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Thermal dissociation of dipositronium: Path-integral Monte Carlo approach
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Path-integral Monte Carlo simulation of the dipositronium “molecule” Ps, reveals its surprising thermal
instability. Although, the binding energy is ~0.4 eV, due to the strong temperature dependence of its free-
energy Ps, dissociates, or does not form, above ~1000 K, except for high densities where a small fraction of
molecules are in equilibrium with Ps atoms. This prediction is consistent with the recently reported first
observation of stable Ps, molecules by Cassidy and Mills, Jr., [Nature (London) 449, 195 (2007); Phys. Rev.
Lett. 100, 013401 (2008)] at temperatures below 1000 K. The relatively sharp transition from molecular to
atomic equilibrium, which we find, remains to be experimentally verified. To shed light on the origin of the
large entropy factor in free-energy, we analyze the nature of interatomic interactions of these strongly corre-
lated quantum particles. The conventional diatomic potential curve is given by the van der Waals interaction at
large distances; but due to the correlations and high delocalization of constituent particles, the concept of

potential curve becomes ambiguous at short atomic distances.
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Dipositronium or positronium molecule Ps, is a four-body
system consisting of two electrons and two positrons. The
dynamical stability of dipositronium was established in 1947
by Hylleraas and Ore [1]. However, the molecule was not
observed experimentally until recently [2], even though a lot
of knowledge had been provided by a number of theoretical
studies (see Refs. [3-9] and references therein). In addition
to the fundamental issues of physics, Ps, is of interest also in
astrophysical applications and in solid-state physics [10,11].

In laboratory conditions, Ps, formation has recently been
observed resulting from implantation of intense pulses of
positrons into porous silica films [2,12].

The positronium molecule, with all the four particles of
the same mass, sets challenges to modeling since quantum
calculations are to be performed fully nonadiabatically [13].
This, however, can be realized with quantum Monte Carlo
(QMC) methods [14-16]. Tt should be pointed out that also
for other systems, approaches that are not restricted by the
Born-Oppenheimer or other adiabatic approximations are
gaining more attention [16-23].

Among the QMC methods, the path-integral Monte Carlo
(PIMC) offers a finite-temperature approach together with a
transparent tool to trace the correlations between the particles
involved. Though computationally challenging, with the
carefully chosen approximations PIMC is capable of treating
low-dimensional systems, such as small molecules or clus-
ters, accurately enough for good quantum statistics for a
finite-temperature mixed state [24-29].

In this study, using PIMC, we evaluate the density matrix
of the full four-body quantum statistics in temperature-
dependent stationary states. Thus, the temperature-dependent
distributions of structures and energetics of Ps, are estab-
lished. The main focus here is to find the preferred configu-
ration of the four-body system at each temperature—Ps,
molecule or two Ps atoms.

According to the Feynman formulation of the statistical
quantum mechanics [30], the partition function for interact-
ing distinguishable particles is given by the trace of the den-

sity matrix p(B8)=e P,
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where S is the action, 8=1/kgT, 7=8/M, and M is called the
Trotter number (R),=R;). In present simulations, we use the
pair approximation of the action and matrix squaring for the
evaluation of the Coulomb interactions [25,31]. Sampling of
the paths in the configuration space is carried out using the
Metropolis algorithm [32] with the bisection moves [33].
The Coulomb potential energy is obtained as an expectation
value from sampling and the kinetic energy is calculated us-
ing the virial estimator [34].

The error estimate for the PIMC scheme is commonly
given in powers of the imaginary time step 7[25]. Therefore,
in order to determine comparable thermal effects on the sys-
tem, we have carried out the simulations with similar sized
time steps regardless of the temperature. This way the
temperature-dependent properties can be compared avoiding
temperature-dependent systematic errors. The standard error
of the mean with two-sigma limits is used to indicate the
statistical uncertainty, where relevant. The average of the
chosen time step is (7)=0.0146Ey, where Ej; denotes the
atomic unit of energy, hartree (=27.2 eV). The other atomic
unit we use here is Bohr radius for the length «
(=0.529 A).

The total energy of positronium “atom” Ps is —0.25 at 0 K
and the binding energy of the molecule Ps, is 0.0160
(=0.435 eV) [8]. We find these values as zero Kelvin ex-
trapolates from our simulations at low temperatures. We
point out that with PIMC we evaluate energetics as statistical
expectation values from sampling with less accuracy than
that from conventional solutions of wave functions and the
zero Kelvin data we obtain as extrapolates only.

