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Spin chains have been proposed as quantum wires for information transfer in solid-state quantum architec-
tures. We show that huge gains in both transfer speed and fidelity are possible using a minimalist control
approach that relies only on a single local on-off switch actuator. Effective switching time sequences can be
determined using optimization techniques for both ideal and disordered chains. Simulations suggest that effec-
tive optimization is possible even in the absence of knowledge of the Hamiltonian or accurate models.
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The dynamical evolution of a chain of coupled spins is
well suited to the job of a data bus, transferring quantum
information over the short distances between quantum regis-
ters. This is particularly desirable in architectures where in-
ternal quantum communication is required but the use of
photons is impractical �1,2�. A practical scalable data bus
should achieve fast high fidelity of information transfer with-
out the need for intricate manipulation of its parts. Ideally,
the data should flow along the bus without any external con-
trol �3,4�. However, without any dynamic control perfect in-
formation transfer for most spin chains is possible only if the
couplings are precisely engineered �5–7�. Although it often
suffices to engineer the couplings near the end of the chain
�8,9�, fabrication of chains with such precisely engineered
couplings is a significant challenge. Perfect state transfer for
any length of chain is also possible in principle if we have
full dynamic control over individual couplings between ad-
jacent spins, using either dynamic or adiabatic passage
schemes �10,11�. However, these schemes require control of
all couplings and thus multiple control electrodes, which
aside from increasing system complexity may also be
sources of noise contributing to decoherence, an effect po-
tentially amplified by the high-field strengths and longer
transfer times required for adiabatic passage.

Recent work has shown that many systems are control-
lable even if we can only modify the dynamics of a small
part of the system. In particular, the dynamics on the first
excitation subspace of many spin chains is controllable if we
can vary the coupling at one end of the chain �12�, for in-
stance. It has also been shown that this global controllability
can be exploited to improve the transfer fidelities in certain
types of spin chains by repeatedly applying certain unitary
operations at one end of the chain �13�, and in the limit of
instantaneous gate operations and fast repetition, it can be
shown that arbitrarily high transfer fidelities can be achieved.
Theoretical controllability results, however, suggest that one
could do much better. Almost any local perturbation of the
Hamiltonian theoretically suffices to effectively control the
system, and any objective can be achieved in finite time by
simply switching this perturbation on and off at specific

times. Here we present a systematic approach to finding the
correct switching times to achieve fast high-fidelity informa-
tion transfer for various spin chains, including both uniform
and disordered spin chains. We further demonstrate that ef-
fective bang-bang switching sequences can be found even in
the absence of a precise model of the system using adaptive
closed-loop experiments. This is important as the Hamilto-
nians for a particular physical realization of a spin-chain
quantum wire are usually at best approximately known and
subject to variation due to fabrication tolerances, although
this problem can potentially be overcome by experimental
system identification �14�.

For proof-of-principle simulations we consider spin
chains of N spin-1

2 particles with a coupling Hamiltonian

HI =
1

2�
n,m

Jmn
x �m

x �n
x + Jmn

y �m
y �n

y + Jmn
z �m

z �n
z , �1�

where �n
� for �� �x ,y ,z� are the usual Pauli matrices for the

nth spin and Jmn=Jnm are the coupling constants. This model
covers common types of chains, including XY, Heisenberg,
and dipole-coupled spin chains. For applications such as in-
formation transfer, it is desirable to restrict the dynamics by
ensuring that HI commutes with the total spin operator S
=�n=1

N �n
z , and thus conservation of the total number of exci-

tations. This condition is equivalent to xy isotropy, i.e., Jmn
x

=Jmn
y , and ensures that the Hamiltonian decomposes into ex-

citation subspaces. As usual in work on spin chains for in-
formation transfer we assume Jmn

x =Jmn
y and work in the first

excitation subspace E1. We have dim E1=N and the off-
diagonal elements of the Hamiltonian restricted to E1 are
Hmn

�1� =Jmn
x =Jmn

y for m�n. The diagonal elements depend on
Jmn

z . Most simulations will be based on isotropic XY or
Heisenberg chains, where Jmn

x =Jmn
y and Jmn

z =0 in the former
case and Jmn

x =Jmn
y =Jmn

z in the latter. For chains with nearest-
neighbor coupling �NNC� Jmn=0 except for n=m�1. An
NNC chain is uniformly nearest-neighbor coupled �UNNC�
if Jn,n+1=J for all n, and choosing time in units of J−1, we
may assume J=1 in this case.

