �N−k�!��vac�. The projections of Ĥ on

the even �s=0 or “ev”� and odd �s=1 or “od”� subspace are
given as
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H�s� =�
�s �s+1 0 . . . 0

�s+1 �s+2 � � ]

0 � � � 0

] � � � �2L−1−s

0 . . . 0 �2L−1−s �2L−s

� , �2�

where, respectively, for even and odd N, L=N /2 and L= �N
−1� /2 in the case of H�ev�, while L=N /2 and L= �N+1� /2 in
the case of H�od�. Here, �k= �2�−1� k

N �1− k
N � and �k

= �
2 � k

N � k
N + 1

N ��1− k
N ��1− k

N + 1
N ��1/2.

When N is odd we have PH�ev�P=H�od�, where P
=diag�1, . . . ,1�T �i.e., the transposed 1�. In this case
P�Ej

�ev��= �Ej
�od��, i.e., the energy levels are doubly degenerate.

On the other hand, this is a consequence of the Kramers
theorem �16�. Indeed, Hamiltonian �1� is equivalent to a spin
model HS= �1−��Sz

2+2�Sx
2, with the total spin S=N /2, if we

associate Sx= �b1
†b2+b2

†b1� /2, Sy = �b1
†b2−b2

†b1� /2i and Sz
= �b1

†b1−b2
†b2� /2.

When N is even the projected Hamiltonian H�s� is invari-
ant under the exchange symmetry, i.e., PH�s�P=H�s�

�s� �0,1	�. One control parameter cannot cause the
energy-level degeneracy �17�; thus, the eigenvectors
of H�s� must satisfy the exchange symmetry, namely,
P�Ej

�s��= �−1� j+�N/2�+1−s�Ej
�s�� �j=1, . . . , N

2 +1−s�. For a finite
�c−�0 the eigenvalues of H�s� appear in the form of very
narrow doublets �see also Fig. 1�a�� due to the “self-trapping
states” being strongly localized at the respective Xl mode
�e.g., typically �k ,N−k �
��2�10−6 for k25 �14��. Conse-
quently, each H�s� also has the quasidegenerate spectra �since
H�ev�−H�od��

1
N � which become finer for larger deviations

�c−�, exactly as the numerics indicates.
Consider now the following experimentally realizable

setup: initially just one of the Xl modes is significantly popu-
lated �to achieve this one can use the nonadiabatic loading
�18� into one of the two resonant Bloch states of the lattice
with �1�1 /3�. By varying the lattice parameter �e.g., by

changing the lattice depth� between �1 and �2, with �2

�c, one drives the system across the phase transition and
back to force a switchinglike dynamics between the self-
trapping states at the Xl modes. Remarkably, for a general
initial state localized at just one Xl mode, e.g., �
�
=�k=0

K�NCk�k ,N−k�, where the distribution Ck is not impor-
tant, the result qualitatively depends on the parity of N �see
Fig. 1�b��. Note that the switching is between the Bloch
modes with orthogonal Bloch vectors: X1= �kB ,0� and X2

= �0,kB�.
In the adiabatic limit the mechanism of the switching for

a localized initial distribution Ck can be understood by con-
sidering separately the even and the odd invariant subspaces.
For simplicity, consider the initial state �
�= �0,N��H�ev�

�the case of �
�= �1,N−1��H�od� is similar�. Figure 2 shows
that there are but few significant terms �from the top of the
spectrum� in the expansion of the initial state over the eigen-
vectors �recall the strong localization of the eigenvectors
at k=0 and k=N for ���c�. For even N there are the quan-
tum beats, i.e., oscillations of the populations, between the
successive pairs of eigenstates from the top of the energy
spectrum. This can be understood as tunneling between
the Xl modes. The switching occurs for the odd-� phase
differences between the first few pairs of the successive
top energy eigenstates, i.e., ��L+1−2j 


1
h�0

	dt�EL+1−2j
�s� �t�

−EL−2j
�s� �t����2mj −1�� �j=0,1 , . . .�. For odd N, on the other

hand, the eigenvectors break the P symmetry and only those
localized at X1 acquire nonzero amplitudes �i.e., no tunnel-
ing�. Thus, a high visibility parity effect requires at least few
top dynamic phase differences in both the even and the odd
subspaces �for even N� to be odd in �, which—in the general
case—cannot be satisfied by adjusting 	2−	1 in Fig. 1.