In Fig. 1 we present the “apparent dissociation energy” of
Ps, at several different temperatures. In each temperature,
this is the negative total energy of the molecule with respect
to two atoms as Dy=—[(EL2);—2(ErS)]. At T=900 K, we

find for the average over shown temperatures Dy
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FIG. 1. (Color online) Apparent temperature-dependent disso-
ciation energy of dipositronium in units of mhartree: zero Kelvin
reference (square without error bars, red) and finite-temperature
simulation results at the low-density limit (blue dots). Data from
higher Ps density simulations are also shown (green): 0.50 (CJ), 14
(V), and 100X 10* m~! (A).

=0.0154(5), which is very close to the dissociation energy at
0 K, Dy. However, at higher temperatures the apparent dis-
sociation energy vanishes because <EE;2>T and 2<Eﬁfl 7 be-
come the same. This is because of molecular dissociation, or
to be more exact, the two atoms do not bind in our equilib-
rium state simulation at 7=900 K and the predominant con-
figuration is that of two separate positronium atoms.

Simulations in a well-defined Ps density are time consum-
ing and, therefore, studies of this kind have been carried out
at the transition region around 1000 K only. Using the peri-
odic boundary conditions and the cubic supercells of sizes
from (300q,)? to (50a,)® with two Ps atoms, we have simu-
lated three densities from 0.5 to 100X 10** m™!, respec-
tively. We see that with increasing density, the equilibrium
shifts to the molecular direction making the transition
smoother and raising it to higher temperatures compared to
the more sharp low-density limit.

For completeness, we should point out that in equilibrium
at any finite temperature the zero density limit consists of Ps
atoms only. Correspondingly, increasing density will eventu-
ally smoothen the transition away.

In the recent experiment cited above [2,12], the formation
of Ps, molecules was observed below 900 K in about two
orders of magnitude lower densities than our lowest, above
(Fig. 1). Formation was not observed at higher temperatures,
however, because the Ps atoms desorbed from the confining
porous silica surface with the activation energy kgzT
~0.074 eV (~850 K). Thus, our prediction of thermal dis-
sociation of Ps, above 900 K in the experimentally achiev-
able densities remains to be verified in forthcoming experi-
ments in higher temperatures.

Next, we compare our finite-temperature Ps, data to the
published zero Kelvin results, discuss the details of Ps-Ps
interaction and, finally, conclude with the explanation of the
higher-temperature instability.

The conventional zero Kelvin like Ps, state of the system
is confirmed below 900 K from the distributions in Fig. 2
and related data in Table 1. The pair-correlation functions for
like and opposite charged particles are essentially identical
with those reported elsewhere [6], and the expectation values
of various powers of these distributions match with other
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FIG. 2. (Color online) Temperature averaged pair-correlation
functions for different particle pairs (T=900 K): ¢~ ¢ and e* e*
(dash dotted) and e~ e* (dashed). The ground-state (7=300 K) ra-
dial distribution of the free positronium atom is given as a reference
(solid line). The pair-correlation functions are averaged over tem-
peratures below 900 K. The distributions include the 7> weight and
normalization to one to allow direct comparison to other published
data (see Table I).

published reference data. At higher temperatures, where Dy
~( K, the corresponding distributions and data become that
of the free Ps atoms.

At 900 K, the thermal energy kz7=0.0030E;=0.08 eV
only. Therefore, the obvious question arises: why the Ps,
molecule with binding energy 0.44 eV is unstable above 900
K? Is there a temperature dependence hidden in the interac-
tions? What does the potential energy curve of this diatomic
molecule look like?

It is the van der Waals interaction or so called dispersion
forces that are expected to contribute to the potential curve at
larger atomic distances. These arise from the “dynamic
dipole-dipole correlations,” as usually quoted. Now, within
our approach we have a transparent way to consider these
interactions: the dipoles and their relative orientations. Thus,
we monitor the dipole-dipole orientation correlation func-

tion,
< Pr PJ> , 1)
PPy

as a function of interatomic distance R, where p; and p; are
the two e"e* dipoles. This function assumes values from —1

TABLE 1. Simulated and reference data [3,6,9,10,15] in atomic
units. Our data are given as averages from temperatures 7T
=900 K. Apart from the energy, the values are calculated using the
averaged pair-correlation functions shown in Fig. 2. Electrons are
labeled 1 and 2; positrons are 3 and 4. Because of symmetry (r,)
=(raq) and (r13)=(ry3)=(r14)=(ro).

<Et0t> <r12> <r13> <”le <’f31 <”%2> <”%3>

Refs. -0.5160  6.033 4.487 0.221 0.368 46.375 29.113
PIMC -0.5154(5) 6.02 448 022 037 4567 28.78
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FIG. 3. (Color online) Dipole-dipole correlation functions [Eq. (1)]. The upper (dash dotted, red) and lower (solid, blue) curves
correspond to 1000 K and 800 K, respectively. See the two definitions of the interatomic distances Ryq and R, in text.

to 0, corresponding orientations from perfectly opposite to
fully random.