The objective of optimizing information transmission
through a spin-chain quantum wire is to achieve high-fidelity
transfer in a minimum amount of time. We aim to
achieve this by optimizing the switching time sequence
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t= �t1 , . . . , tK� of a simple binary switch actuator, such as a
local control electrode. The evolution of the system subject
to this bang-bang control is given by

U�t� = U�1��t1�U�2��t2� ¯ U�1��tK−1�U�2��tK� , �2�

where U�m��tk�=exp�−itkHm�. U�1��tk� corresponds to free
evolution under H1=HI �actuator off�, and U�2��tk� corre-
sponds to evolution under the perturbed Hamiltonian H2
=HI+HC for tk time units. The idea is that although the ac-
tuator changes the Hamiltonian only locally in a fixed way,
by switching this perturbation on and off at different times,
we can realize infinitely many effective Hamiltonians that
give rise to different evolutions of the system. Most of these
will not produce a desirable evolution, but some are likely to
have desirable characteristics such as a near unit-height peak
in the population of a particular state after a short time as
shown in Fig. 1. The optimization tries to find such desirable
cases by systematically exploring the parameter space, in our
case the possible switching time sequences t. Specifically,
we seek t that minimize the average transmission error for a
quantum bit propagating through the chain �3�, E�t�=1
− �	N�U�t��1
�2, subject to the constraint that the transmission
time T=�k=1

K tk and number of switches remain below thresh-
olds Tmax and Kmax.

If the chain Hamiltonian HI and the perturbation HC in-
duced by the actuator are known then we can easily solve the
optimization problem. For fixed K the gradient of the objec-
tive function is �E= ��1E , . . . ,�KE�, where the partial deriva-
tives are

�kE =
�E

�tk
= − 2 Im�	N�U�k��t��1
	1�U�t�†�N
� , �3�

with U�k��t�=U1¯HkUk¯UK, where U� is the �th factor in
Eq. �2�. Equipped with this gradient information we can use
either a gradient descent algorithm to find topt or we can

similarly calculate the Hessian matrix of second derivatives
H= �Hk�� with Hk�=�k��E�t� and use the more efficient New-
ton method with an adjustable step size ��0 to iteratively
update t

ts+1 = ts − ��H�E�ts���−1 � E�ts� �4�

until convergence is achieved. In practice there are some
additional complications as we have to impose constraints on
the switching times �e.g., tk� tmin, �ktk�Tmax, etc.�, but
these can easily be incorporated in the algorithm �15�. The
resulting topt depends on the initial guess t0, and as with
virtually all optimization algorithms, we can only guarantee
convergence to a local optimum, but the method is generally
both effective and very efficient.

We first tested if we are indeed able to achieve fast high-
fidelity information transfer using a simple binary switch ac-
tuator for UNNC XY and XYZ chains. For such chains per-
fect information transfer without control or engineered
couplings is possible only for N=3, and, as Fig. 2 for the
Heisenberg chain shows, the maximum transfer fidelity in a
limited amount of time decreases quickly, and the peak trans-
fer times vary erratically with the chain length N. Assuming
a simple local actuator that switches off the coupling be-
tween the first two spins, we were able to find switching
sequences t that achieved transfer fidelities �0.9999 for both
XY and XYZ chains up to length 50 with transfer times
T�N��10N and at most K=4N switches. Even when the pre-
cision of the switching times tk was limited to 10−4, i.e., four
decimal digits, the error remained below threshold except for
XYZ chains with N=48, 50, where the error was slightly
above threshold �1.7�10−4 and 5.6�10−4�. Surprisingly, we
were able to achieve transfer fidelities �0.9999 in many
cases even when the switching times were limited to only
three decimal digits accuracy, and for shorter chains even
fewer digits appeared sufficient in many cases although at
the expense of somewhat increased transfer times. This is
significant as it shows that we do not require “double preci-