The Landau-Zener-Majorana �LZM� transitions between
the instantaneous energy levels occur for the nonadiabatic
variation in �. In the instantaneous eigenvector basis,
�
�s��	��=� jcj�	�exp�− i

h�0
	dt Ej

�s��t���Ej
�s��	��, we have
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FIG. 1. �Color online� �a� The energy-level structure of H�ev� for
N=40 �solid lines� and 41 �dashed lines�. �b� The average ratio of
the X1-mode occupation number x�= b1

†b1� /N �dark solid lines�
and x�− �x

2 , x�+ �x
2 �light dashed lines�, with �x= �b1

†b1 /N
− x��2�1/2. The upper lines �solid and dashed� correspond to N
=40 and the lower ones correspond to N=41. The initial state is a
Gaussian �
�=A��k=0

N e−k2/�2
�k ,N−k�, where �=4. Here, ��	�=�1

+1 /2��2−�1��tanh���	−	1��−tanh���	−	2��	 with �=10−4, 	1

=7000, and 	2=12 800.
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FIG. 2. �Color online� The probabilities �Ej
�ev� �0,N��2 �j=L+1

and j=L� given for N=40 by the solid and dashed lines �almost
coincide�, for N=60 by “+” and “�,” for N=80 by “�” and “�,”
and for N=100 by “�” and “�” symbols. The upper dashed-dotted
line gives �m=0

3 �EL+1−m
�ev� �0,N��2. The upper and lower dotted lines

give, respectively, �EL+1
�ev� �0,N��2 and �m=1

3 �EL+1−m
�ev� �0,N��2 for odd

N. The data, connected by the dotted lines to guide the eye, which
lie off the central curve are due to the quasidegeneracy on the order
of round-off error.
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dcj

d	
=

d�

d	
�
l�j

cl

Ej
�s��

dĤ

d�
�El

�s��

Ej
�s� − El

�s� exp�−
i

h
�

0

	

dt�Ej
�s� − El

�s��� ,

�3�

where it was used that Ej
�s�� d

d	 �Ej
�s��=0 �H�s� does not have

energy degeneracy�. Due to the exchange symmetry P, in the
even N case the LZM tunneling occurs only between the
levels Ej

�s� with the same parity of j, whereas for odd N there
is a small coupling also between the adjacent levels since
H2L+1

�s� −H2L
�s��

1
N . The LZM result �19� states that �cl�2�exp�

−���E�2 / �h� d�E
d	 ��	, for l� j. Hence, the lower limit on the

adiabatic time scale, i.e., �cl�2�1, can be determined from
the difference between the top energy levels En+1

�s� −En
�s�

�1 /N2 for �→�c �14� �see also below�. We get 	ad�N �the
time scale for a finite phase difference �� j is 	ph�N since
h=2 /N�. Therefore, the adiabatic case also requires an ex-
tremely long coherence time and thus it is not realistic at all.

In the other limit �Fig. 3� when ��	� is a steplike function
�e.g., similar to the one used in Fig. 1�b�, but with ��1 or
larger� taking two values �1��c and �2=�c, the switching
regime, the bounce switching for below, has all the needed
properties. Indeed, the bounce switching possesses the
N-scaling property; thus, it survives in the N→� limit and
is insensitive to the initial distribution Ck �localized at just
one X mode�. These features originate from the fact that
all the dynamic phases are odd in �. Indeed, Hamiltonian
�1� in the coherent basis a1,2= �b1� ib2� /�2 reads

Ĥ= �2� /N2�a1
†a1a2

†a2+ ��1−3�� /4N2��a1
†a2+a2

†a1�2+const
with the energies E���c�= �2 /3N2���−1��N−�+1�, where �
=1, . . . , � N

2 �+1. Hence, the dynamic phase differences are
given as ��L+1−s−2n

�s� = 4n+2s+1
3N �	c �n=0,1 ,2 , . . .�, where �	c is

the hold time at �c. By setting �	c=3�N one obtains
��L+1−s−2n

�s� = �4n+2s+1��.

The actual physical time, t= tph
	
N with tph
� / �2g�1111�, is

N independent due to the scaling property �	c=3�N. For a
condensate in a square lattice of n sites of size d in the tight
transverse trap with the oscillator length a�, the coherence
time is �t�md2a�n / ��as�. For 87Rb, n=64, d=0.5 �m,
and a�=0.1 �m the required coherence time is �t�0.3 s.
The switching can be detected by releasing the optical lattice
and observing the direction of the interference pattern. For
the lattice V=V0�cos�2kBx�+cos�2kBy�� the parameter range
is V0=0.58ER for �=0.25 and V0=0.3573ER for �=1 /3.
Finally, the applicability condition for the two-mode model
ENL /ER�1, where ER
�2kB

2 /2m and ENL
gN�1111, can be
cast as N�na� /as.