The concept of interatomic distance needs to be defined
for evaluation. We should note that at the “equilibrium dis-
tance” the centers-of-mass (c.m.) of all four particles are su-
perimposed on the same location, as evaluated from their
one-particle distributions (or wave functions). However, the
particles do have well-defined (correlated) average distances
(see Table I). Thus, the definition is not trivial.

We can define the center-of-mass interatomic distance
R. . using the expectation value of the c.m. of one e”e* pair
and that of the other pair. An alternative (correlated) defini-
tion is the expectation value of the separation of the two e”e*
dipoles Ry,. At large distances, these two coincide; but at the
opposite limit, in Ps, molecule, the former becomes zero
whereas the latter remains at about 4 a,.

Another problem is that in an equilibrium simulation we
are not able to choose or fix the interatomic distance R (R, ,,
or Ryy). Therefore, evaluation of R-dependent quantities pre-
sumes that sampling in the chosen temperature includes the
relevant R with good enough statistics. This kind of data
hunting turns out to be computationally challenging.

To overcome this, we have used a “close-to-equilibrium”
technique by starting from 800 K distribution and rising the
temperature to 1000 K, and then, applying the reverse
change in temperature to obtain another estimate. In the
former case, we are able to follow the increase in R from the
molecular region to “dissociation,” while the latter follows
“recombination.”

In Fig. 3 we show the estimates from these two tempera-
tures to the correlation function with respect to the inter-
atomic distances Ry and R, . We emphasize that these are
estimates, only, because at different temperatures the equilib-
rium sampling regions of R are very different. However, we
see that the difference between these two estimates is very
small and the equilibrium simulation correlation function be-
tween these two is easily conceived. Thus, we conclude that
the dipole-dipole correlation is not temperature dependent.

Using the same close-to-equilibrium technique, we evalu-
ate the van der Waals interaction energy next. This is shown
in Fig. 4. There too, the true equilibrium curve can be esti-
mated as the average of the two shown ones. Simple fit re-
veals that the large distance limit (Ryy>12a,) shows the
asymptotic R~* behavior (« roughly 6) as expected.

Sampling all the energy contributions with the same
close-to-equilibrium technique allows us to evaluate the total

energy or the diatomic potential energy curve as a function
of interatomic distance E*(R), where R=Rgyq or R . It
shows the same temperature-independent behavior, though
the statistics is not good enough to allow showing the curve
here. As expected, we find that the true dissociation energy is
not temperature dependent, as is the apparent dissociation
energy Dy shown in Fig. 1.

Now, the “thermal dissociation” can be explained by the
strong temperature dependence of the Ps, free-energy. With
the rising temperature, the free-energy of the two atoms de-
creases below that of the molecule, leading to transition from
the molecular dominance to the atomic one. This is not a
surprise, but the usual behavior of the conventional mol-
ecules. From our simulations, we find, however, the follow-
ing surprising features: (i) the low temperature, where the
transition takes place, (ii) sharpness of the transition, and (iii)
almost negligible density dependence at the experimentally
relevant densities.

The transition temperature is usually estimated by match-
ing the thermal energy kT with the dissociation energy. This
is where the entropic contribution in free-energy —7S be-
comes comparable with the dissociation energy. In the
present case, this gives about 5000 K. Conventionally, the
transition is smooth following from the equilibrium between
molecular dissociation and formation, where the former de-
pends on the temperature and, the latter, on the density, the
density being the main factor in the entropy.

The Ps, molecule lacking in the heavy nuclei is peculiar.
All of its constituents are strongly delocalized, barely fitting
into the binding regime of the molecular potential curve.
This is what they do below 900 K in experimentally relevant
densities, but not above 1000 K. This is a consequence from

> (units of hartree)
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FIG. 4. (Color online) Dipole-dipole interaction energy with the

same notations as in Fig. 3. The upper (dash dotted, red) and lower
(solid, blue) curves correspond to 1000 K and 800 K, respectively.
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the exceptionally large entropy factor originating from the
strong quantum delocalization more than the density.

In summary, with path-integral Monte Carlo simulations
of the dipositronium molecule Ps,, we have found and ex-
plained its surprising thermal instability. Due to the strong
temperature dependence of the free-energy of the considered
four particle system, the molecular form is less stable than
two positronium atoms above about 900 K, though the mo-
lecular dissociation energy is ~0.4 eV. The transition in
equilibrium from molecules to atoms is sharp in temperature
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and only weakly density dependent. This can be understood
by the large entropy factor originating from strong delocal-
ization of all of the molecular constituents. Our prediction
remains to be experimentally verified.
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