FIG. 1. �Color online� Population of tenth spin for length-10
disordered NNC XYZ chain without control �dashed red line� and
with optimized bang-bang control �solid blue line�. Although the
actuator only effects a local perturbation of the coupling between
spins 1 and 2, it significantly changes the evolution of the entire
system, resulting in “constructive interference” of the populations at
the 10th spin at the target time T=95.4740.
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FIG. 2. �Color online� Transfer times and fidelities for Heisen-
berg spin chain with uniform nearest-neighbor coupling. Best fideli-
ties achievable according to �3� in at most 4000 time units without
control �shaded bars or circles� and with our optimized bang-bang
control �red diamonds or line�.
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sion” control of the switching times, which would be experi-
mentally infeasible.

Although the optimal transfer times of T�10N are im-
pressive compared with those for the uncontrolled chain, es-
pecially considering the transfer fidelities, the ease with
which the algorithm appeared to be able to find solutions
suggested that both K and T could be further reduced. To
investigate this, we systematically varied the number of
switches and approximate target transfer times T0 for a
benchmark case of an XYZ UNNC chain of length 10. The
contour plot of the error on a logarithmic scale �log10 E�topt��
as a function of K and T0 �Fig. 3� suggests that for this
system near-perfect transfer could be accomplished in as
little as 50 time units �measured in units of J−1� with as few
as 22–24 switches. Pushing the limits tends to slow down the
optimization, increasing the number of iterations and possi-
bly requiring several runs with different initial guesses t0.
Yet, for the simple benchmark problem, all runs completed in
a few seconds �average 1.3 s, max 4.6 s� on a standard lap-
top.

While chains with uniform nearest neighbor coupling pro-
vide nice models, in practice the coupling constants Jmn are
likely to be subject to variation, and direct coupling may not
be limited to nearest neighbors. It is thus crucial to investi-
gate the performance of the bang-bang control scheme and
optimization algorithm for perturbed chains. As Fig. 4
shows, with very few exceptions the algorithm had no diffi-
culty in finding solutions that achieved threshold transfer fi-
delities of 99.99% with transfer times of T�100 and K
�40 switches for moderately disordered NNC Heisenberg
chains of length 10. Similar results were achieved for other
chains, e.g., XY chains. Preliminary simulations suggest that
substantial gains in fidelities and transfer times are possible
even for highly disordered chains although in some cases
finding solutions becomes challenging and target transfer
times and/or the number of switches may need to be in-
creased.

These results are promising in that the simulations suggest
substantial improvements of both transfer fidelities and trans-
fer times are possible with very limited control and very
simple actuators even for disordered chains. However, our

optimization procedures assumed knowledge of the chain’s
Hamiltonian and the perturbation induced by the actuator. A
valid objection to the practical feasibility of the approach is
that this information is often simply not available for a par-
ticular physical system. Furthermore, unknown environmen-
tal effects may perturb the evolution. Hence, it is crucial to
consider if we can determine a set of optimal switching times
for a given system without recourse to an idealized model
using adaptive closed-loop experiments. In this case, the fig-
ure of merit, in our case the transfer fidelity, for a particular
switching sequence is evaluated experimentally as follows:
initialize the system, create an excitation at one end, apply
the control sequence, and measure the spin at the other end
of the chain. Assuming a simple binary-outcome projective
measurement, this experiment is repeated until we have ac-
cumulated sufficient data to estimate the transfer fidelity to a
desired number of significant digits. In this setting the opti-
mization must find an optimal time sequence based only on
the limited-precision fidelity measurement data.