Experimental observation requires the stability of the dy-
namic parity effect under perturbations. To have an idea on
the bounce switching stability, consider first the general per-
turbation within the two-mode model

Ĥpert =
�

N
�n1 − n2� +

J

N
�b1

†b2 + b2
†b1� , �4�

where � and J �given in terms of the nonlinear energy ENL�
account for the imperfections of the optical lattice and for a
magnetic trap �but see below�. The nonlinear interaction
terms g�12j j�b1

†b2
†�b1

2+b2
2�+H.c.� discarded when deriving

Eq. �1� also reduce to the J part in Eq. �4� with J
=�12j j /�1111. The first term in Eq. �4� preserves the decom-
position of the model as in Eq. �2�, whereas the second one
breaks it and both break the exchange symmetry P. In the

a-operator basis Ĥpert=
�

N �a1
†a2+a2

†a1�− iJ
N �a1

†a2−a2
†a1� and the

matrix elements of Ĥpert between the eigenstates of Ĥ are
much smaller than the energy differences at �c if ��− iJ�
�1 /N2. However, extensive numerical simulations show
that for N� ��2+ j2�−1/4 the system still exhibits essentially
the same parity effect as in Fig. 3. For N� ��2−1 /3�−1/2, the
parity effect is also insensitive to an imprecise tuning of �2
in Fig. 3 to the critical value.

An additional weak magnetic trap Vtr=m�2�x2+y2� /2
+V��z� is always a part of the experimental setup, leading to
the J term in Eq. �4�. However, this contribution is exponen-
tially small. Indeed, for a weak trap �2
� /m��nd2�d2

the unperturbed Bloch wave �k�x� acquires a factor given by
a product of a polynomial and a Gaussian in �x ,y�, i.e.,
�k

�Vtr��x�=G�z�P�x ,y�exp�−�x2+y2� /2�2	�k�x�. The Gaussian
factor defines the order of the nondiagonal matrix element of
Vtr between the two resonant Bloch waves. We have

� d3x ��kB,0�
�Vtr� Vtr��0,kB�

�Vtr� � �� exp�−
�2�2

4d2 � . �5�

Therefore, J in Eq. �4� reads J���� /ENL�exp�−�2n /4	. To
bound the pre-exponential factor �� /ENL�nd2a� / ��2asN�
�a� / �asN�, one needs N�a� /as compatible with the appli-
cability condition N�na� /as.

There still remains to consider the transitions to the non-
resonant modes due to the nonlinear term of the full boson
Hamiltonian. The latter, however, preserves the quasimo-
mentum �with the exponentially small correction due to the
magnetic trap� and, hence, the parity of N since the bosons
leave the resonant modes by pairs. More detrimental than the
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FIG. 3. �Color online� The bounce switching for the initial state
�
�=A��k=0

N e−k2/�2
�k ,N−k�. �a� N=200 and �b� N=201. In both

panels, the average ratio x� �thick lines� with the side lines x�
− �x

2 and x�+ �x
2 �thin lines� is given for �=0.05N �dashed-dotted

lines�, �=0.1N �dashed lines�, and �=0.2N �solid lines�. Here, ��	�
is as in Fig. 1 with �=8, �1=0.25, �2=1 /3, and 	2−	1=3N�.
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setup imperfections considered above is the loss of atoms,
for instance, the scattering of BEC atoms with the cloud of
hot atoms, which will wash out the parity effect. To prevent
this, a smaller than in a usual BEC number of cold atoms can
be used, e.g., N on the order of few hundred atoms.

In conclusion, for a flexible control parameter, the nonlin-
ear two-mode boson model possesses a bounce switching
regime with the qualitatively different outcome of switching
for even and odd N. This regime is insensitive to the initial-
state preparation �with just one resonant mode being signifi-
cantly populated�, shows stability to small perturbations, and

requires an experimentally accessible coherence time, thus
allowing for the observation of the even-odd effect on the
mesoscopic scale. As a general perspective, one can observe
that the nonlinear two-mode boson model is a nonlinear vari-
ant of the two-site Bose-Hubbard Hamiltonian and that the
second-order tunneling applies also to the dynamics of the
repulsively bound atom pairs in an optical lattice �20,21� and
to the case of strong interactions reaching the fermionization
limit �22�.
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Brazil.
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