To assess if we can still find effective switching pulse
sequences we simulated this situation, i.e., we choose a
model system to calculate the fidelities, but instead of pro-
viding the optimization routine with information about the
actual model as before, it now only had access to an estimate
for the fidelity with D significant digits for each time se-
quence t. For our benchmark problem �a UNNC XYZ chain
of length 10� we compared for four types of algorithms: ge-
netic, pattern search, Nelder-Mead simplex, and Newton it-
eration with discrete gradients derived from the limited-
precision �simulated� measurement data. The results are
shown in Table I. Pattern search was abandoned due to ex-
tremely poor performance and convergence issues. Most no-
tably, the standard genetic algorithm, despite being a popular
choice for closed-loop optimization experiments in some ar-
eas, failed completely for this problem. Out of 100 trials with
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FIG. 3. �Color online� Error log10�E�topt�� as a function of the
number of switches and target transfer times T0, where E�topt� is the
minimum error over 10 runs with random t0.
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FIG. 4. �Color online� Transfer times T and fidelities F for 100
�NNC� Heisenberg chains of length 10 with randomly perturbed
couplings Jn,n+1=1+�	 �	 Gaussian random variable, 		
=0, ��	�
=1� for 1% and 10% disorder. Without control, the maximum trans-
fer fidelities achievable in �4000 time units and transfer times T
are scattered with 	F
=83.74%, 	T
=2,120 for �=0.01 �blue dia-
monds� and 	F
=82.21%, 	T
=1,956 for �=0.1 �green circles�.
With optimized bang-bang control, near-perfect transfer 	F

�0.9999 for �=0.01 and 	F
�0.9995 for �=0.1 can be achieved
for all 100 test systems in approximately 100 time units �red lines�.
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different initial populations �50 individuals�, not one came
close to reaching threshold fidelity, and the number of fidel-
ity evaluations �#F� and hence experiments required was
huge. The simplex algorithm did significantly better in that
75% of the trials succeeded in finding solutions above
threshold fidelity. Application of the quasi-Newton-type op-
timization procedure outlined above requires that the analyti-
cal gradients be replaced by discrete gradients calculated
from the fidelity measurements. Although the limited preci-
sion is a challenge here, with careful tuning of the param-
eters in the discrete gradient estimation, the quasi-Newton
routine �Newton-1� far outperformed all other choices in
terms of success rate, number of fidelity evaluations, execu-
tion times, and best transfer times. For comparison we have
included results for our model-based Newton iteration
�Newton-2� using �partially� analytic gradients. As expected,
the model-based iteration is more efficient in terms of func-
tion evaluations and execution times, but there is no differ-
ence in the success rates or average transfer times.

As estimating the fidelities to a large number of signifi-
cant digits is costly in that it requires many experiment rep-
etitions for each fidelity evaluation, we further investigated
the effect of limiting the precision of the fidelity measure-
ments to a few significant �decimal� digits. We note that four

digits is the minimum accuracy required if we wish to
achieve transfer fidelities �99.99%. We found that with suit-
able choice of the algorithmic parameters, especially with
regard to the discrete gradient estimation, the quasi-Newton-
type algorithm generally continued to find solutions with er-
ror probabilities �10−4 in almost all cases even when the
accuracy of the fidelities was limited to five to eight digits,
and in some cases the algorithm was able to find time se-
quences achieving transfer fidelities �0.9999 for our bench-
mark problem even when both the accuracy of the fidelity
measurements and the switching times tk were limited to four
decimal digits. This suggests that threshold fidelities can be
achieved even with limited-precision measurements and con-
trol.

We have shown that minimal control using a binary
switch actuator that induces a local perturbation to a fixed
Hamiltonian holds considerable promise to improve informa-
tion transmission through spin-chain quantum wires. The ef-
fectiveness of the technique for disordered chains and the
possibility of model-free optimization using closed-loop ex-
periments with limited precision measurements further en-
hance its potential appeal. Furthermore, the technique is not
limited to information transfer in spin chains with nearest-
neighbor coupling. Preliminary simulations suggest that the
technique is still effective for more complex spin networks
with non-nearest-neighbor couplings and potentially many
other types of systems and that it can be applied to imple-
ment control objectives other than state transfer, including
nonlocal unitary operations.
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TABLE I. Performance of various optimization algorithms in
closed-loop experiment simulations for benchmark problem.

% Success 	#F
 	texe
 	T
 Tmin

Genetic 0 12275.5 35.4497 71.6552

Simplex 75 8696.3 21.7677 99.9145 94.9778

Newton-1 100 1379.8 3.6295 99.5020 74.6144

Newton-2 100 96.3 0.7087 99.6101 74.6268
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